概率论与数理统计期末迷你论文

合集下载

概率论期末论文

概率论期末论文

概率论期末论文《概率论与数理统计》期末论文题目:关于《概率论与数理统计》学习的收获学院:专业:班级:姓名:学号:2012年12月【摘要】:通过对概率论与数理统计发展历程的概述与学习方法的探讨,总结数理统计思想在生活中的应用,体会开设这门课的意义。

【关键字】:概率论与数理统计发展历程学习方法思想经过了一学期概率论与数理统计的学习,我发现概率论与数理统计与其他学科相比,既有同为数学学科的相似性,也有其特殊性。

学好这门课有助于锻炼我的逻辑思维能力,也加强了我对抽象事物的理解能力。

一、概率论与数理统计的起源与发展说及概率论的起源,离不开随机现象的探讨。

我们都知道,人们在实践活动中所遇到的所有现象,一般来说可分为两类:一类是必然现象,或称为确定性现象;另一类就是随机现象,或称不确定性现象。

科学家经过实践证明,如果同类的随见现象大量重复出现,它的总体就会呈现出一定的规律性。

这种由随机现象呈现出来的规律性,会随着我们的观察次数而变得明显。

举个很常见的例子,扔硬币时,每一次投掷都不知道哪一面会朝上,但是如果多次重复地投掷,就会发现它们朝上的次数大致相同。

这种由大量同类随机现象所呈现出来的集体规律性,就叫做统计规律性。

概率论与数理统计就是研究大量同类随机现象的统计规律性的数学学科。

早在16世纪的时候,一个叫做卡丹的意大利数学家,由于他沉溺于赌博,用来的钱可以补贴收入。

他为此撰写了《论赌博》,提出系统的概率计算。

书中计算了掷两颗或者三科骰子时,在一切可能方法中有多少方法得到某总点数。

但到了17世纪,这本书才得以出版。

在17世纪中叶,法国数学家帕斯卡与荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决赌博中的“分赌注问题”与“赌徒输光问题”等,到了18,19世纪,又出现了对人口统计与误差理论等的探究。

之后,瑞士数学家伯努利建立了概率论中第一个极限定理,阐明了时间发生频率稳定与它的概率。

后来,棣莫弗和拉普拉斯提出了“棣莫弗-拉普拉斯定理”,为概率论中第二个基本极限定理定下雏形。

概率论论文10篇

概率论论文10篇

《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。

纵观其发展史,在实际生活中具有很强的应用好处。

正是有了前人的努力,才有了现代的概率论体系。

本文将从概率论的研究好处、定义,以及发展历程进行叙述。

概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。

每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。

例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。

大数定律和中心极限定律就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。

例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。

随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。

在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。

概率与数理统计论文【范本模板】

概率与数理统计论文【范本模板】

概率论与数理统计在生活中的应用英才学院1136005班刘砚文摘要:概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处.加强数学的应用性,让我们用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验,这是当前课程改革的大势所趋.加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。

人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重.学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养.关键词:概率;应用;经济;保险;彩票由于传统的概率论与数理统计学习属于知识传授型,比较注重课程的系统性、独立性和方法的应用,人为地割裂了数学理论和教学方法与现实世界的联系,不利于我们对数学方法产生的背景和思想的理解,使我们不善于利用所学到的数学知识、数学方法分析解决实际问题,只是生搬硬套,而真正在实际中有重要应用的值的数理统计部分往往被轻视,使得有些人在学完这门课之后只知道几个抽象的分布,甚至连最简单的数据处理方法都不会应用.而基于概率统计在我们的生活中几乎无处不在,学好概率尤其是能够将学习的概率统计应用与实践中对我们确实是较困难而又受益非浅的事。

