九年级数学专训1一元二次方程的解法归类
初中数学方程与不等式之一元二次方程专项训练及答案

初中数学方程与不等式之一元二次方程专项训练及答案一、选择题1.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D.【点睛】 本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.2.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6-B .4-C .2-D .2【答案】C【解析】【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解, ∴△=4(a −4)2−4a 2⩾0,解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a +2 ∵y 有整数解∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2,符合条件的a 的值的和是−2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.3.将方程()22230x x x m n --=-=化为的形式,指出,m n 分别是( )A .1和3B .-1和3C .1和4D .-1和4 【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】移项得x 2-2x=3,配方得x 2-2x+1=4,即(x-1)2=4,∴m=1,n=4.故选C .【点睛】用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】 由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x =【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.7.如图,AC ⊥BC ,:3:4AC BC =,D 是AC 上一点,连接BD ,与∠ACB 的平分线交于点E ,连接AE ,若83ADE S ∆=,323BCE S ∆=,则BC =( )A .3B .8C .3D .10【答案】B【解析】【分析】 过E 作,,EF BC EG AC ⊥⊥垂足分别为,,F G 由角平分线的性质可得:,EF EG =利用83ADE S ∆=,323BCE S ∆=可以求得,AD BC进而求得,CDE BCD S S ∆∆的面积,利用面积公式列方程求解即可.【详解】解:如图,过E 作,,EF BC EG AC ⊥⊥垂足分别为,.F GCE Q 平分,ACB ∠,EF EG ∴=:3:4AC BC =Q ,设3,4,AC x BC x == Q 83ADE S ∆=,323BCE S ∆=, 18132,,2323AD EG BC EF ∴•=•= 1,,4AD AD x BC ∴=∴= 2,CD AC AD x ∴=-=162,3CDE ADE S S ∆∆∴==163216.33BCD S ∆∴=+= 12416,2x x ∴••= 2,x ∴= (负根舍去)48.BC x ∴==故选B .【点睛】本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.下列方程中,有实数根的是( )A 0=B 1+=C 10=D x - 【答案】D【解析】【分析】根据二次根式的性质逐项分析即可.【详解】A .∵x 2+2≥2, 0≥≠,故不正确;B .∵x-2≥0且2-x≥0,∴x=20=,故不正确;C 0≥110≥≠,故不正确;D .∵x+1≥0,-x≥0,∴-1≤x ≤0.x -,∴x+1=x 2,∴x 2-x-1=0,∵∆=1+4=5>0,∴x 1=12-,x 2=12+(舍去),x -有实数根,符合题意.故选D .【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知识点是解答本题的关键.10.在解方程(x+2)(x ﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x ﹣2=5,得方程的根x 1=﹣1,x 2=7;乙同学说:应把方程右边化为0,得x 2﹣9=0,再分解因式,即(x+3)(x ﹣3)=0,得方程的根x 1=﹣3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是..( )A.甲错误,乙正确 B.甲正确,乙错误C.甲、乙都正确 D.甲、乙都错误【答案】A【解析】(x+2)(x﹣2)=5,x2-4=5,x2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x1=-3,x2=3,所以甲错误,乙正确,故选A.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.2(﹣)=B.22251196x(﹣)=1961225xC.2x(﹣)=1961225(﹣)=D.22251196x【答案】A【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x),第二次降价后的价格为225×(1﹣x)×(1﹣x),则225(1﹣x)2=196.故选A.【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是()A.8.5%B.9%C.9.5%D.10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为100(1-x)元,再经过一次下降后成本变为100(1-x)(1-x)元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x,根据题意得100(1-x)(1-x)=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D.13.