无机化学配位化合物

合集下载

无机化学中的配位化合物

无机化学中的配位化合物

无机化学中的配位化合物无机配位化合物是指由中心金属离子或原子与周围配体形成的稳定化合物,其中配体可以是有机分子、无机物以及某些复杂的大分子。

这些化合物在化学、材料和生物领域具有广泛的应用。

本文将对无机化学中的配位化合物进行详细介绍。

一、配位键的形成在配位化合物中,中心金属离子通过与配体的配位键结合在一起。

配位键可以是共价键,也可以是离子键。

在共价配位键中,金属离子与配体共享电子对,形成共有的化学键。

而离子配位键中,金属离子通过吸引配体上的电子形成离子键。

二、常见的配体在配位化合物中,各种不同的配体可以与中心金属离子形成配位键。

常见的配体包括一价的阴离子(如Cl-、Br-、I-)、二价的阴离子(如O2-、OH-)以及有机分子(如NH3、CO、CN-等)。

这些配体的不同基团和电性决定了它们与金属离子之间的相互作用方式和配位键的强度。

三、配位化合物的结构配位化合物的结构可以是简单的一对一结构,也可以是复杂的多中心配位结构。

在一对一结构中,一个中心金属离子配位于一个配体上。

而在多中心配位结构中,一个或多个中心金属离子与多个配体形成配合物。

四、配位化合物的性质配位化合物的性质受到配体和中心金属离子的影响。

配合物的颜色、溶解度、稳定性以及一些化学反应都与配体和金属离子的性质密切相关。

例如,某些过渡金属离子与氮、氧等电负性较高的配体形成的配合物具有较强的酸性;而某些具有大的络合度的配合物则具有较好的溶解性和稳定性。

五、应用无机配位化合物在化学、材料和生物领域具有广泛的应用。

在催化剂中,配合物的金属离子可以提供活性位点,从而促进化学反应的进行。

在生物医学中,金属配合物可以用作药物,通过与特定的生物分子相互作用来治疗疾病。

此外,配位化合物也广泛应用于材料科学领域,用于制备光电材料、磁性材料、液晶材料等。

六、进展与展望近年来,随着科学技术的不断发展,无机化学中的配位化合物在结构设计、属性调控以及应用领域方面取得了许多重要的进展。

无机化学课件-配位化合物

无机化学课件-配位化合物

乙二酸根(草酸根):
O
O 2-
CC
OO
六齿配体:乙二胺四乙酸根 EDTA(Y4-)
OOC– H2C
CH2 – COO 4-
N–CH2 –CH2 –N
OOC– H2C
CH2 – COO
3.配位数:
指在配合物中直接与中心原子配合的配位 原子的数目
表示:n 特点:一般是2,4,6,8 (偶数)
单齿配体: [ Cu(NH3)4]2+
{ 3.特殊配合物
簇状配合物
π-酸配体配合物
桥基配合物:
H O (H2O)4 Fe Fe(OH2)4 O H
簇状配合物 :
CO CO CO CO
Fe Fe
CO
CO CO
CO
CO
四、配合物的几何异构现象
几何异构体:组成相同、空间排列方式不同的物质 平面四方形空间构型的[Pt(NH3)2Cl2],就有两
种不同的排列方式:
Cl
NH3
Pt
Cl
NH3
顺式
μ≠0 棕黄色
有抗癌活性
Cl
NH3
Pt
NH3
Cl
Байду номын сангаас
反式
μ=0 亮黄色 无抗癌活性
第二节 配合物的化学键理论
一、价键理论
(一)基本要点:
1.配合物的中心原子与配体之间是以配位键结合的: M ← L。
2.在形成配离子时,中心原子所提供的空轨道必须首 先进行杂化,形成数目相同的新杂化轨道,M以杂化 空轨道接受L提供的电子而形成σ配键。配离子的空间 构型、配位数、稳定性,主要取决于形成配位键时, M所用的杂化轨道的类型。 3.M的原子轨道杂化时,由于参加杂化的轨道能级不 同,形成的配离子可分为内轨型、外轨型。

