排序算法的时间规模

合集下载

排序算法比较

排序算法比较

排序算法比较
排序算法的效率主要取决于算法的时间复杂度。

以下是常见的几种排序算法的时间复杂度和优缺点的对比:
1. 冒泡排序
冒泡排序的时间复杂度为O(n^2)。

优点是它的实现简单易懂,缺点是排序速度很慢,对大规模数据排序不太适用。

2. 插入排序
插入排序的时间复杂度也为 O(n^2)。

它的优点是适用于小数
据量的排序,缺点是对于大规模数据排序仍然效率不高。

3. 选择排序
选择排序的时间复杂度也为 O(n^2)。

它的优点是对于小数据
量的排序速度较快,但是因为其算法结构固定,所以其效率在大规模数据排序中表现不佳。

4. 快速排序
快速排序的时间复杂度为 O(nlogn)。

它是一种非常常用的排序算法,适用于大规模数据排序。

快速排序的优点在于分治的思想,可以充分发挥多线程并行计算的优势,缺点是在极端情况下(如输入的数据已经有序或者逆序)排序速度会较慢。

5. 堆排序
堆排序的时间复杂度为 O(nlogn)。

它的优点在于实现简单、稳定,可以用于实时系统中的排序。

缺点是在排序过程中需要使用一个堆结构来维护排序序列,需要额外的内存开销。

同时,由于堆的性质,堆排序不能发挥多线程并行计算的优势。

6. 归并排序
归并排序的时间复杂度为 O(nlogn)。

它的优点在于稳定、可靠,效率在大规模数据排序中表现良好。

归并排序在实现过程中需要使用递归调用,需要额外的内存开销。

同时,归并排序不适用于链式存储结构。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

排序算法的比较及时间

排序算法的比较及时间

题目:排序算法比较设计目的:1.掌握各种排序的基本思想。

2.掌握各种排序方法的算法实现。

3.掌握各种排序方法的优劣分析及花费的时间的计算。

4.掌握各种排序方法所适应的不同场合。

二、设计内容和要求利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并统计每一种排序上机所花费的时间。

函数说明cha_ru_sort(int nData[], unsigned int nNum) 插入排序maopao_sort(int maopao_data[],int maopao_n) 起泡排序select_sort(int *Data,int nLen) 选择排序QuickSort(int* pData,int nLen) 快速排序HeapSort(int array[],int length) 堆排序MergeSort(int sourceArr[], int targetArr[], int startIndex, int endIndex) 归并排序无参数返回**************************************************************/#include<stdio.h>#include<stdlib.h>//#include"stdlib.h"??//随机函数头文件#include<time.h>#define rand_number 30000 //产生随机数的个数int rand_numbers_30000_0[rand_number]={0},rand_numbers_30000_1[rand_number]={0}; int min,max; //随机数的范围//***************************************************************//功能:产生随机数//无参数返回void produce_rand_num(){int i;for(i=0;i<rand_number;i++){rand_numbers_30000_0[i]=min+rand()%max;}}/****************************************************************************** ***///函数名:插入排序////功能描述:插入排序从下到大,nData为要排序的数据,nNum为数据的个数,该排序是稳定的排序//一个数就是已经排列好的了,所以从数组第二个数开始进行插入排序////无参数返回/****************************************************************************** ***/void cha_ru_sort(int nData[], unsigned int nNum){unsigned int i,j,k;for( i = 1 ; i < nNum; i++){int nTemp = nData[i]; //从数组中的第二个数开始获取数据for( j = 0 ; j < i; j++)//对该数,寻找他要插入的位置{if(nData[j]>nTemp)//找到位置,然后插入该位置,之后的数据后移{for( k = i; k > j ;--k)//数据后移{nData[k]=nData[k-1];}nData[j]=nTemp;//将数据插入到指定位置break;}}}}/****************************************************************************** ***///函数名:冒泡排序////功能描述:/****************************************************************************** ***///冒泡排序,maopao_data要排序的数据,maopao_n数据的个数void maopao_sort(int maopao_data[],int maopao_n){unsigned char flag=0;//flag为1表示排序结束,初始化为0int i,j;int nTemp;//i从[0,maopao_n-1)开始冒泡,确定第i个元素for( i=0 ; i<maopao_n-1 ; i++)//比较maopao_n-1次{//从[maopao_n - 1, i)检查是否比上面一个小,把小的冒泡浮上去for(j=0;j<maopao_n- 1 -i ; j++){if( maopao_data[j] > maopao_data[j+1]) //如果下面的比上面小,交换{nTemp=maopao_data[j];maopao_data[j] = maopao_data[j+1];maopao_data[j+1]=nTemp;}}}}///****************************************************************************** ***///函数名:选择排序////功能描述:/****************************************************************************** ***///选择排序//选择排序,pnData要排序的数据,nLen数据的个数void select_sort(int *Data,int nLen){int nIndex,i,j,nTemp;//i从[0,nLen-1)开始选择,确定第i个元素for(i=0;i<nLen-1;i++){nIndex=i;//遍历剩余数据,选择出当前最小的数据for(j=i+1;j<nLen;j++){if(Data[j]<Data[nIndex]){nIndex=j;}}//如果当前最小数据索引不是i,也就是说排在i位置的数据不在nIndex处if(nIndex!=i){//交换数据,确定i位置的数据。

