无机化学——配位化合物
无机化学中的配位化合物

无机化学中的配位化合物无机配位化合物是指由中心金属离子或原子与周围配体形成的稳定化合物,其中配体可以是有机分子、无机物以及某些复杂的大分子。
这些化合物在化学、材料和生物领域具有广泛的应用。
本文将对无机化学中的配位化合物进行详细介绍。
一、配位键的形成在配位化合物中,中心金属离子通过与配体的配位键结合在一起。
配位键可以是共价键,也可以是离子键。
在共价配位键中,金属离子与配体共享电子对,形成共有的化学键。
而离子配位键中,金属离子通过吸引配体上的电子形成离子键。
二、常见的配体在配位化合物中,各种不同的配体可以与中心金属离子形成配位键。
常见的配体包括一价的阴离子(如Cl-、Br-、I-)、二价的阴离子(如O2-、OH-)以及有机分子(如NH3、CO、CN-等)。
这些配体的不同基团和电性决定了它们与金属离子之间的相互作用方式和配位键的强度。
三、配位化合物的结构配位化合物的结构可以是简单的一对一结构,也可以是复杂的多中心配位结构。
在一对一结构中,一个中心金属离子配位于一个配体上。
而在多中心配位结构中,一个或多个中心金属离子与多个配体形成配合物。
四、配位化合物的性质配位化合物的性质受到配体和中心金属离子的影响。
配合物的颜色、溶解度、稳定性以及一些化学反应都与配体和金属离子的性质密切相关。
例如,某些过渡金属离子与氮、氧等电负性较高的配体形成的配合物具有较强的酸性;而某些具有大的络合度的配合物则具有较好的溶解性和稳定性。
五、应用无机配位化合物在化学、材料和生物领域具有广泛的应用。
在催化剂中,配合物的金属离子可以提供活性位点,从而促进化学反应的进行。
在生物医学中,金属配合物可以用作药物,通过与特定的生物分子相互作用来治疗疾病。
此外,配位化合物也广泛应用于材料科学领域,用于制备光电材料、磁性材料、液晶材料等。
六、进展与展望近年来,随着科学技术的不断发展,无机化学中的配位化合物在结构设计、属性调控以及应用领域方面取得了许多重要的进展。
无机化学课件-配位化合物

乙二酸根(草酸根):
O
O 2-
CC
OO
六齿配体:乙二胺四乙酸根 EDTA(Y4-)
OOC– H2C
CH2 – COO 4-
N–CH2 –CH2 –N
OOC– H2C
CH2 – COO
3.配位数:
指在配合物中直接与中心原子配合的配位 原子的数目
表示:n 特点:一般是2,4,6,8 (偶数)
单齿配体: [ Cu(NH3)4]2+
{ 3.特殊配合物
簇状配合物
π-酸配体配合物
桥基配合物:
H O (H2O)4 Fe Fe(OH2)4 O H
簇状配合物 :
CO CO CO CO
Fe Fe
CO
CO CO
CO
CO
四、配合物的几何异构现象
几何异构体:组成相同、空间排列方式不同的物质 平面四方形空间构型的[Pt(NH3)2Cl2],就有两
种不同的排列方式:
Cl
NH3
Pt
Cl
NH3
顺式
μ≠0 棕黄色
有抗癌活性
Cl
NH3
Pt
NH3
Cl
Байду номын сангаас
反式
μ=0 亮黄色 无抗癌活性
第二节 配合物的化学键理论
一、价键理论
(一)基本要点:
1.配合物的中心原子与配体之间是以配位键结合的: M ← L。
2.在形成配离子时,中心原子所提供的空轨道必须首 先进行杂化,形成数目相同的新杂化轨道,M以杂化 空轨道接受L提供的电子而形成σ配键。配离子的空间 构型、配位数、稳定性,主要取决于形成配位键时, M所用的杂化轨道的类型。 3.M的原子轨道杂化时,由于参加杂化的轨道能级不 同,形成的配离子可分为内轨型、外轨型。
无机化学7配位化合物

第七章 配位化合物
二、配位化合物的组成 1.配合物的内界和外界 配合物根据其化学键特点和在水溶液中的离解方式不同 而分成两大部分:内界和外界。内界是配位键结合的配离子 部分,通常用方括号括起。外界是与配离子以离子键结合的 带相反电荷的离子,写在方括号外面。配位分子是只有内界 没有外界的反离子,内界配离子部分是由中心离子和配位体 组成。
第七章 配位化合物