1大数定律在保险业的应用保险业是根据大数定律的法则,集中众多企业或者个人的风险,建立抵御风险的社会机制.但是保险业的产生不仅仅是为了避险,当然也有利润这只无形的手的驱使,有利润才能保证保险业真正的发展下去,壮大起来.同时大数定律不仅仅用于计算保险公司避险需要的客户数,也需要用来计算产生的利润的合理范围.为了抵御风险,保险公司需要大数目的客户,那么这些企业或者个人是如何愿意自己交出保险费投保的呢?其实这也是企业或者个人为了自己的利益着想,不但是避险,也是一种投资,这就是保险业能够产生发展的一个基础.例如某企业有资金Z单位,而接受保险的事件具有风险,当风险发生时遭受的经济损失为Z1个单位,那么在理性预期的条件下,该企业只能投入的资金Z—Z1单位。

概率论期末论文

概率论期末论文

《概率论与数理统计》期末论文题目:关于《概率论与数理统计》学习的收获学院:专业:班级:姓名:学号:2012年12月【摘要】:通过对概率论与数理统计发展历程的概述与学习方法的探讨,总结数理统计思想在生活中的应用,体会开设这门课的意义。

【关键字】:概率论与数理统计发展历程学习方法思想经过了一学期概率论与数理统计的学习,我发现概率论与数理统计与其他学科相比,既有同为数学学科的相似性,也有其特殊性。

学好这门课有助于锻炼我的逻辑思维能力,也加强了我对抽象事物的理解能力。

一、概率论与数理统计的起源与发展说及概率论的起源,离不开随机现象的探讨。

我们都知道,人们在实践活动中所遇到的所有现象,一般来说可分为两类:一类是必然现象,或称为确定性现象;另一类就是随机现象,或称不确定性现象。

科学家经过实践证明,如果同类的随见现象大量重复出现,它的总体就会呈现出一定的规律性。

这种由随机现象呈现出来的规律性,会随着我们的观察次数而变得明显。

举个很常见的例子,扔硬币时,每一次投掷都不知道哪一面会朝上,但是如果多次重复地投掷,就会发现它们朝上的次数大致相同。

这种由大量同类随机现象所呈现出来的集体规律性,就叫做统计规律性。

概率论与数理统计就是研究大量同类随机现象的统计规律性的数学学科。

早在16世纪的时候,一个叫做卡丹的意大利数学家,由于他沉溺于赌博,用来的钱可以补贴收入。

他为此撰写了《论赌博》,提出系统的概率计算。

书中计算了掷两颗或者三科骰子时,在一切可能方法中有多少方法得到某总点数。

但到了17世纪,这本书才得以出版。

在17世纪中叶,法国数学家帕斯卡与荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决赌博中的“分赌注问题”与“赌徒输光问题”等,到了18,19世纪,又出现了对人口统计与误差理论等的探究。

之后,瑞士数学家伯努利建立了概率论中第一个极限定理,阐明了时间发生频率稳定与它的概率。

后来,棣莫弗和拉普拉斯提出了“棣莫弗-拉普拉斯定理”,为概率论中第二个基本极限定理定下雏形。

概率论与数理统计论文

概率论与数理统计论文

概率论与数理统计概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。

更深层次上的规律性。

概率是随机事件发生的可能性的数量指标。

在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。

就可以认为这个事件发生的概率为这个常数。

对于任何事件的概率值一定介于 0和 1之间。

间。

有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。

具有这两个特点的随机现象叫做“古典概型”。

在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。

如果用变量来描述随机现象的各个结果,就叫做随机变量。

随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。

一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。

机变量就叫做非离散型随机变量。

在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。

如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。

正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。

平均值也叫数学期望,差异度也就是标准方差。

是标准方差。

数理统计包括抽样、适线问题、假设检验、方差分析、相关分析等内容。

抽样检验是要通过对子样的调查,来推断总体的情况。

究竟抽样多少,这是十分重要的问题,因此,在抽样检查中就产生了“小样理论”,这是在子样很小的情况下,进行分析判断的理论。

的理论。

适线问题也叫曲线拟和。

有些问题需要根据积累的经验数据来求出理论分布曲线,从而使整个问题得到了解。

但根据什么原则求理论曲线?如何比较同一问题中求出的几种不同曲线?选配好曲线,有如何判断它们的误差?……就属于数理统计中的适线问题的讨论范围。

概率论课程小论文

概率论课程小论文

概率论与数理统计课程设计关于正态分布的几点讨论经过一个学期的学习,我对概率论有了更为深刻地理解,高中阶段的概率只是简单的古典概型和几何概型,而这个学期,我们对概率论有了进一步的认识,接触了泊松分布、贝努力分布、超几何分布、正态分布等等。

