板形控制技术发展
浅谈冷轧带钢板型自动控制技术

高。因而影 响轧机 的生产能力 。此外 ,板形 不 良也使轧
机所 能轧 出的最薄规格受到限制 。
2 . 冷轧带钢板型的测量方法 :1 1 目测板形 。 在冷轧
机上 采用大张力轧制时 ,借助 于木棍打击低 速轧制 的带
钢 。根据木棍 打击带 钢 的声 音 和回弹检测 张应力 的分
布 。2 ) 用磁 力板形仪 进行测量 。 在带 张力冷轧 的情况 下 ,由于导致产生板形缺陷的不均匀延伸将使轧制张力 沿板 宽方 向的分布发生改变。非接触式的磁 力板形仪是 利用 带钢张力分布不均而引起导磁率变化的原理而制作 的仪器。仪器 的测定部分 由编成一组 的多对 探测头所组 成 ,探测头 的数 目根据板宽不 同可分为5 ~ 1 1 对。上探测
斜 调节量 ,由轧辊 压下位置进行调整 。( 2 ) 弯辊 和C VC 调节 :弯辊调节具有动作快 、简单 ,没有滞后 的特点 ,
所 以首先进行弯辊调节 。当二次板形缺陷分量在弯辊调 节能力4 0 ~ 8 0 %范围以 内时 ,单独进行弯 曲调节 。当超
出这个范围时 ,则要投入C V C 系统 ,共 同对二次板形缺
右 。同时也发现该 系统还有不完善的地方 ,如系统对板
均 ,每一段测量 出与其相接触的- -4 , 段带材( 2 5 ~ 5 0 毫米
宽) 中的张应力 ,据此反推板形并 实行控制。
二 、板 形 自动控 制 技术
板形 自动控制系统是 由板形检测装置 、控制器和板
简述板型控制技术

简述板型控制技术一、引言板型控制技术是指通过对生产过程中的板材进行加工、调整和控制,使其达到预期的形状和尺寸,从而保证产品的质量和精度。
随着工业自动化水平的不断提高,板型控制技术在各个行业中得到了广泛应用。
二、板型控制技术的分类1. 传统板型控制技术:主要包括手工调整、机械调整和液压调整等方法。
这些方法虽然简单易行,但是存在效率低下、精度不高等问题。
2. 数字化板型控制技术:主要包括数值控制(NC)、计算机辅助设计(CAD)、计算机辅助加工(CAM)等技术。
这些技术可以实现自动化加工和精确控制,提高生产效率和产品质量。
三、数字化板型控制技术的应用1. 数值控制:数值控制是一种通过计算机程序来自动化加工的方法,可以实现复杂曲面的加工和精确度高达0.001mm以上。
在汽车、航空航天等领域中得到广泛应用。
2. 计算机辅助设计:计算机辅助设计是一种利用计算机来辅助完成产品设计的方法,可以实现快速、准确、灵活的设计。
在建筑、机械制造等领域中得到广泛应用。
3. 计算机辅助加工:计算机辅助加工是一种利用计算机来控制加工设备进行自动化加工的方法,可以实现高效率、高精度的生产。
在电子、船舶等领域中得到广泛应用。
四、数字化板型控制技术的优势1. 提高生产效率:数字化板型控制技术可以实现自动化加工和快速调整,大大提高了生产效率。
2. 提高产品质量:数字化板型控制技术可以精确控制产品尺寸和形状,保证了产品的质量和精度。
3. 降低成本:数字化板型控制技术可以减少人力投入和误差,降低了生产成本。
五、数字化板型控制技术的发展趋势1. 智能化:未来数字化板型控制技术将更加智能化,可以自主学习和调整生产过程。
2. 多功能性:未来数字化板型控制技术将不仅可以实现板材加工,还可以实现多种材料的加工。
3. 网络化:未来数字化板型控制技术将更加网络化,可以实现远程监控和管理。
六、结论数字化板型控制技术是当前工业自动化的重要组成部分,具有广泛的应用前景和优势。