2.中心离子(或中心原子) 中心离子是在配位个体中提供空轨道的金属离子或原子, 是配合物的核心部分,是孤对电子的接受体,如[Cu(NH3)4] 2+中的Cu2+就是中心离子。常见的中心离子多是过渡元素金属 离子如Fe2+、Cu2+、Zn2+等,这些离子的半径小,电荷多,吸 引孤对电子能力强。少数金属原子和少数高氧化态的非金属 元素也可作配合物的形成体,如Fe(CO)5]、Ni(CO)4中的Fe、 Ni及[SiF6]2-、[BF4]-中的Si(Ⅳ)、B(Ⅲ)等。
第七章 配位化合物
4.配位数 配合物中直接与中心离子配位键结合的配位原子的总数 称为该中心离子的配位数,即中心离子与配体形成配位键的 数目。中心离子的配位数取决于配离子所含配体的种类和数 目。 单齿配体形成配位键的数目等于配体的个数,多齿配体 形成配位键的数目等于配体数乘以配体中所含配位原子的数 目。如[Co(en)2(NH3)2]3+ 中的Co3+ 的配位数是6而不是4, 因为每个乙二胺配体含有两个N配位原子。通常中心离子的 配位数是2、4、6。有些中心离子在特定条件下具有一定的 特征配位数。
第七章 配位化合物
根据配位体中所含有配位原子的数目和与中心离子配位情况,配位体 还可分为以下几种。 单啮配位体:在一个配位体中,能与金属离子配位的点称为配位点, 只有一个配位点的配位体叫单啮配位体,如NH3,H2O,配位后阻碍了正 负离子间的吸引而使溶解度增大。 非螯合多啮配位体:配位体有多个配位点,但由于空间位阻使同一配 位体的几个配位点不能直接与同一个金属离子配位,例如PO43-,一般情况 下,每个配位体要和一个以上金属离子配位,而每个金属离子为了满足配 位要求又要与若干个这样的配位体配位,这样形成的多核配位化合物,往 往是不溶性的沉淀,所以非螯合多啮配位体在化学中常作沉淀剂。 螯合配位体:一个配位体中的几个配位点能直接相同一个金属离子配 位,称为螯合配位体,如EDTA。不带电的单核螯合分子一般在水中的溶 解度很小,但能溶于有机溶剂中,这种配位体在水溶液中是一种沉淀剂, 在有机溶液中能起萃取络合剂的作用,如乙酰丙酮。带电的单核螯合离子 一般很难从水溶液中沉淀出来,这种配位体可作掩蔽剂,如酒石酸盐、 EDTA。
无机化学第五章

受配位体孤对电子能力的原子或离子。
可以是金属离子,也可以是电中性的金属原子),周期表中
几乎所有的金属(特别是过渡金属离子)都可作为中心离子,少数 非金属高氧化态离子也可作为中心离子,如[Ni(CO)4]及[Cr(CO)6] 中的Ni,Cr均为中性原子。又如[SiF6]2–中的Si(Ⅳ) 。
6
--
--
作为配位体的物质可以是简单离子,如Cl– ; 也可以是复杂 的离子或分子,如CN– 、 SCN-、NH3 。可以是有机分子如 乙二胺、乙二胺四乙酸根离子。 配位体中直接与中心离子(或原子)成键的原子为配位原子。
常见的配位原子:N、O、S、C、卤素原子
配位原子的特点是:电负性大、有孤对电子的非金属原子。
1) 单齿配体 一个配体中只能提供一个配位原子与中心离子成键的叫单 8 齿配体。
常见单齿配体 中性分子 H2O NH3 CO CH3NH2 配体 水 氨 羰基 甲胺 O N C N 配位原子 阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基 O C N 配位原子 F Cl Br I SCNNCS阴离子 ONO配体 亚硝酸根 硫氰酸根 异硫氰酸根 O S N 配位原子
顺反异构体
NO2 NO2 O2N O2N
面式
经式
光活异构体 ,镜面 对称 (弯线表示en)
26
键合异构体:连接的原子不同
O N H3N H3N Co NH3 NH3 NH3
O N O H3N Co H3N NH3 NH3 NH3
O
硝基配合物(黄色)
亚硝酸Байду номын сангаас配合物(红色)
27
二、 配合物的化学式和命名
[Cu(NH3)4]SO4溶液 Cu(OH)2沉淀 CuSO4溶液
无机化学-第六章 配位化合物

正四面体构型
同样是四配位,但对配合物[Ni(CN)4]2–就成了另一回事 3d 4s 4p
中心离子Ni2+的结构
3d [Ni(CN)4]2–的结构 CN CN dsp2杂化
平面正方形构型
CN CN
例
[FeF6]3–的结构?