纵观全书,我感觉到正态分布在概率论这门课程中有很高的地位,而且正态分布在我们的日常生活中也有着非常广泛的应用,进而我也对正态分布产生了浓厚的兴趣。

所以在课程设计中,我想讨论一下正态分布的有关问题。

一、正太分布的由来、发展及重要性正态分布是最重要的一种概率分布。

正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,但由于德国数学家高斯率先将其应用于天文学家研究,故正态分布又叫高斯分布。

在随机变量的各种分布中,正态分布占有特殊重要的地位,在高斯以后,人们又发现在实际问题中,许多随机变量都近似服从正态分布。

20世纪前半期,概率论研究的中心课题之一就是寻求独立随机变量和的极限分布式正态分布的条件。

因此,把这一方面的定理统称为中心极限定理。

较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可以认为这个随机变量近似于正态分布。

这就揭示了正太分布的重要性。

因为现实中许多随机变量都具有上述性质,例如测量误差、射击弹着点的横坐标、人的身高等都是由大量随机因素综合影响的结果,因而是近似服从正态分布的。

数理统计中有常用的三大分布占有极重要的地位,分别是2χ分布,t 分布和F 分布,这三大分布都与正态分布有着密切的关系,由此更能看出正态分布的重要性。

二、正态分布的含义正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N (μ,σ2)。

服从正态分布的随机变量的概率规律为:取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大分布越分散。

数学系概率论数理统计毕业论文

数学系概率论数理统计毕业论文

数学系概率论数理统计毕业论文概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程。

下文是店铺为大家整理的关于数学系概率论数理统计毕业论文的范文,欢迎大家阅读参考!数学系概率论数理统计毕业论文篇1概率论与数理统计教学浅谈摘要:随着本科院校近年来不断扩大招生规模,在一定程度上影响了生源质量。

与此同时,普通高等院校在精简课程方面也做了较大调整。

在此新形势下,作为一名的教师,针对普通高等院校概率论与数理统计课程的教学改革提出相关见解,认为目前普通高等院校,尤其是一些偏应用型的工科院校,在概率论与数理统计课程的教学中,不应该死守教师满堂讲解的教学模式,而是应该提供给学生应用的机会,设立教学实验课;教学中应突出实际应用,与数学建模相揉合,以达到更好的教学以及学习效果。

关键词:概率论与数理统计教学实验SAS软件揉合数学建模概率论与数理统计是工科院校的重要课程,但是由于课程自身的特点决定了学生在学习过程中常常会感觉概念太抽象,理解起来相当费劲。

如果不能很好地理解概念,那么后续学习就很可能会出现一系列的问题。

大多数的时候,在处理习题以及在考试中就会出现很多不必要的错误,根源在于没有很好地理解概念,思维没有得到相应地拓展。

教师在整个教学环节,包括课前备课中必须要思考的,包括如何安排教学,使得学生在学习过程中,能够愿意学习这门课程,能够接受该课程的理论体系。

通过近十年来对概率论与数理统计课程的教学,笔者认为可以从以下几个方面来把握。

1 建立良好开端概率论与数理统计作为一门数学学科,会让大多数学生在心理上产生莫名的抵触。

在以前的教学过程中,遇到过一些学生,自己认为数学就是很难,很难,太抽象,从开始上课就觉得自己肯定学不好。

很显然,这并不是一个好预兆。

我们都知道,兴趣是最好的老师。

一件事情难或者易,都是和做这件事情的人的主观意愿有很大关系。

如果愿意去做,有兴趣,那么难题会变得简单。

同样,如果不愿意去做,迫于外界压力不得不去做,即使是很简单的问题,也不见得就会得到圆满的解决。

哈工大概率论小论文

哈工大概率论小论文

《概率论与数理统计》课程总结混沌中的统一——概率中的维度观及在与微观粒子中的应用摘要众所周知,宇宙是一个无序的混沌空间,其间的粒子似乎在无规则的运动,人们并不知道它下一个时刻会运动到哪一个位置。