热轧带钢生产中的板形控制范本

热轧带钢生产中的板形控制范本热轧带钢生产中的板形控制是一个关键的工艺环节, 对于产品的质量和成本都有着重要的影响。
本文将从板形控制的目标、过程、方法以及优化等方面进行详细的介绍。
一、板形控制的目标热轧带钢的板形控制的主要目标是使得钢带的板形达到设计要求, 即保持带钢在轧机出口处的平直度和边部的整齐度, 同时减小带钢在轧机出口处的侧弯、扭曲和波浪板形等缺陷。
对于一些对称性较好的带钢产品, 还需保持带钢两端表面与轧机的同心度。
二、板形控制的过程热轧带钢板形控制的过程主要包括前段控制、中段控制和后段控制三个阶段。
1.前段控制: 前段主要包括热轧连铸过程和热轧过程中的预弯矫直机、厚度控制等过程。
这一阶段的目标是减小带钢的不均匀厚度分布, 控制带钢的凸度和波浪度, 为后续的板形控制打下基础。
2.中段控制: 中段主要包括轧制机组控制和冷却控制等过程。
通过控制轧机的速度、压下力以及冷却速度等参数, 调整带钢的板形。
在轧制机组控制上, 采用辊形调整、辊系控制等技术手段来改变带钢板形。
在冷却控制上, 通过改变冷却方式、喷水的位置和喷水量等参数来调整带钢的板形。
3.后段控制:后段主要包括带钢的拉直和切割等过程。
通过采用拉直机进行带钢的拉直,使得带钢在轧机出口处达到平直度的要求。
同时,通过切割机对带钢进行切割,保证带钢的两端表面与轧机的同心度。
三、板形控制的方法热轧带钢板形控制的方法主要包括参数调整法、辊形调整法和辊系控制法。
1.参数调整法: 通过调整轧机的速度、压下力、冷却速度等参数来控制带钢的板形。
这种方法操作简单, 但对于复杂的板形控制要求, 效果较差。
2.辊形调整法: 通过调整辊系的形状来改变带钢板形。
辊形调整主要包括辊筒调整和辊系调整两种方法, 通过改变辊系的形状, 调整辊系的凸度、侧弯等参数来控制带钢板形。
3.辊系控制法:辊系控制主要是通过辊系控制技术来改变辊系间的关系,从而改变带钢的板形。
辊系控制主要包括辊系窜凸控制、动力控制和形态控制等方法,这些方法可以实现对辊系间的力学和几何关系进行控制,进而控制带钢的板形。
热轧带钢生产中的板形控制

热轧带钢生产中的板形控制是指通过有效的生产工艺和控制措施,使得热轧带钢的板形达到设计要求,保证其质量和使用性能。
板形是指热轧带钢在轧制过程中产生的纵横向偏差,包括厚度不均匀、横向偏斜、波浪形状等。
合理的板形控制不仅能提高产品的表面质量、平坦度和尺寸精度,还能减少废品率和提高生产效率。
本文将从板形控制的重要性、主要影响因素和改善措施等方面进行分析和探讨。
一、板形控制的重要性热轧带钢的板形控制对产品质量和性能至关重要,具有以下重要性:1. 保证产品的平整度和尺寸精度。
合理的板形控制可以减少热轧带钢在轧制过程中产生的纵横向偏差,从而提高产品的平整度和尺寸精度,确保产品符合设计要求。
2. 改善产品的表面质量。
板形不均匀会导致带钢表面产生波浪、皱纹等缺陷,降低产品的表面质量。
通过有效的板形控制,可以减少这些缺陷的发生,提高产品的表面光洁度和平坦度。
3. 减少废品率和提高生产效率。
不合格的板形会导致产品剪切不良、卷取不良等问题,增加废品率。
通过优化板形控制,可以减少废品率,提高产品的一次成型合格率,提高生产效率。
二、主要影响因素热轧带钢的板形受到多个因素的影响,主要包括以下几个方面:1. 轧制工艺参数。
轧制工艺参数对板形的影响是最直接和关键的。
包括轧制温度、轧制速度、带材的展宽比、轧辊的形状等。
