一元二次方程的四种解法
二次方程四种解法

一元二次方程解法一、直接开平方法解一元二次方程 ①形如关于x 的一元二次方程,可直接开平方求解.②形如关于x 的一元二次方程,可直接开平方求解两根例1.用直接开平方法解方程(1) ; (2) ; (3)3-(3x -1)2=0; (4)(2x-5)2-2=0;例2.用配方法解方程配方法解一元二次方程: 将一元二次方程配成(1) ; (2) ; (3) ; (4) ;例4.用因式分解法解方程1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.(1)022=-x x (2) 092=-x (3)x (2x-3)=(3x+2)(2x-3) (4) 9)3(22=+-x x(5)01282=+-x x (6)3312+=-x x (7)361232=-x x (8) 03072=--x x23270x -=22 1.505x -=12242x x +=27304x x --=2483xx -=-2441018x x x++=-例4.用公式法解方程3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并不是最简单的,一定要注意方法的选用. ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,2x②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根: . ③当240b ac ∆=-<时,右端是负数.因此,方程没有实根.(1) ; (2) ; (3) ; (4) ;例5.用适当方法求解(1)x (x -5)+6=0; (2)9x2-12x +4=0; (3)(x -1)2-4(x +3)2=0.(4)2(t-1)2+t=1 (5)014442=-x2230x x --=23290x x --=22y -=212016x x -+=112842+=++x x x 练习1.用直接开平方法解方程(1)8142=x (2) 169)5(2=+x (3)01492=-x(2) (4)2130)3-(2-2=+x (2)()162812=-x (3)()025122=-+x2.用公式法解方程(1)01032=-+x x(2)04122=--x x(3) (4)092432=+-x3.用配方法解方程(1)04322=--x x (2)016102=++x x (3)05632=++x x (4)01142=--x x(5)9642=-x x (6)x 2+4x -12=0 (7)x x 4232=- (8)01522=+-x x4.用因式分解法解方程(1))1(4)1(3-=-x x x (2)016102=++x x (3)()()1314-=-x x x(4)0)23()32(2=-+-x x (5)()()03342=-+-x x x (6)x 2+4x -12=0(7) 0542=--x x (8) 03072=--x x (9) 0822=--x x4、任选方法解下列方程(1)01072=+-x x (2) x x 22= (3)0432=-y y。
一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】把方程ax2+c = 0(a ≠ 0),这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:21. 9X2-25= 0;2. (3x+2) 2-4= 0;3* (x+ 73)2 = 4V⅛4. (2x+3) 2= 3(4x+3).解:1 . 9X2-25= 09X2= 2525V2. (3x+2) 2-4= 0(3x+2) 2= 43x+2 = ± 23x = -2± 2—2 士2X ~…宜1 = 0, =—工(x+ √3) 2=4√3X;X2+ 2√3+ 3=4√3≡J2-2√3X+3=0当孤C异号时』两边同时开平方得琵=± ” -(X- √3) 2 = OE- 73= O• ∙ Xι X2 3.4. (2x+3) 2= 3(4x+3)4X2+12X+9=12x+94x2= 0• ∙ X1 X 0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c = 0(a ≠ 0);把常数项移到方程的右边,如ax2+bx = -c;方程的两边都除-X=——;方程的两边都加上一次项系数一半的平方,⅛∏x a ÷—X以二次项系数,使二次项系数为 1 ,如x2+- ■+ (丄)i;把方程的左边变形为一次二项式的完2a a 2a全平方,右边合并或一个常数,如("云)—一^厂;方程的两边同h 宀∕⅛⅛ 2 —4 津;时开平方.得到两个一元一次方程,;分别解这2a 2a两个一元一次方程,求出两个根,例:用配方法解下列方程:1. x2-4x-3 = 0; 2 . 6x2+x = 35;3. 4x2+4x+1 = 7; 4 . 2x2-3x-3= 0.2解:1 . X -4x-3= 0x2-4x = 32X -4x+4 = 3+4(X-2)2=7χ-2= + √7X = 2+ √7,-∖X I== 2 + r衍=2 一-/L2. 6x2+x= 35X + -X =—6 6 1 I o 35 16 6 14 ’ k 2 S41 仗卡——)2 =——' 12z 144 1 2912 ^ 121 29X — + 1Ξ ^1Ξ7 5 V — V •=—-=- Al λ Jl ATl ^'3. 4X 2+4X +1 = 73 √33—=+ -------4 一 4 3辰 4~ 4【公式法解一元二次方程】一元二次方程 ax 2+bx+c = 0(a-k 4- — 4sr 尹0),朋配方祛所求出的两WX l =和衍="纤瓦(b-4ac >0),有2a 1 √7X = ---- + ---2 2+T i 花__厂已4. 2X 2-3X -3= 0_ T 2 2广泛的代换意义,只要是有实数根的一元二次方程,均可将a, b, C的值代入两根公式中直接解出,所以把这种方法称为公式法,耐巴怎二-- —-(b2~4ac≥0)叫做ax a +bx+ C二=0(a ≠ 0)的求根公式。
一元二次方程的解法