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。

好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。

因此,在实际的开发中,需要对算法的效率进行评估和分析。

其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。

一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。

通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。

由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。

二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。

一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。

因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。

三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。

常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。

例如,最好的情况下,二分查找的时间复杂度即为 O(1)。

对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。

例如,二分查找的时间复杂度即为 O(logn)。

线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。

第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。

要达到这个目的,我们可以用顺序比较的方法。

首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。

图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

十大经典排序算法(动图演示)

十大经典排序算法(动图演示)

⼗⼤经典排序算法(动图演⽰)0、算法概述0.1 算法分类⼗种常见排序算法可以分为两⼤类:⽐较类排序:通过⽐较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为⾮线性时间⽐较类排序。

⾮⽐较类排序:不通过⽐较来决定元素间的相对次序,它可以突破基于⽐较排序的时间下界,以线性时间运⾏,因此也称为线性时间⾮⽐较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前⾯,⽽a=b,排序之后a仍然在b的前⾯。

不稳定:如果a原本在b的前⾯,⽽a=b,排序之后 a 可能会出现在 b 的后⾯。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执⾏时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述⽐较相邻的元素。

如果第⼀个⽐第⼆个⼤,就交换它们两个;对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,这样在最后的元素应该会是最⼤的数;针对所有的元素重复以上的步骤,除了最后⼀个;重复步骤1~3,直到排序完成。

1.2 动图演⽰1.3 代码实现function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) { // 相邻元素两两对⽐var temp = arr[j+1]; // 元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;}2、选择排序(Selection Sort)选择排序(Selection-sort)是⼀种简单直观的排序算法。

数据结构之各种排序的实现与效率分析

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

五种常用的排序算法详解

五种常用的排序算法详解

五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。

常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。

由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。

冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。

以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。

该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。

以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法实验一
1、实验要求
(1)排序N个元素,元素是随机生成的长为1-16的字符串,n的取值为:24、26、28、210、212、214、216、218、220。

算法包括:直接插入排序、冒泡排序、堆排序、归并排序、快排序。

(2)排序N个元素,元素是随机生成的1-104正整数,n的取值为:24、26、28、210、212、214、216、218、220。

算法包括:直接插入排序、快排序、基数排序、计数排序。

2、源代码及说明
源代码请参看done文件夹,说明:全局变量n为排序数目。

主函数//后内容为输出函数
3、数据分析
A)平方时间排序:
冒泡排序:
b u b b l e -s t r i n g
scale
插入排序:
i n s e r t -s t r i n g
scale
i n s e r t
scale
三个图结合起来,可以看到曲线拟合相关系数颇高
i n s e r t
scale
放大212前的数据,发现冒泡排序增长比插入排序要快,调用操作数较多。

而对字符排序操作数则比对数字排序操作数要多。

i n s e r t
scale
B )线性时间排序
计数排序:
c o u n t i n g
scale
基数排序:
r a d i x
scale
两个图结合:
两种排序的数据都严格按线性增长,可以看出基数排序的操作数较多
r a d i x
scale
C )nlgn 时间排序
q u i c k
D)总览
明对比。

i n s e r t
scale
4、心得与总结
本次试验加深我了对各种排序算法的工作原理、实现方式、所用的时间和空间等认识。

复习了时间函数、动态分配
贮存以及各种数据结构。

其中最大的认识是在编程实现时,要清楚算法中各种参数的上界和下界的特殊含义,否则算法不可能正常工作,或者指针会越界出错(比如出现在partition 中的p 必须跑到r-1,否则不能正常工作),在以后的学习中要注意对这些细节的琢磨。

相关文档
最新文档