石墨相氮化碳光催化材料简介及性能

合集下载

石墨相氮化碳在光催化杀菌领域中的应用研究

石墨相氮化碳在光催化杀菌领域中的应用研究

石墨相氮化碳在光催化杀菌领域中的应用研究石墨相氮化碳(GNC)是一种新型的光催化剂,具有高效、环保和可再生的特点,在光催化杀菌领域中具有广阔的应用前景。

本文将探讨GNC在光催化杀菌领域中的应用研究,并分析其优势和挑战。

在过去的几十年里,细菌和病毒感染一直是人类面临的重要问题之一。

随着抗生素和其他传统杀菌剂的滥用和耐药性的增加,研发新型的杀菌技术迫在眉睫。

光催化杀菌是一种具有潜力的替代方法,其中光催化剂能够利用可见光或紫外光产生活性氧化物,从而杀死细菌和病毒。

GNC作为一种全新的光催化剂,具有许多优势。

首先,GNC的光电转换效率高,能够利用可见光产生大量的电子-空穴对。

这些电子-空穴对能够通过还原和氧化反应产生活性氧化物,从而具有杀菌效果。

其次,GNC是一种环保的材料,由碳、氮和氧组成,不会产生有害的副产物。

最后,GNC是可再生的,可以通过简单的方法制备和再生,从而减少成本和资源消耗。

研究表明,GNC在光催化杀菌领域具有广泛的应用潜力。

一项研究发现,GNC对大肠杆菌具有显著的杀菌效果。

在可见光照射下,GNC能够产生一定量的活性氧化物,破坏细菌细胞的结构和功能,从而导致其死亡。

类似的结果也在其他细菌和病毒中得到验证,包括金黄色葡萄球菌、大肠肠杆菌O157、流感病毒等。

除了对细菌和病毒的杀菌作用外,GNC还具有其他应用价值。

一项研究发现,GNC可以通过光催化降解有机污染物,如苯酚和甲醛,从而净化水和空气。

另一项研究显示,GNC还可以用于光催化制备氢气和其他燃料,实现可持续能源的生产。

尽管GNC在光催化杀菌领域具有许多优势,但也面临一些挑战。

首先,GNC的光催化效率目前仍然有待提高。

虽然GNC能够利用可见光产生大量的电子-空穴对,但其光吸收能力仍然有限,导致部分光能无法有效利用。

其次,GNC的制备方法和再生方法还不够成熟。

目前的制备方法通常需要高温和高压条件,从而增加了成本和能源消耗。

另外,GNC的稳定性也是一个问题,其在长时间使用和再生后性能会出现衰减。

znn4石墨相氮化碳

znn4石墨相氮化碳

znn4石墨相氮化碳1.引言1.1 概述石墨相氮化碳(graphitic carbon nitride,简称g-C3N4)是一种新型的二维材料,具有丰富的化学和物理性质。