但事实上,粒子运动往往遵循某种分布规律,人们可以通过观察粒子在某处出现的频率来大致推知粒子在某一时刻出现的区域,这就是概率。

而在生活中,每个事件的发生都代表着一种可能,每个事件的无数种可能就构成了更高一层的空间,这就是维度。

不同的空间,不同的维度,概率论都在其中扮演着不可或缺的重要角色。

关键词:分布规律;频率;概率;可能;维度。

第一部分概率论与微观粒子的运动规律引言:长久以来,人们对于事物的认知都处于机械论科学思维的指导下,认为一切事物的规律都是固定可预测的。

严格决定论是机械论科学思维方式的主要特点。

这种思维方式把组成物质的最终实体作为自己的考察对象,而科学所要解决的基本上是带有两个变量的问题, 确定为数不多的客体之间的因果序列。

在严格决定性理论中,所有的概念和联系都被认为是属于同一层次中的东西,都可以精确表述它们之间的关系。

大自然的规律是数学规律,上帝是几何学家。

[1]控制论创始人维纳(N orbert Wiener)认为人类科学和认知的历史历程中,严格决定论的科学思维方式早在古巴比伦时期最古老的天文学中就已经出现了。

那是的人们在这种思维的指引下,认为日食、月食等自然天象都是在可预测的周期中出现的,太阳系中的一切事件的模型,都像是轮子在转动,周而复始的出现或发生。

这在托勒密的本轮说和哥白尼的轨道说中都是如此。

天体的音乐顺唱和倒唱都是一样的。

除了初始位置和方向外, 顺转和逆转的两个太阳仪之间的运动没有任何差别, 它们都是被严格决定了的。

最后, 这一切被牛顿归结为一组抽象公设并推演出一门严格的力学。

于是,宇宙被牛顿和他的力学描写为一台结构严密,按照某种定律精确地发生的机器,未来是由过去严格决定的。

但随着人们对自然科学的认识的不断深入,人们渐渐察觉到,万物都不是永恒的,牛顿力学很大程度上只是宇宙的某一种状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计期末迷你论文
摘要:本文将概率论与数理统计的理论知识与生活中的经济现象结合,从风险决策、投资收益最大化的角度来具体阐述概率论与数理统计在实际经济生活中的应用,从而实现所学知识与所在专业紧密联系起来且熟练应用,并体会其中奥妙从而在今后的专业学习中将数学工具积极运用起来。

关键词:概率统计风险决策投资收益应用生活
一、概率论在市场投资收益最大化上的应用:
概率在风险决策方面:在投资环境日趋复杂的现代社会,几乎所有的投资都是在风险和不确定情况下进行的,一般地说,投资者都讨厌风险并力求回避风险。

风险使某一行动的结果具有多样性。

风险是客观存在的,它广泛影响着企业的财务和经营活动,因此,正视风险并将风险程度予以量化,成为企业财务管理中的一项重要工作。

衡量风险大小需要使用概率和统计方法,而投资者利用概率与统计的知识,可以实现理论上的收益最大化。

例 1 (数学期望)假设在古诺市场,消费者对某产品一年的需求量x (万件)服从区间[300,400]上的均匀分布.若销售这种产品1万件,可挣得利润30万元,但如果销售不出而囤积于仓库,则每万件需保管费10万元。

为了使厂商的利润最大,应该预备多少万件产品?
解 令预备这种商品a 万件(300≤a ≤400),收益为Y 万元
Y ={10a ,X ≥a ;
10X -﹙a −X ﹚,x <a.
f X (x )
= {1100,300≤x ≤400;0, 其他. EX =
∫10a 1100400a dx +∫(4x −a 300a )
1100dx =1100(−9a 2+4300a −180000) 对a 求导,得唯一驻点a ≈239
有此例可以看出,通过求得期望收益可以确定在预备约239万件产品时,厂商的收益会达到最大。