若关于x的方程2230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.98m≤B.98m<C.98m>D.98m=【答案】B【解析】【分析】若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m 的取值范围.【详解】∵方程有两个不相等的实数根,a=2,b=-3,c=m,∴△=b2-4ac=(-3)2-4×2×m>0,解得98m<.故选:B.【点睛】此题考查根的判别式,解题关键在于掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .15.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m , ∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a、两根之积等于c a. 16.已知24b ac -是一元二次方程()200++=≠ax bx c a 的一个实数根,则ab 的取值范围为( )A .18ab ≥ B .18ab ≤ C .14ab ≥ D .14ab ≤ 【答案】B【解析】【分析】设u 的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于0即可得到ab≤18. 【详解】因为方程有实数解,故b 2-4ac≥0.24b ac =-24b ac =-,设 则有2au 2-u+b=0或2au 2+u+b=0,(a≠0),因为以上关于u 的两个一元二次方程有实数解,所以两个方程的判别式都大于或等于0,即得到1-8ab≥0,所以ab≤18. 故选B .【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:(b 2-4ac≥0).17.关于x 的方程(2-a)x 2+5x-3=0有实数解,则整数a 的最大值是( )A .1B .2C .3D .4 【答案】D【解析】【分析】由于关于x 的方程(2-a )x 2+5x-3=0有实数根,分情况讨论:①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a 的最大值.【详解】解:∵关于x 的方程(2−a )x 2+5x−3=0有实数根,∴①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2−a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2−a)≥0,解之得a≤4912, ∴整数a 的最大值是4.故选D.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握一元二次方程的性质与根的判别式.18.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k V -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D .【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.19.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为( )A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.20.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.。
初三九年级数学华师版 第22章 一元二次方程 第22章 专训(word版)解码专训

解码专训一:根与系数的关系的四种应用类型名师点金:利用一元二次方程的根与系数的关系可以不解方程,仅通过系数就反映出方程两根的特征.在实数范围内运用一元二次方程的根与系数的关系时,必须注意Δ≥0这个前提,而应用判别式Δ的前提是二次项系数不为0.因此,解题时要注意分析题目中有没有隐含条件Δ≥0和a≠0.利用根与系数的关系求代数式的值1.设方程4x2-7x-3=0的两根为x1,x2,不解方程求下列各式的值.(1)(x1-3)(x2-3);(2)x2x1+1+x1x2+1;(3)x1-x2.利用根与系数的关系构造一元二次方程2.构造一个一元二次方程,使它的两根分别是方程5x2+2x-3=0各根的负倒数.利用根与系数的关系求字母的值或取值范围3.已知关于x的一元二次方程2x2-mx-2m+1=0的两根的平方和是29 4,求m的值.巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.解码专训二:一元二次方程中的常见热门考点名师点金:一元二次方程题的类型非常丰富,常见的有一元二次方程的根、一元二次方程的解法、一元二次方程根的情况、一元二次方程根与系数的关系、一元二次方程的应用等,只要我们掌握了不同类型题的解法特点,就可以使问题变得简单,明了.一元二次方程的根1.(2015·兰州)若一元二次方程ax 2-bx -2 015=0有一根为x =-1,则a +b =________.2.若关于x 的一元二次方程ax 2+bx +c =0有一根为-1,且a =4-c +c -4-2,求(a +b )2 0162 015c 的值.一元二次方程的解法3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=24.一元二次方程x2-2x-3=0的解是()A.x1=-1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=-3 D.x1=1,x2=35.选择适当的方法解下列方程:(1)(x-1)2+2x(x-1)=0;(2)x2-6x-6=0;(3)6 000(1-x)2=4 860;(4)(10+x)(50-x)=800;(5)(中考·山西)(2x-1)2=x(3x+2)-7.