它由碳和氮原子组成,呈现出石墨结构的特征,具有高度晶化、优良的稳定性和良好的机械性能。

石墨相氮化碳的发现引起了广泛的研究兴趣,因为它具有许多潜在的应用领域。

首先,它具有优异的光电催化性能,能够在可见光下催化水分解产生氢气。

这对于解决能源危机和环境污染问题具有重要意义。

其次,石墨相氮化碳还具有良好的吸附性能和催化活性,可用于环境污染物的吸附和降解。

此外,它还在光伏器件、传感器、储能材料等领域具有广阔的应用前景。

现有的制备方法包括热蒸发法、溶胶凝胶法、水热法等,其中以热蒸发法制备的石墨相氮化碳具有较高的结晶度和比表面积。

然而,目前制备过程中还存在一些问题,如制备工艺复杂、产物纯度低等,需要进一步改进和优化。

综上所述,石墨相氮化碳作为一种新型的二维材料,在能源、环境和材料领域具有广泛的应用前景。

未来的研究应该着重解决制备工艺的问题,进一步优化其性能,为其应用提供更广阔的可能性。

1.2文章结构1.2 文章结构本文通过以下几个部分来详细介绍石墨相氮化碳(graphitic carbonnitride)的相关内容。

第一部分是引言,主要包括概述、文章结构以及目的。

在概述部分,将介绍石墨相氮化碳的基本背景和研究现状,为读者提供一个整体的认识。

文章结构部分将详细说明本文的章节安排和每个章节的内容,方便读者掌握整篇文章的结构。

目的部分将明确本文研究的目标和意义,为后续章节的内容提供指导。

第二部分是正文,主要包括石墨相氮化碳的定义和性质以及制备方法。

在2.1节中,将对石墨相氮化碳的定义进行详细解释,并介绍其主要的物理化学性质,如晶体结构、带隙能量等。

同时,还将探讨其在光催化、电催化和储能等领域中的应用潜力。

在2.2节中,将介绍石墨相氮化碳的制备方法,包括热聚合法、溶胶凝胶法、模板法等,并对各种制备方法的优缺点进行比较分析。

石墨相氮化碳的结构调控及增强光催化性能研究共3篇

石墨相氮化碳的结构调控及增强光催化性能研究共3篇

石墨相氮化碳的结构调控及增强光催化性能研究共3篇石墨相氮化碳的结构调控及增强光催化性能研究1石墨相氮化碳的结构调控及增强光催化性能研究摘要:石墨相氮化碳(g-C3N4)是一种新型的光催化剂,具有廉价、环保、稳定性好等诸多优点,因此广泛应用于水处理、气体分解、光催化降解等领域。

但其光催化性能还不够优异,因此需要进行结构调控以增强其光催化性能。

本文从结构调控、增强光催化性能两方面进行解析,探讨石墨相氮化碳的结构调控及增强光催化性能的研究进展。

关键词:石墨相氮化碳;结构调控;光催化性能一、结构调控的方式目前为止,已通过以下几种方式进行石墨相氮化碳结构调控:1. 荧光剂的掺杂荧光剂是有机分子或化合物中能发生荧光的一种物质。

将其掺杂到石墨相氮化碳材料中可以提高其光催化性能。

科研人员通过将荧光染料刚果红、罗丹明B等掺杂到石墨相氮化碳上,发现在可见光下石墨相氮化碳的光催化性能大幅提高。

2. 氮、碳的掺杂石墨相氮化碳在加工过程中一般需要掺杂氮、碳元素,现已通过合成方法实现了氮、碳的不同比例掺杂,从而改变石墨相氮化碳的结构,并获得多个不同形态的石墨相氮化碳材料。