一元二次方程的解法一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0解:将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
一元二次方程的解法总结

x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
一元二次方程四种解法

一元二次方程解法【知识梳理】1. 对一元二次方程的概念及根的考察;2. 一元二次方程的求解;一元二次方程的解法一元二次方程的求解的最根本的思路是“降次”.(1)直接开方法:()m x m m x ±=⇒≥=,02(2)配方法:02=++c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ (3)求根公式法:条件()04,02≥-≠ac b a 且 aac b b x 242-±-= (4)因式分解法:()()021=--x x x x一元二次方程的求解直接开方法:由应用直接开平方法解形如x 2=p (p ≥0),那么x=±p 转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=±p ,达到降次转化之目的.若p <0则方程无解。
(注:两边同时开平方的时候记得不要忘记加上±号,两根相等时记得要写成x 1=x 2=…;而不是x= ) 例1:直接开方解方程:2x 2-8=0 3592=-x ()0962=-+x配方法:1)现将已知方程化为一般形式;2)化二次项系数为1;3)常数项移到右边;4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±q ;如果q <0,方程无实根. 例1:配方法解方程0462=++x x 03422=-+x x 0142=++x x例2. 试说明:无论x 取何值,代数式542+-x x 的值总大于0,再求出当x 取何值时,代数式542+-x x 的值最小?最小值是多少?公式法(用公式法解一元二次方程是记得要先把方程化成一般式)要点:找出a,b,c 判断:ac b 42-=∆ 应用:aac b b x 242-±-= 例1、用公式法解下列方程(1)解方程x 2-2x-1=0 (2)解方程:-x 2+3x-2=0;变式:用公式法解下列方程(1)3x 2+2x-5=0 (2) x 222-x+1=0.不解方程说明方程根的情况(1) x 2+x-3=0 (2)x (x+8)=16.因式分解的方法:提公因式法、公式法和十字相乘法.1.乘法公式:(1)平方差公式:22()()a b a b a b +-=-;(2)完全平方公式:222()2a b a ab b +=++;222()2a b a ab b -=-+.2.十字相乘法:(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成:()()()b x a x ab x b a x q px x ++=+++=++22. 题型一:因式分解【例1】(1))()(3x 3x x +=+; (2) 016x 2=— (3)09a 1242=++a ;题型二:十字相乘法分解因式【例1】(1)232x x ++=0; (2)212x x --=0; (3)2215x x +-=0.题型三:解一元二次方程【例1】用适当的方法解下列方程:(1)2410x x ++=; (2)210x x +-=; (3)22310x x -+=.【变式练习1】解下列一元二次方程:(1)21304x x ++=; (2)2420x x -+=;(3)2200x x --=; (4)24920x x -+=.【作业布置】(时间:20分;总分:60)用合适的方法解下列方程.(1)3y 2-6y=0 (2)x 2+2x-3=0.(3)x 2+35=12x (4)(x-3)2+9(x-3)=0(5)220x x -=; (6)2430x x +-=;(7) 22)3(4)23(-=+x x (8) )2(5)2(3+=+x x x。
一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】把方程ax2+c=0(a≠0),这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:1.9x2-25=0;2.(3x+2)2-4=0;4.(2x+3)2=3(4x+3).解:1.9x2-25=09x2=252.(3x+2)2-4=0(3x+2)2=43x+2=±23x=-2±2∴x1=x2=3.4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如x2+例:用配方法解下列方程:1.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+4(x-2)2=72.6x2+x=353.4x2+4x+1=74.2x2-3x-3=0【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x).2.2x2+7x-4=0∵a=2,b=7,c=-4.b2-4ac=72-4×2×(-4)=49+32=814.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)2当(a-2b≥0)时,得【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
一元二次方程的解法详细解析