一元二次方程根的判别式6.(2015·河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.在等腰三角形ABC中,三边长分别为a,b,c.其中a=5,若关于x的方程x2+(b+2)x+(6-b)=0有两个相等的实数根,求△ABC的周长.8.(2015·南充)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:方程有两个不相等的实数根.(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由).一元二次方程根与系数的关系9.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是()A.3 B.1C.3或-1 D.-3或110.关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且有x1+x2-x1x2=1-a,求a的值.11.设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两个实数根,当a为何值时,x12+x22有最小值?最小值是多少?一元二次方程的应用12.(2015·乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(求出剪成的两段铁丝的长度)(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.新定义问题14.(中考·厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-274=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由.答案解码专训一1.解:根据一元二次方程根与系数的关系,有x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1=x 2(x 2+1)+x 1(x 1+1)(x 2+1)(x 1+1)= x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1= ⎝ ⎛⎭⎪⎫742-2×⎝ ⎛⎭⎪⎫-34+74-34+74+1=10132. (3)∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫742-4×⎝ ⎛⎭⎪⎫-34=9716, ∴x 1-x 2=±9716=±1497.2.解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2,令y 1=-1x 1,y 2=-1x 2. ∴p =-(y 1+y 2)=-⎝ ⎛⎭⎪⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23,q =y 1y 2=⎝ ⎛⎭⎪⎫-1x 1⎝ ⎛⎭⎪⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.3.解:设方程两根为x 1,x 2,由已知得⎩⎪⎨⎪⎧x 1+x 2=m 2,x 1x 2=-2m +12.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=294,即⎝ ⎛⎭⎪⎫m 22-2×-2m +12=294, ∴m 2+8m -33=0.解得m 1=-11,m 2=3.当m =-11时,方程为2x 2+11x +23=0,Δ=112-4×2×23<0,方程无实数根,∴m =-11不合题意,舍去;当m =3时,方程为2x 2-3x -5=0,Δ=(-3)2-4×2×(-5)>0,方程有两个不相等的实数根,符合题意.∴m 的值为3.4.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根,∴k ≠0,且Δ=(-4k)2-4×4k(k +1)=-16k ≥0,∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根,∴x 1+x 2=1,x 1x 2=k +14k .∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k .又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32,∴k =95.又∵k<0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.方法总结:对于存在性问题,先根据方程根的情况,利用根的判别式确定出未知字母的取值范围,再利用根与系数的关系求出已知式子中字母的值,验证字母的值是否在其取值范围内.解码专训二1.2 015 点拨:把x =-1代入方程中得到a +b -2 015=0,即a +b =2 015.2.解:∵a =4-c +c -4-2,∴c -4≥0且4-c ≥0,即c =4,则a =-2.又∵-1是一元二次方程ax 2+bx +c =0的根,∴a -b +c =0,∴b =a +c =-2+4=2.∴原式=(-2+2)2 0162 015×4=0. 3.D 4.A5.解:(1)(x -1)2+2x(x -1)=0,(x -1)(x -1+2x) =0,(x -1)(3x -1) =0,∴x 1=1,x 2=13.(2)x 2-6x -6=0,∵a =1,b =-6,c =-6,∴b 2-4ac =(-6)2-4×1×(-6)=60.∴x =6±602=3±15,∴x 1=3+15,x 2=3-15.(3)6 000(1-x)2=4 860,(1-x)2= 0.81,1-x = ±0.9,∴x 1=1.9,x 2=0.1.(4)(10+x)(50-x)=800,x 2-40x +300= 0,∴x 1=10,x 2=30.