无机化学7配位化合物

无机化学7配位化合物

第七章 配位化合物
二、配位化合物的组成 1.配合物的内界和外界 配合物根据其化学键特点和在水溶液中的离解方式不同 而分成两大部分:内界和外界。内界是配位键结合的配离子 部分,通常用方括号括起。外界是与配离子以离子键结合的 带相反电荷的离子,写在方括号外面。配位分子是只有内界 没有外界的反离子,内界配离子部分是由中心离子和配位体 组成。
第七章 配位化合物
2.中心离子(或中心原子) 中心离子是在配位个体中提供空轨道的金属离子或原子, 是配合物的核心部分,是孤对电子的接受体,如[Cu(NH3)4] 2+中的Cu2+就是中心离子。常见的中心离子多是过渡元素金属 离子如Fe2+、Cu2+、Zn2+等,这些离子的半径小,电荷多,吸 引孤对电子能力强。少数金属原子和少数高氧化态的非金属 元素也可作配合物的形成体,如Fe(CO)5]、Ni(CO)4中的Fe、 Ni及[SiF6]2-、[BF4]-中的Si(Ⅳ)、B(Ⅲ)等。
第七章 配位化合物
4.配位数 配合物中直接与中心离子配位键结合的配位原子的总数 称为该中心离子的配位数,即中心离子与配体形成配位键的 数目。中心离子的配位数取决于配离子所含配体的种类和数 目。 单齿配体形成配位键的数目等于配体的个数,多齿配体 形成配位键的数目等于配体数乘以配体中所含配位原子的数 目。如[Co(en)2(NH3)2]3+ 中的Co3+ 的配位数是6而不是4, 因为每个乙二胺配体含有两个N配位原子。通常中心离子的 配位数是2、4、6。有些中心离子在特定条件下具有一定的 特征配位数。
第七章 配位化合物
根据配位体中所含有配位原子的数目和与中心离子配位情况,配位体 还可分为以下几种。 单啮配位体:在一个配位体中,能与金属离子配位的点称为配位点, 只有一个配位点的配位体叫单啮配位体,如NH3,H2O,配位后阻碍了正 负离子间的吸引而使溶解度增大。 非螯合多啮配位体:配位体有多个配位点,但由于空间位阻使同一配 位体的几个配位点不能直接与同一个金属离子配位,例如PO43-,一般情况 下,每个配位体要和一个以上金属离子配位,而每个金属离子为了满足配 位要求又要与若干个这样的配位体配位,这样形成的多核配位化合物,往 往是不溶性的沉淀,所以非螯合多啮配位体在化学中常作沉淀剂。 螯合配位体:一个配位体中的几个配位点能直接相同一个金属离子配 位,称为螯合配位体,如EDTA。不带电的单核螯合分子一般在水中的溶 解度很小,但能溶于有机溶剂中,这种配位体在水溶液中是一种沉淀剂, 在有机溶液中能起萃取络合剂的作用,如乙酰丙酮。带电的单核螯合离子 一般很难从水溶液中沉淀出来,这种配位体可作掩蔽剂,如酒石酸盐、 EDTA。