sp3d2杂化
八面体构型
[Fe(CN)6]3-的结构?
d2sp3杂化
八面体构型
↑↓ ↑↓ ↑↓ ↑ ↑ 3d
↑↓ ↑↓ ↑↓ ↑↓ _ 3d
_
_
_ _ _ 4s 4p
_ _ _ 4s 4p dsp2杂化,四方形
同一中心原子的内轨型配合物比外轨型配合物稳定
(3)内外轨型取决于 ♦ 配体的强弱
配体 (主要因素) 中心离子(次要因素)
(1)电负性小的配位原子易给出孤对电子,如:CN-, CO, NO2-(配位原子:C,N) 。对中心离子(n-1)d轨道影响较 大,内轨型,配体的配位能力强; (2) 电负性大的配位原子(如卤素X-和氧O),不易给出孤 对电子,对中心离子影响不大。外轨型,配体的配位能
力弱 。
配体的强弱——光谱化学系列: I- <Br-<S2-<SCN-≈Cl-<NO3-<F-<OH-<C2O42-<H2O<NCS<NH3<en≈SO32-<o- phen<NO2-<CO(羰基),CNH2O以前:弱场; H2O ~ NH3:中间场;NH3以后:强场
♦ 中心离子的价层电子数
(1) d10型,无空(n-1)d轨道, 易形成外轨型 (2) d4 ~d8型, 需根据配体强弱判断内外轨型 (3) d0~d3型,有空的(n-1)d轨道,形成内轨型
大学无机化学配位化合物PPT课件

通常是电负性较大的原子,如C、N、O、X和S。
③ 单齿配体:配体中只含一个配位原子。
如:X--、S2--、H2O、NH3、CO、CN--等。
④ 多齿配体:配体中含两个或更多的配位原子。如
C2O42-、氨基乙酸根、乙二胺、乙二胺四乙酸根(edta)。
N**H2-CH2-COO-*, N*H2-CH2-CH2-NH2 (en)
第11页/共38页
二、配键和配位化合物分类
1. 外轨型配合物
中心原子是用最外层的ns、np或ns、np、nd组成
的杂化空轨道接受电子,与配体形成配位键.