(5)(2x -1)2=x(3x +2)-7,4x 2-4x +1 =3x 2+2x -7,x 2-6x +8 =0,∴x 1=2,x 2=4.6.B7.解:∵关于x 的方程x 2+(b +2)x +(6-b)=0有两个相等的实数根, ∴Δ=(b +2)2-4(6-b)=0,∴b 1=2,b 2=-10(舍去).当a 为腰时,△ABC 的周长为5+5+2=12.当b 为腰时,2+2<5,不能构成三角形.∴△ABC 的周长为12.8.(1)证明:原方程可化为x 2-5x +4-p 2=0.Δ=(-5)2-4(4-p 2)=9+4p 2.∵p 为实数,则p 2≥0,∴9+4p 2>0.即Δ>0,∴方程有两个不相等的实数根.(2)解:当p 为0,2,-2时,方程有整数解.(答案不唯一)点拨:(1)先将一元二次方程化为一般形式,由题意得,一元二次方程根的判别式b 2-4ac =(-5)2-4×1×(4-p 2)=9+4p 2,易得,9+4p 2>0,从而得证.(2)一元二次方程的解为x =5±9+4p 22,若方程有整数解,则9+4p 2必须是完全平方数,故当p =0、2、-2时,9+4p 2分别对应9、25、25,此时方程的解分别为整数.9.A10.解:由题意,得x 1+x 2=3a +1a ,x 1x 2=2(a +1)a ,∴3a +1a -2(a +1)a=1-a ,∴a 2-1=0,即a =±1.又∵方程有两个不相等的实数根,∴a ≠0,且Δ=[-(3a +1)]2-4a·2(a +1)>0,即a ≠0,且(a -1)2>0,∴a ≠0,且a ≠1,∴a =-1.11.解:∵方程有两个实数根,∴Δ=(2a)2-4(a 2+4a -2)≥0,∴a ≤12.又∵x 1+x 2=-2a ,x 1x 2=a 2+4a -2,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=2(a -2)2-4.∵a ≤12,∴当a =12时,x 12+x 22的值最小.此时x 12+x 22=2⎝ ⎛⎭⎪⎫12-22-4=12,即最小值为12. 点拨:本题中考虑Δ≥0从而确定a 的取值范围这一过程易被忽略.12.解:设每件商品降价x 元,则售价为每件(60-x)元,每星期的销量为(300+20x)件.根据题意,得(60-x -40)(300+20x)=6 080.解得x 1=1,x 2=4.又要顾客得实惠,故取x =4,即销售单价为56元.答:应将销售单价定为56元.13.解:(1)设剪成的较短的一段长为x cm ,则较长的一段长为(40-x) cm ,由题意,得⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫40-x 42=58,解得x 1=12,x 2=28.当x =12时,较长的一段长为40-12=28(cm ),当x =28时,较长的一段长为40-28=12(cm )<28cm (舍去).∴较短的一段长为12 cm ,较长的一段长为28 cm .(2)小峰的说法正确.理由如下:设剪成的较短的一段长为m cm ,则较长的一段长就为(40-m) cm ,由题意得⎝ ⎛⎭⎪⎫m 42+⎝ ⎛⎭⎪⎫40-m 42=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0,∴原方程无实数解,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm2.14.解:不是.理由如下:解方程x2+x-12=0,得x1=-4,x2=3.|x1|+|x2|=4+3=2×|3.5|.∵3.5不是整数,∴方程x2+x-12=0不是“偶系二次方程”.。
专训1 一元二次方程与三角形的综合的四种类型(含答案)

专训1一元二次方程与三角形的综合的四种类型名师点金:一元二次方程是初中数学重点内容之一,常常与其他知识结合,其中一元二次方程与三角形的综合应用就是非常重要的一种,主要考查一元二次方程的根的概念、根的判别式的应用、一元二次方程的解法及一元二次方程与等腰三角形、直角三角形的性质等知识的综合运用.一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程x2-7x+12=0的解,则第三边的长为() A.3B.4C.3或4D.无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3 cm和7 cm,第三边长为a cm(a为整数),且a满足a2-10a+21=0,求三角形的周长.解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)当a=5时,代入a2-10a+21,得52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,a=7是方程的根.(第二步)∴三角形的周长是3+7+7=17(cm).上述过程中,第一步是根据_____________________________________________________ ____________________________,第二步应用的数学思想是__________,确定a值的大小是根据______________.一元二次方程与直角三角形的综合3.已知一个直角三角形的两条直角边的长恰好是方程x2-14x+48=0的两个根,则这个直角三角形的斜边长为________.4.已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2max=0有两个相等的实数根,试判断△ABC的形状,并说明理由.一元二次方程与等腰三角形的综合5.已知关于x的方程x2-(k+2)x+2k=0.(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.一元二次方程与动态几何综合6.