无机化学中的配位化合物的合成

无机化学中的配位化合物的合成

无机化学中的配位化合物的合成在无机化学中,许多重要的化学反应中都存在配位化合物的合成。

配位化合物是指带有一个或多个配体的金属离子与一些不含金属离子的分子化合物相互结合形成的复合物。

配位化合物在生物、工业和材料科学中都有着重要的应用。

因此,了解一些基本的配位化合物合成方法是非常必要的。

一. 酸碱法合成酸碱法合成是最常用的合成方法之一。

在此方法中,金属离子首先与碱性配体反应,形成产物的“母液”。

然后,向其中加入酸性配体,使其与金属离子螯合形成所需的配位化合物。

例如,将某些金属离子和氢氧化物反应,可以得到一些碱式金属盐。

接下来,加入某些酸性配体,如某些羧酸盐或胺类,可以得到配位化合物。

例如,可以通过酸碱法合成一些重要的金属络合物,如FeCl3所形成的Fe(C6H5COO)3。

这种化合物是一种强氧化剂,在某些有机反应中得到了广泛的应用。

二. 光合成光合成是另外一个常用的方法,适用于各种水溶性离子或氢氧化物的配位化合物。

在此方法中,将金属离子和配体放入光敏溶液中照射,以光催化的方式促进反应发生。

这种方法需要使用专业的设备,因此,成本比较高,但可以得到高纯度的产物。

例如,对于RhCl3和6,6’-二(β-萘乙酰氨基)-2,2’-双吡啶盐,可以通过光合成得到一个配位化合物。

可以利用这种配位化合物的吸咐特性进行分离和提取某些特定的分子。

三. 热解法热解法也是一个配位化合物的合成方法。

在这种方法中,将金属离子与其它配体混合,加热使得溶剂蒸发,留下固体混合物。

然后,将这个混合物加入到高温的熔盐中进行热解,以形成所需的配位化合物。

例如,可以将铜与苯并芴并吡啶合并形成金属配合物Cu(bpy)(Pbenz), 其中bpy为2,2'-联吡啶,Pbenz为苯并芴并吡啶。

四. 溶剂热法溶剂热法是一种较新的方法。

在这种方法中,将金属离子和配体混入一个溶剂中,在高温高压下反应。

由于高温和高压的影响,反应的速率显著提高。

此外,溶剂热法多能够得到高度晶化的产物,这对于实验室合成和应用都是非常重要的。

无机化学-第六章 配位化合物

无机化学-第六章 配位化合物

正四面体构型
同样是四配位,但对配合物[Ni(CN)4]2–就成了另一回事 3d 4s 4p
中心离子Ni2+的结构
3d [Ni(CN)4]2–的结构 CN CN dsp2杂化
平面正方形构型
CN CN

[FeF6]3–的结构?
sp3d2杂化
八面体构型
[Fe(CN)6]3-的结构?
d2sp3杂化
八面体构型
↑↓ ↑↓ ↑↓ ↑ ↑ 3d
↑↓ ↑↓ ↑↓ ↑↓ _ 3d
_
_
_ _ _ 4s 4p
_ _ _ 4s 4p dsp2杂化,四方形
同一中心原子的内轨型配合物比外轨型配合物稳定
(3)内外轨型取决于 ♦ 配体的强弱
配体 (主要因素) 中心离子(次要因素)
(1)电负性小的配位原子易给出孤对电子,如:CN-, CO, NO2-(配位原子:C,N) 。对中心离子(n-1)d轨道影响较 大,内轨型,配体的配位能力强; (2) 电负性大的配位原子(如卤素X-和氧O),不易给出孤 对电子,对中心离子影响不大。外轨型,配体的配位能
力弱 。
配体的强弱——光谱化学系列: I- <Br-<S2-<SCN-≈Cl-<NO3-<F-<OH-<C2O42-<H2O<NCS<NH3<en≈SO32-<o- phen<NO2-<CO(羰基),CNH2O以前:弱场; H2O ~ NH3:中间场;NH3以后:强场
♦ 中心离子的价层电子数
(1) d10型,无空(n-1)d轨道, 易形成外轨型 (2) d4 ~d8型, 需根据配体强弱判断内外轨型 (3) d0~d3型,有空的(n-1)d轨道,形成内轨型