一元二次方程的解法详细解析只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
标准形式:ax²+bx+c=0(a≠0)一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。
下面小编和你具体讲解一元二次方程的四种解法例析。
一元二次方程的解法例析【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。
在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。
根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。
一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。
因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。
下面再讲一元二次方程的解法。
解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。
一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。
配方法二次项系数若不为1,必须先把系数化为1,再进行配方。
公式法≥0时,方程有解;<0时,方程无解。
先化为一般形式再用公式。
因式分解法方程的一边为0,另一边分解成两个一次因式的积。
方程的一边必须是0,另一边可用任何方法分解因式。
【举例解析】例1:已知,解关于的方程。
分析:注意满足的的值将使原方程成为哪一类方程。
解:由得:或,当时,原方程为,即,解得. 当时,原方程为,即,解得,. 说明:由本题可见,只有项系数不为0,且为最高次项时,方程才是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。
通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育个性化辅导教案提纲教师:陈燕玲学生:年级九日期: 星期: 时段: 课题一元二次方程的概念及解法学情分析教学目标与考点分析1.掌握一元二次方程的概念及其一般形式,能指出一元二次方程的各项及其系数。
2 能根据具体一元二次方程的特征,灵活选择方程的解法。
体会解决问题方法的多样性。
教学重点难点教学重点: 掌握常用四种一元二次方程的解法。
教学难点: 灵活选用适当方法解一元二次方程教学方法讲解法合作探究法教学过程一、一元二次方程的概念:问题(1)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.归纳:(1)只含一个未知数x;(2)最高次数是2次的;(3)•整式方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2(5) ax2+bx+c=0例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.练习:一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1、a满足什么条件时,关于x的方程a(x2+x)=3x-(x+1)是一元二次方程?2、关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3、方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?4、当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程二、一元二次方程的解:复习:方程的解一元二次方程的解也叫做一元二次方程的根.(只含有一个未知数的方程的解,又叫方程的根)例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0三、一元二次方程的解法(一)、直接开平方法问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?方程x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.解一元二次方程的共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.若p<0则方程无解练习:一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.a +b2-12b+36=0,那么ab的值是_______.3.如果a、b为实数,满足34三、综合提高题1.解关于x的方程(x+m)2=n.(二)、配方法1、解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?2、要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.通过配方使左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程配方法解一元二次方程的一般步骤:(1)将方程化为一般形式;(2)二次项系数化为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-12=0例2.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0例4、用配方法解方程:ax2+bx+c=0(a≠0)练习:一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1 B.-1 C.1或9 D.-1或94.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0 C.(x-13)2=89D.(x-13)2=1095.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(12x-a)2=a6.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A .1B .2C .-1D .-2 二、填空题1.方程x 2+4x-5=0的解是________.2.代数式2221x x x ---的值为0,则x 的值为________. 3.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 4.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,•所以求出z 的值即为x+y 的值,所以x+y 的值为______. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 2+3=23x2.已知:x 2+4x+y 2-6y+13=0,求222x yx y -+的值.3.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.4.如果x 2-4x+y 2+6y+2z ++13=0,求(xy )z 的值.5、求证:无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是正数(三)公式法由上例4可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=242b b ac a-±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
) (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-11例1.用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2-2x+ 12=0例2.某数学兴趣小组对关于x 的方程(m+1)22m x++(m-2)x-1=0提出了下列问题.若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0. 2)找出系数a,b,c,注意各项的系数包括符号。