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s 的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积为4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度为5 cm?(3)在(1)中,△PBQ的面积能否为7 cm2并说明理由.(第6题)答案1.C2.三角形任意两边之和大于第三边,任意两边之差小于第三边;分类讨论思想;方程根的定义3.104.解:△ABC是直角三角形.理由如下:原方程可化为(b+c)x2-2max+cm-bm=0,Δ=4ma2-4m(c-b)(c+b)=4m(a2+b2-c2).∵m>0,且原方程有两个相等的实数根,∴a2+b2-c2=0,即a2+b2=c2.∴△ABC是直角三角形.5.(1)证明:∵Δ=(k+2)2-8k=k2+4k+4-8k=k2-4k+4=(k-2)2≥0,∴无论k取任何实数值,方程总有实数根.(2)解:解方程x2-(k+2)x+2k=0,得x1=k,x2=2.∵△ABC为等腰三角形,∴当a=k=1时,另一边长为2,此时,不能构成三角形;当a=1,k=2时,△ABC的周长为5.6.解:设P,Q运动的时间为x s,则由题意知AP=x cm,BP=(5-x) cm,BQ=2x cm,CQ=(7-2x) cm.(1)S△PBQ=12·PB·BQ=12×(5-x)×2x=4.解得x1=1,x2=4.当x=1时,5-1>0,7-2×1>0,满足题意;当x=4时,5-4>0,7-2×4<0,不满足题意,舍去.故1 s后,△PBQ的面积为4 cm2(2)由题意知PQ2=PB2+BQ2=(5-x)2+(2x)2,若PQ=5 cm,则(5-x)2+(2x)2=25.解得x1=0(舍去),x2=2.故2 s后,PQ的长度为5 cm.(3)不能.理由如下:仿照(1),得12(5-x)·2x=7,整理,得x2-5x+7=0.∵Δ=b2-4ac=25-4×1×7=-3<0,∴此方程无实数解.∴△PBQ的面积不能为7 cm2.。
专题01 一元二次方程的解法重难点题型专训(解析版)

专题01一元二次方程的解法重难点题型专训【题型目录】题型一用直接开方法解一元二次方程题型二用配方法解一元二次方程题型三用公式法解一元二次方程题型四用因式分解法解一元二次方程题型五用换元法解一元二次方程题型六根据判别式判断一元二次方程根的情况题型七根据一元二次方程根的情况求参数题型八配方法的应用【经典例题一用直接开方法解一元二次方程】【解题技巧】开平方法:对于形如n x 2或)0()(2 a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如n x 2的方程的解法:当0 n 时,n x ;当0 n 时,021 x x ;当0 n 时,方程无实数根。
【例1】(2023春·安徽·八年级淮北一中校联考阶段练习)若一元二次方程 20ax b ab 的两根分别是1m 和23m ,则ba的值为()A .16B .259C .25D .259或25【答案】B【分析】直接开平方得到:bx a,得到方程的两个根互为相反数,所以1230m m ,解得23m ,则方程的两个根分别是153x ,253x ,则有53b a ,然后两边平方即可得出答案.【详解】解:∵一元二次方程2ax b 的两个根分别是1m 与213m ,且bx a,∴1230m m ,解得:23m ,即方程的根是:153x ,253x ,∴2259b b a a,故选:B .【点睛】题目主要考查了解一元二次方程及一元一次方程,灵活运用一元二次方程2(0)ax b ab =的两根互为相反数是解题关键.【变式训练】1.(2022春·八年级单元测试)下列哪个是一元二次方程22(1)3x 的解()A .12x ,23x B .132x ,232x C .1612x,612x D .1612x,2612x 【答案】C【分析】两边同时除以2,再两边开方,即可得出两个一元一次方程,求出方程的解即可.【详解】解: 2213x ,2312x,612x,解得,1612x ,2612x ,故选:C【点睛】本题考查了解一元二次方程-直接开平方法,类型有: 20x a a ;2ax b (a b,同号且0a ); 20x a b b ; 2( a x b c a c ,同号且0)a .法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解.2.(2023·安徽·校联考模拟预测)在平面直角坐标系xOy 中,直线2y x b 分别与x 的正半轴、y 的负半轴相交于A B ,两点,已知AOB 的面积等于16,则b 的值为______.【答案】8【分析】依据题目求出1,02A b, 0,B b ,再根据AOB 的面积等于16,即可得出答案.【详解】当0y 时,02x b∴12x b ,∴1,02A b,当0x 时,y b ∴ 0,B b ,∵直线2y x b 分别与x 的正半轴、y 的负半轴相交于A B ,两点,∴12OA b ,OB b∵AOB 的面积等于16,∴ 111622b b,解得:8b ,8b (不合题意,舍去).故答案为:8 .【点睛】此题考查了一次函数与x 轴、y 轴的交点问题,以及三角形面积问题,一元二次方程的解,掌握一次函数与x 轴、y 轴的交点的求法是解题的关键.3.(2023·上海·八年级假期作业)解关于x 的方程: 2222x a a ab b .【答案】12x a b ,2x b .【分析】根据直接开平方法解一元二次方程即可.【详解】解: 22x a a b ,∴ x a a b ,∴x a a b 或 x a a b ,解得:12x a b ,2x b .【点睛】本题考查一元二次方程的解法,解题的关键是灵活运用直接开平方法解一元二次方程.【经典例题二用配方法解一元二次方程】【解题技巧】配方法:通过配方的方法把一元二次方程转化为n m x 2)(的方程,再运用开平方法求解。
第21章一元二次方程(压轴必刷30题7种题型专项训练)(原卷版)-2024-2025学年九年级数学上