《无机化学》第8章.配位化合物PPT课件

《无机化学》第8章.配位化合物PPT课件

配位化合物的发展趋势与展望
新材料与新能源
随着人类对新材料和新能源需求的不断增加,配位化合物有望在太 阳能电池、燃料电池等领域发挥重要作用。
生物医药领域
配位化合物在药物设计和治疗方面的应用前景广阔,有望为人类疾 病的治疗提供新的解决方案。
环境科学领域
配位化合物在处理环境污染和保护生态环境方面具有潜在的应用价值, 未来有望为环境保护做出贡献。
螯合物
由两个或更多的配位体与同一 中心原子结合而成的配合物,
形成环状结构,如: Fe(SCN)3。
命名
一般命名法
根据配位体和中心原子的名称,加上 “合”字和数字表示配位数的顺序来 命名,如:Co(NH3)5Cl。
系统命名法
采用系统命名法,将配位体名称按照 一定的顺序列出,加上“合”字和数 字表示配位数的顺序,最后加上中心 原子名称,如: (NH4)2[Co(CO3)2(NH3)4]·2H2O。
配位化合物的种类繁多,其组成和结 构取决于中心原子或离子和配位体的 性质。
配位化合物的形成条件
01
存在可用的空轨道 和孤对电子
中心原子或离子必须有可用的空 轨道,而配位体则需提供孤对电 子来形成配位键。
02
能量匹配
中心原子或离子和配位体的能量 状态需要匹配,以便形成稳定的 配位化合物。
03
空间和电子构型适 应性
中心原子或离子和配位体的空间 和电子构型需相互适应,以形成 合适的几何构型和电子排布。
02
配位化合物的组成与结构
组成
配位体
提供孤电子对与中心原子形成配位键的分子或离子。常见的配位 体有:氨、羧酸、酰胺、酸酐、醛、酮、醇、醚等。
中心原子
接受配位体提供的孤电子对形成配位键的原子。常见的中心原子有: 过渡金属元素的离子。

无机化学 配位化合物

无机化学 配位化合物


配合物命名实例
二氯· 二氨合铂(Ⅱ)
1. [Pt(NH3)2Cl2] 2. [Cr(H2O)2(Py)2Cl2]Cl 氯化二氯· 二水· 二吡啶合铬(Ⅲ)
3. [Co(NH3)3(H2O)Cl2]OH
氢氧化二氯· 三氨· 水合钴(Ⅲ) 4. K3[Co(ONO)3Cl3] 三氯· 三(亚硝酸根)合钴(Ⅲ)酸钾 5. [Co(NO2)(NH3)5]Cl2 氯化硝基· 五氨合钴(Ⅲ) 6. [Fe(CO)5]

一 些 常见 配 体 单齿配体
:F– :Cl– :Br– :I– H2O: :NH3 :CN– :OH– :NO 氟, 氯, 溴, 碘, 水, 氨, 氰, 羟, 亚硝酰 :CO :ONO– :NO2– :SCN– :NCS– 羰基,亚硝酸根,硝基,硫氰酸根,异硫氰酸根

双齿配体
乙二胺(en) 氨基乙酸根 草酸根 H2N – CH2 – CH2 – NH2 H2N – CH2 – COO– – OOC – COO–
例如[Ag(NH3)2]+ 配离子
)采取sp杂化形成两 个 新 的 能 量 相 同 的 空 的 sp 杂 化 轨 道 , 两 个 NH3 中的 N 上的孤对电子,进入 Ag+ 的空的 sp 杂化轨道中,形成[Ag(NH3)2]+ 配离子。
4d 5s 5p
+ 10 0 0 47Ag ([Kr]4d 5s 5p




课 堂 练 习 [Co(NO2)(NH3)5]Cl2 氯化硝基· 五氨合钴(Ⅲ) [Co(en)3]Cl3 三氯化三(乙二胺)合钴(Ⅲ) [Cu(NH3)4](OH)2 氢氧化四氨合铜(Ⅱ) [Pt (Py)]4[Pt Cl4] 四氯合铂(Ⅱ)酸四吡啶合铂(Ⅱ) [Cr(H2O)5Cl]Cl2·H2O 水合二氯化一氯· 五水· 合铬(Ⅲ)

无机化学:第八章配位化合物

无机化学:第八章配位化合物

无机化学:第八章配位化合物第八章配位化合物一、配合物的基本概念1、配位化合物的定义及其组成定义:把由一定数目的阴离子或中性分子与阳离子或原子以配位键形成的复杂分子或离子称配合单元。

含有配合单元(配位键)的化合物即配合物。

配合物可看成是一类由简单化合物反应生成的复杂化合物。

配合单元相对稳定,存在于晶体及溶液中,在溶液中不能完全离解为简单组成的部分。

配位键——由配体单方面提供电子对给中心原子(离子)而形成的共价键。

中心离子(或中心原子)——又称“配合物形成体”。

特征:带有空轨道。

组成中心离子的元素种类:◆能充当中心离子的元素几乎遍及元素周期表的各个区域,但常见的是金属离子,尤其是一些过渡金属离子,如[Co(NH3)6]3+、[Fe(CN)6]4—、[HgI4]2—。