例:[FeF6]3--中Fe3+:3d5
↑↑↑↑↑ _ _ _ _ _ _ __ _
3d
4s 4p
4d
sp3d2杂化,八面体构型
第12页/共38页
d2sp3
6
Fe (CN)63-,Co(NH3)6
第18页9.3.1 配合物的稳定常数 9.3.2 影响配合物稳定性的因素
(自学) 9.3.3 配位平衡的移动
第19页/共38页
9.3.1 配合物的稳定常数
一、配合物的稳定常数 (K稳)
Cu2+ + 4NH3 = Cu(NH3)42+ K稳
3d
d2 sp3 杂化轨道
内轨型配合物,低自旋 µ = 0 第16页/共38页
CoF63– , Co3+: 3d6
4d 4p 4s 3d
sp3d2杂化 3d
sp3d2 杂化轨道
外轨型配合物,高自旋 µB.M. 正八面体构型
第17页/共38页
三、 杂化轨道形式与配合物的空间构型
无机化学第8章 配位化合物

HBNU-Liujy
2. 四面体场(Td, Tetrahedron Field)中d轨道的分裂
Z
Z
Y
dz2
Z
X Y
Z
X
dX2-Y2
Z
X
X
X
Y
dXY
Y
dXZ
Y
dYZ
18
第08章 配位化合物
HBNU-Liujy
Td
Splitting分裂能Δt =Et2-Ee
d
d
自由离子 free ion
球形场 sphere
Py
Px
Px
S
S
Py
pz
Py
Py
Px
Px
Pz
pz
Py
Py dx2-y2
pz
dz2
杂化轨 直 道的空 线 间构型 形
平面 正四 平面 三角 三角形 面体 正方形 双锥
形
四方 锥形
正八 面体 形
正八 面体 形
10
第08章 配位化合物
HBNU-Liujy
3. Inner-Orbital and Outer-Orbital Complex
16
第08章 配位化合物
HBNU-Liujy
Oh
Splitting分裂能Δo =Eeg-Et2g
d
d
自由离子 free ion
球形场 sphere
eg(dz2,dx2-y2)
Δo=10Dq
160Δo 140Δo
t2g(dxy,dxz,dyz)
四面体场 tetrahedron
17
第08章 配位化合物
22
第08章 配位化合物
HBNU-Liujy
《无机化学》第8章.配位化合物PPT课件

配位化合物的发展趋势与展望
新材料与新能源
随着人类对新材料和新能源需求的不断增加,配位化合物有望在太 阳能电池、燃料电池等领域发挥重要作用。
生物医药领域
配位化合物在药物设计和治疗方面的应用前景广阔,有望为人类疾 病的治疗提供新的解决方案。
环境科学领域
配位化合物在处理环境污染和保护生态环境方面具有潜在的应用价值, 未来有望为环境保护做出贡献。
螯合物
由两个或更多的配位体与同一 中心原子结合而成的配合物,
形成环状结构,如: Fe(SCN)3。
命名
一般命名法
根据配位体和中心原子的名称,加上 “合”字和数字表示配位数的顺序来 命名,如:Co(NH3)5Cl。
系统命名法
采用系统命名法,将配位体名称按照 一定的顺序列出,加上“合”字和数 字表示配位数的顺序,最后加上中心 原子名称,如: (NH4)2[Co(CO3)2(NH3)4]·2H2O。
配位化合物的种类繁多,其组成和结 构取决于中心原子或离子和配位体的 性质。
配位化合物的形成条件
01
存在可用的空轨道 和孤对电子
中心原子或离子必须有可用的空 轨道,而配位体则需提供孤对电 子来形成配位键。
02
能量匹配
中心原子或离子和配位体的能量 状态需要匹配,以便形成稳定的 配位化合物。
03
空间和电子构型适 应性
中心原子或离子和配位体的空间 和电子构型需相互适应,以形成 合适的几何构型和电子排布。
02
配位化合物的组成与结构
组成
配位体
提供孤电子对与中心原子形成配位键的分子或离子。常见的配位 体有:氨、羧酸、酰胺、酸酐、醛、酮、醇、醚等。
中心原子
接受配位体提供的孤电子对形成配位键的原子。常见的中心原子有: 过渡金属元素的离子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1 Basic concepts of coordination compound
(配合物的基本概念)
8.1.1 Form of coordination compound (配合物的生成)
8.2.2 Constitutes of coordination compound (配合物的组成)
8.1.3 Naming of coordination compound (配合物的命名)
一般地,中心离子的Z越高,r越小,则配位数CN越小。如: Ag(NH3)2+,Cu(NH3)42+,Co(NH3)63+,从溶液中析出配合物时,配 离子常与带相反电荷的离子形成盐。如[Co(NH3)6]Cl3.