第21章一元二次方程(压轴必刷30题7种题型专项训练)一.解一元二次方程-配方法(共1小题)1.(2022秋•仙桃校级月考)小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为,,,.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.二.解一元二次方程-因式分解法(共1小题)2.(2021秋•高安市校级月考)阅读下面的例题:解方程:x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣3|﹣3=0,则此方程的根是.三.换元法解一元二次方程(共1小题)3.(2021秋•高州市月考)先阅读,再解题解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所原方程的解为x1=2,x2=5请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.四.根的判别式(共4小题)4.(2022秋•宝应县校级月考)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5.(2022春•雷州市月考)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.6.(2022秋•罗山县校级月考)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7.(2022秋•仪陇县月考)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.五.根与系数的关系(共5小题)8.(2021春•拱墅区月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.9.(2021秋•冷水滩区校级月考)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a、b是方程x2+15x+5=0的二根,则=(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知和是关于x,y的方程组的两个不相等的实数解.问:是否存在实数k,使得y1y2﹣=2?若存在,求出的k 值,若不存在,请说明理由.10.(2021春•崇川区校级月考)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.11.(2021秋•顺德区月考)已知方程a(2x+a)=x(1﹣x)的两个实数根为x1,x2,设.(1)当a=﹣2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.12.(2020秋•椒江区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2﹣n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.六.配方法的应用(共1小题)13.(2021秋•建瓯市校级月考)先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)七.一元二次方程的应用(共17小题)14.(2022秋•岳阳县校级月考)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?15.(2022春•宜秀区校级月考)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?16.(2022秋•中原区校级月考)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?17.(2022秋•南海区校级月考)在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,两条纵向,一条横向,横向与纵向互相垂直,(如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m2,问道路应为多宽?18.(2023春•莱芜区期中)如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.19.(2022春•拱墅区校级月考)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC 和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.20.(2021春•崇川区校级月考)某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)21.(2021秋•莲池区校级月考)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?22.(2022秋•佛山月考)如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为ts,△ADE的面积为S.(1)是否存在某一时刻t,使DE∥AB?若存在,请求出此时刻t的值,若不存在,请说明理由.(2)点D运动至何处时,S=S△ABC?23.(2022秋•胶州市校级月考)如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?24.(2022秋•沙坪坝区校级月考)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(2022秋•渝水区校级月考)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.(2022秋•宜兴市月考)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?27.