合理的调整和控制这些参数,可以有效地改善板形。
2. 带钢的翘曲性能。
带钢的翘曲性能取决于材料的力学性能和内应力状态。
当带钢的翘曲性能较差时,易出现板形不佳的现象。
3. 轧机设备的状态。
轧机设备的磨损程度、轧辊的偏差和挠度等都会对板形产生影响。
定期检查和维护轧机设备,保持其正常状态,对于控制板形至关重要。
4. 轧机辊系布置。
轧机辊系布置的合理性会对板形产生直接影响。
轧机辊系的过柱、过程和反曲等布置方式,可以通过对带材的实际形变过程进行控制,达到改善板形的效果。
三、改善措施为了控制热轧带钢的板形,可以采取以下措施:1. 合理调整和控制轧制工艺参数。
板形控制技术及应用

2.4热凸度变化对板形的影响
轧制过程中,金属对轧辊滑动发生的热量和金属变形所释放的热量有一部分传入轧辊温度升高,这是轧制过程中轧辊的热输入。同时冷却水和空气又从轧辊中带走热量,使其温度降低,这是轧辊的热输出。
在开轧后的一段时间内,轧辊的热输入大于热输出,轧辊温度逐渐升高,热凸度也随之不断增大。在以某一持定规程轧制若干带卷后,轧辊热输入和热输出相等,处于平衡状态,轧辊热凸度也保持一个稳定值。轧制过程中热如度随时间的变化情况如右图所示。一般来说,在特定的轧制规程下,板形工艺参数是依据稳定的热凸度设计的。
2.3来料板凸度对板形的影响
获得良好板形的重要条件是来料断面形状和承载辊缝形状相匹配。一般来料断面主要决定于供料厂。通常采用的方法是大量侧取原料数据,找出原料板凸度的变化规律,据此确定本车间的工艺参数,以保证获得良好板形。
在实际产生中,当来料凸度变化时,已定的轧制状态就会改变,因而使板形发生变化。如右图所示,热凸度-轧制力关系曲线为T,正常的良好板形线为F,工作在最佳状态点K。若来料凸度有变化 ,例如来料凸度减少,这时热凸度虽然也会发生变化,但普化甚微,可以忽略,可以认为热凸度-轧制力曲线基本不变。但来料板凸减小的结果使良好板形线上升为F1,它要求轧辊有与K1点相对应的凸度,而实际凸度仍保持原来K点所对对应的数值,所以板带会发和边浪。如果来料板凸度增大,与上述情况相反,会发
对板形控制来说,初始轧辊凸度的选择是一个十分重要的问题,合理地选择初始凸度,可使板形变化始终被控制在轧机控制能力之内,这无无疑是获得良好板形的重要保证。对所轧产品宽度变化大的轧机来说,应根据产品宽度的不同而采用相应凸度的轧辊,一般来说,在轧制力相同的情况下,板宽越大,所需凸度越小。
《板形控制方法》课件

当轧制力增大时,轧机的弹塑性 变形程度增加,轧材的延伸率增 大,从而使得板材的横向厚度差 减小,板形趋向于平坦。
重要因素
•·
然而,过大的轧制力可能导致轧 机负荷过大,影响轧机的稳定性 和寿命,同时也会使得轧材表面 粗糙度增加,影响产品质量。
轧制温度对板形的影响
关键因素
同时,轧材温度的均匀性也会影响板形 的质量。温度不均匀会导致轧材的变形 不均匀,进一步影响板形的平整度。
当轧材温度升高时,其变形抗力减小, 轧机的功率消耗降低,有利于提高轧机 的生产效率。
轧制温度是影响板形的关键因素之一。 在轧制过程中,轧材的温度变化会影响 其变形抗力和轧机的功率消耗。
•·
轧制速度对板形的影响
间接影响
轧制速度对板形的影
•·
响是间接的,主要通
过影响轧机的振动特
性和轧材的变形过程
来影响板形。
02
板形是衡量板带材质量的一项重 要指标,对于后续加工和使用具 有重要影响。
板形的重要性
良好的板形可以提高板带材的平直度 、表面质量和整体性能,从而满足各 种加工和使用的需求。