◆高氧化态非金属元素原子:如B、Si、P等形成[ BF4]—、[SiF6]2—、PF6—。

◆金属元素电中性原子:如[ Ni(CO)4]、[ Fe(CO)5]、[Cr(CO)6]配合物的组成:配合物由内界和外界组成。

内界为配合物的特征部分(即配位个体),是一个在溶液中相当稳定的整体,在配合物的化学式中以方括号表明。

方括号以外的离子构成配合物的外界。

内外界之间以离子键结合,故在水溶液中易解离出外界离子,而内界即配合单元很难发生离解。

如[Cu (NH3)4] SO4↓↓↓中心原子,配位体,外界在配合物中同中心原子/离子配位的分子如NH3、H2O或阴离子如Cl—、CN—、SCN—称为配位体,简称配体。

配体属于Lewis碱,都含有孤对电子,是电子对的给予体。

中配体无机化学配位化学CO 一氧化碳羰基OH—氢氧根离子羟基NO2—亚硝酸根硝基ONO—亚硝酸根亚硝酸根SCN—硫氰酸根硫氰酸根NCS—硫氰酸根异硫氰酸根Cl—氯离子氯配位体中与中心离子(或原子)直接成键的离子称为配位原子。

配位体所提供的孤对电子即是配位原子所具有的孤对电子。

常见的配位原子有:F、Cl、Br、配位体分类——单齿配体和多齿配体单齿配体:一个配位体只提供1个孤对电子与1个中心离子结合形成1个配位键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、 Werner配位理论 1891年,瑞士苏黎士(Zurich)大学的Werner教授提出。
1)大多数元素有两种类型的价:即主价(---)和副价(—)。 2)每种元素都倾向于既满足它的主价又要满足它的副价。 3)副价指向空间的确定位置。 *主要贡献:1)提出了副价的概念(现称配位数)。
2)奠定了配合物的立体化学基础。
中心原子 配合物内界中,位于其结构的几何中心的离子 或原子。通常具有(n-1)d ns np nd等空的价电 子层轨道。
①阳离子:Ag+、Pt2+、Fe2+、Al3+、Si4+等; ②阴离子:I-→[I(I2)]-、S2-→[S(S8)]2-等; ③中性原子:Fe、Ni等。
配体与配位原子 1. 配体
配合物内界之中,位于中心原子周围,并沿一 定的方向与之直接形成配位键的离子或分子。
①阴离子配体:SCN-、NCS-、CN-、OH-、NO2-、 S2O32-、C2O42-、X-、NH2-、Y4-等;
②中性分子配体:NH3、H2O、CO、en等。
2. 配位原子
配位体中提供孤对电子,直接与中心原子结合 的原子。
的顺序命名; ➢ 同类配体,按配位原子元素符号的字母顺序先后命名; ➢ 同类配体的配位原子也相同时,先简单后复杂; ➢ 同类配体的配位原子相同,配体所含原子个数也相同时,
按与配位原子相连的原子的元素符号的字母顺序命名。
真正标志研究开始:1793年Tassaert发现CoCl3.6NH3 无法解释CoCl3和NH3为何要结合成新化合物。
二.链式理论(Chain theory)
1869年瑞典Lund大学Blomstrand及Jorgensen提出链式理论。 当时认为元素只有一种类型的价——氧化态,N为5价,Co为3价, Cl为1价。
内界的命名 ➢ 配离子中配位体的名称放在中心原子之前,用
“合”相连。 ➢ 配位体的数目用一、二、三……表示,不同配
体间用“·”隔开。 ➢ 中心原子的化合价用罗马数字Ⅰ、Ⅱ、Ⅲ……
标在元素符号后面的括号中。
[Cu(NH3)4]2+ 四氨合铜(Ⅱ)离子
配体的命名顺序
➢ 先无机配体,再有机配体; ➢ 有多个无机或有机配体时,每种配体按照先离子后分子
➢ 配体的浓度越大,配位数越大; ➢ 体系的温度越高,配位数越小。
配离子的电荷 等于中心原子和配位体两者电荷的代数和。