(2022秋•宜阳县月考)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)花圃的面积为米2(用含a的式子表示);(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元?28.(2022秋•仙桃校级月考)已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.29.(2021秋•开州区校级月考)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.30.(2022秋•中原区校级月考)如图所示,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,P、Q 分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.点P停止运动时点Q也停止运动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?。
解一元二次方程(十字相乘法)专项训练

解一元二次方程(十字相乘法)专项训练一、一元二次方程的解法归类:1.直接开平方法:适合)0()(2≥=+k k h x 的形式。
如:07)5(2=--x 解:57,57,75,7)5(212+-=+=±=-=-x x x x2.配方法:→万能方法(比较适合二次项系数等于1,而且一次项系数是偶数的方程)关键步骤:方程两边都加上一次项系数一半的平方。
如:1562=+x x 解:362,362,623,24)3(,915962122--=-=±=+=++=++x x x x x x注:代数式的配方,应先提取二次项系数,将二次项系数变成1,再进行配方。
因为代数式没有两边,无法进行两边都加上一次项系数一半的平方,所以必须加多少再减多少,而且配方与常数项无关,所以常数项必须放到括号以外。
如:455)23(37427)23(37)49493(37)3(379322222+--=++--=+-+--=+--=++-x x x x x x x x 3.公式法:→万能方法(系数比较大的方程不太适合) 如:0122=-+x x 解:∵,1,1,2-===c b a ∴,9)1(24142=-⨯⨯-=-ac b ∴431±-=x 4.因式分解法:①提公因式法:如1)2)(1(+=-+x x x解:3,1,0)3)(1(,0)12)(1(,0)1()2)(1(21=-==-+=--+=+--+x x x x x x x x x ②运用平方差公式:))((22b a b a b a -+=-如0)12(22=--x x 解:1,31,0)1)(13(,0)12)(12(21===--=--+-x x x x x x x x ③运用完全平方公式:222)(2b a b ab a +=++, 222)(2b a b ab a -=+-如:016)1(8)1(2=++-+x x 解:3,0)3(,0)41(2122===-=-+x x x x④十字相乘法:如:0652=++x x 解:3,2,0)3)(2(21-=-==++x x x xx 2x 3x x x 523=+ 0)3)(2(=++x x又如:035682=-+x x 解:47,25,0)74)(52(21=-==-+x x x x x 2 5x 4 7-x x x 62014=+-0)74)(52(=-+x x二、十字相乘法专题练习:(1)01072=++x x (2)0672=++x x(3)0862=+-x x (4)01582=+-x x(5)01662=-+x x(6)0122=--x x(7)03722=++x x(8)071362=+-x x(9)0101962=++x x(10)0351162=--x x三、用恰当的方法解方程:(1)02732=-x(2)142=-x x (3)42)2(3-=-x x x(4)01522=+-x x (5)01492=+-x x (6)07252=--x x。
一元二次方程的6种解法

一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法

一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年
专训1 一元二次方程的解法归类
名师点金:解一元二次方程时,主要考虑降次,其解法有直接开平方法、配方法、公式法和因式分解法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果.
限定方法解一元二次方程
形如(x+m)2=n(n≥0)的一元二次方程用直接开平方法求解
1.方程4x2-25=0的解为( )
A.x=B.x=
C.x=±D.x=±
2.用直接开平方法解下列一元二次方程,其中无解的方程为( )
A.x2-5=5 B.-3x2=0
C.x2+4=0 D.(x+1)2=0
当二次项系数为1,且一次项系数为偶数时,用配方法求解
3.用配方法解方程x2+3=4x,配方后的方程变为( )
A.(x-2)2=7 B.(x+2)2=1
C.(x-2)2=1 D.(x+2)2=2
4.解方程:x2+4x-2=0.
5.已知x2-10x+y2-16y+89=0,求的值.
能化成形如(x+a)(x+b)=0的一元二次方程用因式分解法求解
6.(中考·宁夏)一元二次方程x(x-2)=2-x的根是( ) A.-1 B.0
C.1和2 D.-1和2
7.解下列一元二次方程:
(1)x2-2x=0;
(2)16x2-9=0;
(3)4x2=4x-1.
如果一个一元二次方程易于化为它的一般式,则用公式法求解8.用公式法解一元二次方程x2-=2x,方程的解应是( ) A.x=B.x=
C.x=D.x=
9.用公式法解下列方程.
(1)3(x2+1)-7x=0;
(2)4x2-3x-5=x-2.
选择合适的方法解一元二次方程
10.方程4x2-49=0的解为( )
A.x=B.x=。