现实市场经济可以通过大量的统计近似于某一概率模型,进而通过运算,得到厂商想要得
到的数据。

在实际应用中,将经济问题通过数学模型建立起来,对于现阶段的我们来说,才是最大的挑战。

总结数学建模,无非就是老生常谈的两点

[1]
1、2个(以上)因素以数学函数表达出关系;
2、给函数性质作总体描述——通过观察得到逻辑关系。

例2[2](参数估计)某商品市场经统计发现顾客对某商品的日需求量X~N(μ,δ2),且日平均需求量μ=40(件),销售在30~50(件)之间的概率为0.5.若供不应求则每件损失利润70元.供大于求则每件损失100元,求日最优进货量.
解设进货量为 y,则日利润损失
f(y,X)={70(X−y),y≤X
100(y−X),y≥X 日利润的期望损失为
g (y )=Ef (y,X )
=∫100(y −x )
1
σ√2πe −(x−μ)22σ2y −∞
dx +∫
70(x −y )1σ√2πe −(x−μ)22σ2dx +∞y
=∫170(y −x )1
σ√2π
e −(x−μ)22σ2y −∞dx +∫70(x −y )1
σ√2π
e −(x−μ)22σ2dx +∞−∞=170∫(y −x )
1
σ√2πe −(x−μ)22σ2
y −∞dx +70(μ−y ).
要使g (y )达到最小,有
dg (y )dx =0,故
170∫1
σ√2πe −(x−μ)22σ2y −∞dx −70=0,
于是Φ0(y−μσ)=717≈0.4118,得到 Φ0(y −μ)=1−Φ0(μ−y )=0.5882. 查表得−y−μσ≈0.22.根据题意 μ=40,
再由P (30≤x ≤50)=0.5 和P (30≤x ≤50)=2Φ0(40−30σ)−1 得到Φ0(10σ)=0.75.
=0.615,即δ=16.260,于查表得10
σ
是有
y=μ−0.22σ=40−0.22×16.260≈36.42故日最优进货量为37件。

二、京东小金库与淘宝余额宝的概率问题浅析
当代,网购热高涨,作为一名牙膏都要网购的网购狂热分子,名下有各种购物网站的账号,而这半年来,一些网站推出的各种各样的优惠、收益活动层出不穷,似乎不再顾忌网络安全,全心全意忙收益才是硬道理。

京东金融、阿里巴巴名下的支付宝钱包、金银岛(中国大宗产品电子商务领先品牌)投资的金联储、易通贷……,各种P2P平台的推出,让普通百姓眼花缭乱。

相比于银行存款的利率,这些平台的收益率确实高一些。

当我们感叹因为互联网金融的出现,给了我们更多的理财选择时,还得面对层出不穷的互联网理财产品,却不知道该选哪家。

2013年6月份支付宝推出余额宝,2014年3月份京东推出小金库。

对于多数人来说,自己虽然会购买其中一些理财产品,但是心里仍然没底,对于收益高低、风险如何基本都不了解。

下面仅仅比较一下
京东金融和支付宝钱包这两个平台。

余额宝、京东小金库都是和基金公司合作,同属于和基金对接的互联网理财产品,本质上都是基金。

据统计,至2014年3月末,在互联网金融浪潮的助推下,我国货币基金规模已同比暴增6959亿元,达到1.44万亿元,规模几乎翻番。

余额宝开创了互联网企业与基金公司合作的先
[3]
例.。

在关注主流理财产品的同时,也多渠道观察,其实,在互联网金融领域还有很多类似资本在线网贷平台这样小而美的理财渠道存在。

资金流动率高,投资期限短:1-6个月,门槛低:一般100元起投,年化收益高:一般在16%到20%
[4]
左右。

参考文献
[1] 叶航.《宏观经济学》超星视频教学浙江大学第11集
[2] 龙永红.《概率论与数理统计》第三版高等教育出版社第二章习题
[3] 发布时间:2014-07-24 更新时间:
2014-11-25 来源:网络作者:ikitty 阿里云资讯网《京东小金库跟余额宝相比怎么样?》[4] 发布时间:2014-05-23 资本在线《京东小金库PK余额宝:风险收益全面对比分析》。

相关文档
最新文档