8.1.3 Naming of coordination compound 配合物的命名
溶液中存在稳定的配离子Cu(NH3)42+
8.1.2 Constitutes of coordination compound (配合物的组成)
[Cu(NH3)4]SO4 [Co(NH3)6]Cl3
中 心
离 子
配配 配 位位 位 原体 数 子
配 合 物 外
配合物内界(配离子) 界
K3[Fe(CN)6]
配位体(ligands):通常是非金属原子或离子或分子。配位体中与 中心离子成键的原子叫配位原子。作为配位原子的基本条件是 其核外应有孤对(lone pair)电子或离域(delocalized)电子。
配位键(coordination bond) :由中心原子提供空轨道,配位原 子提供孤对电子或离域电子,通过配位作用形成的化学键。
配合物是一类数量众多,应用十分广泛的化合物。第一个公认 的第一个配合物是1789年合成的蔡斯盐([Co(NH3)6]Cl3)
中心离子(central ion) :通常是金属离子或原子,也可是非金 属原子或离子。作为中心离子的基本条件是核外有空的价层轨 道,能接受孤对电子或离域电子。其次要有足够大的体积。
K3[Fe(CN)6] K[PtCl3(NH3)] [Pt(NH3)6][PtCl4]
六氰合铁(Ⅲ)酸钾 三氯一氨合铂(Ⅱ)酸钾 四氯合铂(Ⅱ)酸六氨合铂(Ⅱ)
8.1.4 Classes of coordination compound(配合物的类型)
1、简单配合物(simple coordination compound ) (1)按中心离子分:单核、多核 (2)按配体种类分:水合、氨合、卤合、氢合、羰合 (3)按成键类型分:σ配合物、簇合物、π及π酸配合物 2、螯合物(Chelate):Cu(en)22+(乙二胺合铜) Ca2+-EDTA
8.2.1 Valence bond theory 价键理论
1、σ配键和π配键
与共价键的VB法相似,所不同的是,中心原子只提供空轨道, 电子由配位原子单独提供。也有σ键和π键之分。
σ配键 Zn(NH3)42+:Zn2+,sp3杂化,四面体,NH3提供电子。 π配键 配位原子有未成键的π电子时,如O2-,能与中心离子合适
配位数(coordination number):配合物中与中心of Ligands
配体类型:按配体中配位原子多少可将配体分为以下几类:
单齿配体 双齿配体 多齿配体(螯合剂)如:
:NH3 :CN:- :NH2-CH2CH2-H2N:
EDTA
影响配位数的因素(Influence factors Coordination Numbers) —— 中心离子和配体的Z、r和电子构型
配 合 物
外
中 心
离 子
配配 配 位位 位 原体 数 子
界
配合物内界(配离子)
中 心
离 子
配配 配 位位 位 原体 数 子
配 合 物 外
配合物内界(配离子) 界
K2[Pt(NH3)2Cl2]
配 合 物
外
中 心
离 子
配配 位位 原体 子
配 位 数
界
配合物内界(配离子)
8.1.3 Basic Concepts
8.1.4 Classes of coordination compound (配合物的类型)
8.1.1 (Form of coordination compound)配合物的生成
配离子(先看一个实验) NH3·H2O NH3·H2O过量 乙醇
CuSO4 Cu2(OH)2SO4 Cu(NH3)4 2+ Cu(NH3)4SO4 (蓝色溶液) (浅蓝色沉淀) (深蓝色溶液) (深蓝色晶体)
1、配阳离子配合物: 某酸(化)+ ||: 配位数+配体名:|| + 合+中心离子(中心离子氧化态)
[Cu(NH3)4] SO4
硫酸四氨合铜(Ⅱ)
[CoCl2(NH3)3(H2O)]Cl 氯化二氯一水三氨合钴(Ⅱ)
2、配阴离子配合物:
||: 配位数+配体:|| + 合+ 中心离子 (中心离子氧化态)+ 酸+某
Chapter 8 Coordination Compounds
Content
8.1 Basic concepts of coordination compounds (配合物的基本概念)
8.2 Chemical Bond Theory Of Coordination compounds (配合物的化学键理论) 8.2.1 Valence Bond Theory (价键理论) 8.2.2 Crystal Field Theory(晶体场理论)
Ca2+-EDTA
Sandwich Compound(夹心化合物)
结构特点:夹心三明治,富电子,强π键结合,性质稳定, 能发生亲电取代反应。
8.2 Chemical Bond Theory Of Coordination (配合物的化学键理论)
8.2.1 Valence Bond Theory (价键理论) 8.2.2 Crystal Field Theory(晶体场理论)
8.3 Dissociation Equilibrium of Coordination (配位离解平衡)
8.4 prepared methods of coordination compounds (配合物的类型和制备方法)
8.5 Development and application of Coordination compounds (配合物的应用与发展)