同时通过控制掺杂比例,可以获得表面氮和体态氮两种氮掺杂模式,从而影响石墨相氮化碳的光催化性能。

3. 表面改性在石墨相氮化碳的表面进行改性也可以改变其催化性质。

例如,表面引入空穴或羟基,使石墨相氮化碳材料表面出现更多的活性官能团,提高其光催化性能。

二、增强光催化性能的方式1. 光响应范围拓宽石墨相氮化碳主要在可见光区域具有较好的光催化性能。

为了拓宽其光响应范围,应用石墨相氮化碳与其他光催化材料复合,以形成多元复合材料。

复合后,其吸收特性相互补充,不仅能吸收可见光区域的光线,还可吸收可见光以下的紫外光线,因此光催化活性大幅提高。

2. 反应机理探究深入探究石墨相氮化碳在催化反应中的机理,对其结构调控具有指导意义。

现已有学者研究表明,石墨相氮化碳的光催化作用主要是由传统的表面光化学反应和彩虹反应两种机理组合产生的。

石墨相氮化碳可见光催化分解水制氢

石墨相氮化碳可见光催化分解水制氢

石墨相氮化碳可见光催化分解水制氢1 概述随着人类社会的快步发展,人类对能源的需求持续增长,地球储存的能源已经无法满足人类长期的发展需求。

同时化石能源的大量使用造成了环境大面积的破坏,严重威胁了人类的生存健康,寻求一种清洁高效的新能源成为能源发展的新方向。

氢能,作为一种二次能源具有着清洁,高效,热值高,原料广等优点,被认为是一种最理想的无污染绿色能源。

但是,氢在地球上主要是以化合物的形式存在,最广泛的来源就是水。

工业上往往用电解水制氢、煤炭气化制氢等方式制备氢气,都存在着能耗高,会带来污染等问题。

光催化剂是进行光解水制氢的基本要素,半导体光催化剂的催化原理可以用能带理论来解释,半导体存在着不连续的能带结构,价带和导带之间存在着具有一定宽度的禁带,当半导体光催化剂受到等于或高于其禁带宽度的光子能量的太阳光照射时,价带上的电子就会跃迁到导带上,同时在价带上产生相应的空穴,形成电子 - 空穴对。

电子、空穴在一定的作用力下迁移至粒子的表面,因其具有较强的氧化还原能力,从而使附着在粒子表面不能吸收光的物质发生氧化还原反应。

光解水制氢技术的首次提出是在 1972 年,日本东京大学的 Fujishima 教授 [1] 发现二氧化钛单晶电极经过太阳光的照射可以将水分解为氧气和氢气,直接将太阳能转化为化学能。

在这样的基础之上,各种各样的光催化剂被科学研究者们发现,本文旨在从光催化剂的角度出发,就现存的一些利用可见光解水制氢的方法进行简单的介绍以及其研究进展。

2 研究现状综述石墨相氮化碳即 g-C3N4 是一种具有优异光催化性能的非金属半导体,其组成元素是地球上含量丰富的C和N,相比于金属半导体而言成本较低。

且 g-C3N4 具有密度低、化学稳定性好、耐磨性强[2]等优点。

由于g-C3N4的禁带带宽合适,在2.7eV左右,可以吸收太阳光谱中波长小于475nm的光波,可见光可激发;且g-C3N4没有毒性,适用范围广,引起了学者们的广泛研究。

石墨相氮化碳的改性及其光催化制氢性能的研究共3篇

石墨相氮化碳的改性及其光催化制氢性能的研究共3篇

石墨相氮化碳的改性及其光催化制氢性能的研究共3篇石墨相氮化碳的改性及其光催化制氢性能的研究1随着能源危机的加剧和环境污染的严峻,绿色低碳能源成为当前各国共同的发展方向。

氢气作为一种清洁、环保的燃料,被广泛地应用于生产和生活中。

目前,石墨相氮化碳因具有良好的光催化性能和可控制备的特点,已成为制氢的研究热点。

石墨相氮化碳具有较低的能隙和良好的光催化性能,可使用可视光进行催化反应。

然而,由于其特殊的材料结构,如缺陷、孔道等,使得其催化活性局限于表面,从而限制了其在光催化制氢方面的应用。

因此,我们需要改性石墨相氮化碳,提高其活性表面积,增强其光催化制氢性能。

利用化学方法或物理方法改变石墨相氮化碳的结构和组分,可以提高其光催化活性和稳定性。

其中,掺杂、离子交换和微波辅助等技术在石墨相氮化碳的改性中得到了广泛应用。

例如,将掺杂不同的金属物质和接枝不同的有机分子到石墨相氮化碳的结构中,可以提高其表面活性位点的数目,增强其光吸收能力和转移电子的速率,提高其光催化制氢活性。

另外,石墨相氮化碳被广泛地应用于光解水制氢。

在该过程中,石墨相氮化碳作为光催化剂,在光照的条件下吸收能量,将水分子分解为氢气和氧气。

然而,由于石墨相氮化碳的光催化作用独特而复杂,因此需要对其光学性质、结构特征和反应机制进行深入的研究。

近年来,人们不断研究石墨相氮化碳的光催化制氢性能,并从材料、结构和功能三个方面进行了深入研究,取得了一系列显著的研究成果。

在材料方面,通过改变其表面形貌和化学组分,可以提高其光催化制氢性能,如利用不同的前体物制备不同形貌的石墨相氮化碳;在结构方面,通过改变其孔径大小、构建异质结构等方式来调节其催化性能,如采用Fe2O3包覆石墨相氮化碳来增强其催化活性;在功能方面,通过对其表面进行修饰或掺杂过渡金属或其他元素,可以改善其光催化活性和稳定性,在增强光催化制氢性能方面具有重要作用。