不良的板形会导致板带材出现波浪、 翘曲、瓢曲等缺陷,影响其使用性能 和外观质量。
板形控制技术的发展历程
1
早期的板形控制技术主要依靠经验和实践,通过 调整轧机参数和操作技巧来控制板形。
详细描述
通过机器学习和人工智能技术,可以对板形控制过程中的数据进行实时分析和处理,实 现更加精准和智能的控制效果。同时,利用深度学习等技术,可以对板形控制算法进行
优化和改进,进一步提高控制精度和效率。
多目标优化与协同控制在板形控制中的研究
总结词
多目标优化和协同控制是当前控制领域 研究的热点问题,将其应用于板形控制 中具有重要的意义。
《2024年UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》范文

《UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》篇一一、引言随着现代工业的快速发展,冷连轧机在钢铁生产中扮演着越来越重要的角色。
尤其对于薄带钢的生产,轧制过程中的板形控制成为影响产品质量的关键因素。
UCM冷连轧机作为一种先进的轧机设备,其轧制板形控制技术的研究及仿真分析具有重要的现实意义。
本文将重点探讨UCM冷连轧机在薄带钢轧制过程中的板形控制技术及其有限元仿真研究。
二、UCM冷连轧机板形控制技术研究2.1 轧制过程基本原理UCM冷连轧机通过连续轧制工艺,实现对薄带钢的精准轧制。
在此过程中,板形控制技术的关键在于控制轧制过程中的力、速度、温度等参数,以保证轧制出的带钢具有理想的板形。
2.2 板形控制技术分析板形控制技术主要包括厚度控制、宽度控制和形状控制三个方面。
在UCM冷连轧机中,通过精确的液压系统、控制系统和机械系统,实现对轧制力的精确控制,从而实现对板形的有效控制。
此外,通过调整轧辊的凸度、倾斜度等参数,也可以有效地改善带钢的板形。
三、有限元仿真研究3.1 有限元法基本原理有限元法是一种有效的数值分析方法,可以用于模拟复杂工艺过程中的力学行为。
在UCM冷连轧机的板形控制研究中,通过有限元法可以模拟轧制过程中的应力、应变、温度等物理量的变化,从而为优化轧制工艺提供依据。
3.2 仿真模型建立建立仿真模型是有限元仿真的关键步骤。
在UCM冷连轧机的仿真模型中,需要考虑到轧机的结构、轧辊的材质和几何形状、轧制力、摩擦力等参数。
通过合理的模型简化,建立出能够反映实际轧制过程的仿真模型。
3.3 仿真结果分析通过有限元仿真,可以得到轧制过程中带钢的应力、应变、温度等物理量的分布情况。
通过对仿真结果的分析,可以了解轧制过程中带钢的变形行为,从而为优化轧制工艺提供依据。
同时,通过对比仿真结果和实际生产数据,可以验证仿真模型的准确性,为进一步优化轧制工艺提供支持。
四、实验验证与结果分析为了验证UCM冷连轧机板形控制技术的有效性和有限元仿真的准确性,我们进行了实验验证。
板形控制技术“明星”

《 稍瓣瓣 麓《 爨爨 嚣 奠 爨 } 窭{ m ;鞭 g 《 驻; 联 键 ; l i婺 i ;§ i j 键§§ 弱 嚣 麓 巍: ; 骚瓣 l } 赣l il ;臻 ; 臻辫 … . 一 ; ;: .. :
曰地 f
企业 的不 断努力 ,开发 了很多有 效 的板 形控 制技术 ,板形 质量有 了很 大 的提 升 。但 板形 问题是个
非 常复杂 的课 题 ,与设 备状态 、
言 ,以 中间辊作 为辊形 的载体 ,
如图 1 所示 。 C 技术 的基本 思想是将 上 vC