例如:[Cu(NH3)4]2+、[Fe(CN)6]3- 、Ni(CO)4 三 种配离子电荷分别为+2、-3 、0。
配位化合物的基本概念
配位化合物的命名
配体的名称 阴离子配体:一般叫原有名称(例外:OH-羟、 HS-巯、CN-氰、NH2-氨基、NO2-硝基); 中性分子配体:一般保留原有名称(例外: NO亚硝酰、CO羰基)。
如:乙烯(CH2=CH2), 丁二烯(H2C=CH-CH=CH2), CO等。
配位数 1,只有单基配体时配位数等于配体的总数,如 [Cu(NH3)4]2+的配位数为4。 2,含有多基配体时配位数等于中心原子与配体 之间形成的配位键总数,如[Co(en)3]3+的配位 数为6(=2×3)。
常见配位数为2,4,6。
位于周期系p区的18个元素原子均能做配位原子。 常见的有N,O,C,P,S和卤素原子。
一个配位体上可以有一个或多个配位原子和中 心原子成键。
a,单基配体(“单齿配体”) 只含一个配位原子的配体。 如:NH3,H2O,X-,CN-,OH-等。
b,多基配体( “多齿配体”) 含有两个或两个以上配位原子的配体。 如:乙二胺(en) ,NH2-CH2-CH2-H2N 乙二胺四乙酸根(EDTA)等。
配位化合物的基本概念
配位化合物的组成
[Cu(NH3)4]SO4
➢ Cu ➢ NH3 ➢N ➢4 ➢ SO4
– 中心原子 – 配位体 – 配位原子 – 配位数
内界 – 外界离子
➢ 像 [Cu(NH3)4]2+这种由中心原子(或离子)和提供 孤对电子的配位体以配位键的形式相结合而形成的 复杂离子称为配离子。配离子在水溶液中不能完全 离解成简单离子。
主价和副价的本质? 离子键 1916年,Kossel(W.科塞尔)提出了离子键。(使阴阳 离子结合成化合物的静电作用) 共价键 1916年,Lewis提出共价键。 配位共价键(配位键) 共享的电子对由配体单方提供的共价键。 配合物的内界 配合物中由配位键结合的部分。 配合物的外界 通过离子键与内界结合的部分。
-OOC-H2C -OOC-H2C
N-CH2-CH2-N
CH2-COOCH2-COO-
CH2 H2N
CH2 NH2
乙二胺(en)
NN
1,10-二氮菲(邻菲咯啉)
NN
联吡啶(bpy)
Hale Waihona Puke R'COR" C
_
C
O
R
双酮
c,π键配体
和中心原子形成配位键的孤对电子不是来自某个 原子,而是来自两个原子形成的π键。
➢ 含有配离子的化合物称为配位化合物,简称配合物。
➢ 配位化合物是由一定数目的可以给出孤对电子的离 子或分子(称为配体)和接受孤对电子的原子或离 子(统称中心原子)以配位键结合形成的化合物。
配离子
Ag(NH3)2+ I3Cu(H2O)42+ FeSCN2+
配合物
[Ag(NH3)2]Cl K[I3] [Cu(H2O)4]SO4 [FeSCN]Cl2
一章配位化合物
配位化合物的基本概念 配位化合物的化学键理论 配位化合物的稳定性 配合平衡的移动
配合物的发现
1704年,普鲁士(柏林)染料厂一位工匠迪斯巴赫 (diesbach)制得一种蓝色染料(用兽皮或兽血和Na2CO3在 铁锅中熬煮制得)普鲁士蓝KCN.Fe(CN)2.Fe(CN)3
3,影响配位数的因素:
➢ 中心原子的正电荷越多,配位数越大,如 H2[PtCl6]、[Pt(NH3)2Cl2]等;
➢ 中心原子的半径越大,配位数越大,如[BF4]-、 [AlF6]3-等 ;
➢ 配体的负电荷越多,配位数越小,如[Ni(NH3)6]2+、 [Ni(CN)4]2-等;
➢ 配 体 的 半 径 越 大 , 配 位 数 越 小 , 如 [AlF6]3- , [AlCl4]-等;
相关文档
最新文档