国 际知 名 的 板 形 控 制 技 术
为 了改善轧 机 的板 形调控 性 下辊磨削成近似s 形但呈10 。相位 8 能 ,轧制 出具有 更好板 形质 量 的 差放置 ,通过上下辊相向轴 向移动
工艺 布局 、控 制参 数 、操 作经验 产 品 , 自2 世纪 7 年代 始 ,国际 可连续改变空载辊缝的凸度 ,如图 0 0 和管 理水平 等有 密切关 系 。板 形 上 陆续开 发 了多种先进 板形控 制 2 所示 。当上下工作辊处于零凸度 质量 不好 ,不仅会 影 响到本工序 技术 ,并进 行 了推广应 用 ,其 中 的位置时,形成矩形断面的辊缝形
_ ; -_ ; ;
板 形是板 带材 的关键 质量 指 素( 不正 当操 作 、设 备故 障 等) 对于 四辊 轧机 而言 ,以工作辊 作 如 标 ,板形控 制是 困扰板 带材生 产 对板形 控制 的不利 影响 ,提高板 为辊 形 的载体 ,对于六 辊轧 机而
的难题 。经 过 国内外学 者和生产 形质量 的稳定性。
相关 ,与窜辊量 呈线性 关系。 C C 术窜 动 的轧 辊辊 身较 V 技 不 窜动 的轧 辊 的辊身 长 ,这样 , 尽管 轧辊 轴 向窜动 了 ,辊 间接 触 长度 不变 。C 技 术提 供 的是低 VC 横 向刚度 的辊缝 ,整个 辊 系抵抗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板形控制技术发展
板形控制技术在不同的发展阶段,各国先后开发出了许多先进的控制手段和相关的轧机形式。
其中具有重要意义的控制技术和先进轧机小结如下:
(1) 垂直平面(VP)工作辊弯辊系统
垂直平面(Vertical Panel)弯辊系统是最早的轧机控制带材板形的重要而有效的手段之一,包括单缸工作辊正弯,双缸工作辊正弯,单缸工作辊负弯,以及支撑辊正弯。
到目前为止,垂直平面弯辊系统仍然是板形调整的重要技术之一。
广泛应用于各类轧机中[21]。
(2) 连续可变凸度(CVC)系统
基于连续可变凸度(Continuously Variable Crown)系统的CVC轧机主要是由两个可移动的瓶形辊身组成。
瓶形辊的辊径差和普通辊的凸度值大小相似,安装相反,互补成对称辊缝,辊缝略微呈S形。
通过特殊S形工作辊的轴向窜动,来达到连续变化空辊缝正、负凸度(等效于工作辊正、负凸度)的目的。
缺点是辊型复杂,磨削精度高而且困难,辊型互换性差,辊耗增加,轧辊接触压力大。
在一个轧制单位过程中,如工作辊出现较大的磨损和变形,则将影响其调控性能偏离设定的要求,并且由于工作辊与支撑辊之间接触压力的分布呈S形,使磨损后的支撑辊也成S形,如不及时换辊,将影响其设定的调控性能,为此,CVC支撑辊需采用较短的换辊周期[22]。
但由于CVC轧机控制板凸度的能力极强,操作方便且易改造,所以发展较快,世界各国普遍采用。
我国宝钢在2050热连轧精轧机组七个机架上均采用了此项技术[23]。
(3) HC控制轧机
HC(High Crown)轧机是为了克服阶梯支撑辊不能随板宽变化而改变其支撑辊与工作辊接触长度的缺点以及提高工作辊弯辊效果而开发的。
HC轧机是中间辊横移的六辊轧机,通过中间辊的相反方向横移来改变中间辊与工作辊的接触长度,以适应其板宽的变化。
HC轧机具有工作辊直径小、板形控制稳定、改善边部减薄、同宽度轧制数量多以及可实现自由程序轧制的优点。
但HC轧机也具有结构复杂、机架高、设备投资大、轧辊易剥离、操作维修难的缺点。
尽管这样,HC轧机仍旧属于高精度板形,板凸度控制的轧机,不失为具有划时代意义的新型轧机。
所以HC轧机发展迅速,世界各国均广泛采用。
我国也研制成功了HC冷轧机[23]。
(4) 成对交叉轧机(PC)
成对交叉(Pair Cross)轧机的原理是通过工作辊和支撑辊的成对高压变位而改变辊缝凸度,以补偿轧制压力变化及轧制过程中辊型变化(由于磨损或热变形)对辊缝的影响。
PC 轧机缺点是结构复杂,维修困难,轧辊磨损大,自由轧制困难,轧制过程中数学模型复杂,参数多且不易确定。
但对板凸度的控制能力具所有轧机之冠,辊凸度可达100μm。
且辊型简单,带钢表面光洁度高,适用于冷热轧机与厚板轧机。
世界各国也广泛采用[23]。
我国宝钢1580热连轧机组的板形控制设备采用了此项技术。
(5) 可变凸度轧辊(VC)
VC(Variable Crown)轧机是轧辊凸度可以瞬时改变的轧机,轧辊由辊芯和辊套装配而成,辊芯与辊套之间有液压腔,液压达50Mpa的高压油经高速旋转的接手,由辊芯进入到液压腔里。
通过调节液压高低来改变辊套的膨胀量,从而改变轧辊凸度,达到控制板形、板凸度的目的。
VC辊的缺点是密封困难,结构复杂,维护较难,轧辊消耗大,不能有效地控制复合波,没有轧辊横移的效果,无法避免局部高点,轧辊磨损和热凸度不能分散等。
但VC轧机无需改动旧轧机,轧制中可快速控制轧辊凸度,并有弯辊装置和轧辊横移组合使用的优点,所以VC轧机发展也较快。
我国也成功研制了VC辊。
近年来,日本把VC轧辊同弯辊技术相结合来控制板形,使板形控制精度达到较高水平[24]。
(6) 变接触长度支撑辊(VCL)
变接触长度支撑辊(Varying Contact Length Back—up Roll)技术[12]其核心是研究出一种新型的支撑辊廓曲线,使其辊系在受轧制力作用后的工作辊与支撑辊之间的接触长度能与轧件宽度的变化自动适应,以减少和消除辊间两端部的有害接触区,使辊缝对轧制压力的波动表现出较高的刚性,而对弯辊力的调节表现出较大的灵敏性,从而达到增加板形调控能力和改善板形的目的。
国内陈先霖教授已成功地将VCL技术应用于武钢的板带轧机上,取得较好的效果[25]。
(7) 动态板形辊(DSR)
动态板形辊(Dynamic Shape Roll)是国际金属公司开发的一种轧辊,
它代替传统中的支撑辊且在轧制过程中可完全控制辊型,并可独立控制全部
轧制力及带钢宽度上轧制力的分布。
其特点是:(1)支持整个“套”,DSR的轴承与外加负载一致,产生不取决于轧制力的凸度。
(2)控制带钢宽度上的轧制负荷分布,因而消除了工作辊的自由弯曲。
(3)由于对轧制负荷分布的控制,目前的工作辊弯辊就更有效,减少了由支撑辊引起的有害的工作辊附加挠曲。
(4)控制负荷分布使DSR单独控制不同的带钢凸度。
(5)尺寸控制精确,减少了头尾损失[26]。
目前宝钢在冷连轧机组上安装了DSR轧辊并于1997年5月投入生产。
(8) 自补偿支撑辊(SC)
自补偿(Self—Compensated Back—up Roll)支撑辊是Danieli United 利用联合工程公司和国际轧机咨询公司共同开发的专利为全面控制板带凸度和平直度而新开发的一种轧辊。
该种轧辊是由一个锻钢辊套热装在一个铸钢辊轴的中间部位上所构成,在负载下该套筒的柔性端部向辊轴方向弯曲。
这种支撑辊与现有的普通轧辊可以互换,并且这种SC辊轴结构可使废辊到利用。
同时,SC支撑辊通过补偿轧制力、板带宽度和厚度来减少板带凸度的变化,也增加了弯辊系统的凸度控制范围并允许有较大的压下量。