总之,石墨相氮化碳作为一种新型的光催化剂,具有广阔的应用前景。

石墨相氮化碳的化学合成及应用

石墨相氮化碳的化学合成及应用

石墨相氮化碳的化学合成及应用一、本文概述石墨相氮化碳(g-C3N4)是一种新兴的二维纳米材料,自其被发现以来,已在科学界引起了广泛的关注。

本文旨在深入探讨石墨相氮化碳的化学合成方法以及其在多个领域的应用。

我们将首先概述石墨相氮化碳的基本性质,然后详细介绍其化学合成的最新进展,最后探讨其在能源转换、环境修复、生物医学等领域的应用前景。

通过对石墨相氮化碳的深入研究,我们期待能够为材料科学的发展提供新的思路和方法,同时也为实际问题的解决提供有效的材料基础。

二、石墨相氮化碳的化学合成石墨相氮化碳(g-C3N4)是一种新兴的二维纳米材料,因其独特的电子结构和物理化学性质,在能源转换、光催化、传感器等领域具有广泛的应用前景。

其合成方法多种多样,主要包括热缩聚法、溶剂热法、气相沉积法以及微波辅助法等。

热缩聚法:热缩聚法是最常见的制备g-C3N4的方法之一。

通常,富含氮的前驱体(如尿素、硫脲、三聚氰胺等)在高温下(如500-600℃)进行热缩聚,生成g-C3N4。

这种方法简单易行,产量大,但得到的g-C3N4往往结晶度不高,存在大量的结构缺陷。

溶剂热法:溶剂热法是一种在溶剂存在下进行热缩聚的方法。

通过选择合适的溶剂和反应条件,可以调控g-C3N4的形貌和结构。

这种方法制备的g-C3N4通常具有较高的结晶度和较大的比表面积。

气相沉积法:气相沉积法是一种在基底上直接生长g-C3N4的方法。

通过控制气相反应的条件,可以在基底上制备出高质量的g-C3N4薄膜。

这种方法制备的g-C3N4具有良好的结晶度和均匀的厚度,适用于制备大面积、高质量的g-C3N4。

微波辅助法:微波辅助法是一种利用微波加热快速合成g-C3N4的方法。

微波加热具有快速、均匀、节能等优点,可以在短时间内完成g-C3N4的合成。

这种方法制备的g-C3N4具有较高的结晶度和良好的分散性。

除了以上几种方法外,还有一些其他的合成方法,如电化学合成法等离子体法等。

石墨相氮化碳复合材料

石墨相氮化碳复合材料

石墨相氮化碳复合材料
石墨相氮化碳复合材料是一种将石墨相( Graphene)和氮化碳( Nitrogen-doped(carbon)结合的复合材料。

这种复合材料通常具有石墨相的优异导电性能和氮化碳的良好催化性能,因此在多个领域,尤其是电化学和催化领域,得到了广泛的研究和应用。

以下是一些可能的特性和应用领域:
导电性能:(石墨相具有优异的导电性能,可以提高材料的电导率。

这使得该复合材料在电极材料、电池和超级电容器等领域有着广泛的应用。

催化性能:(氮化碳部分可以提供良好的催化性能,使得复合材料在催化反应中表现出色。

这对于燃料电池、电解水制氢等能源相关应用具有潜在的重要意义。

机械性能:(石墨相的强度和刚度可以提高复合材料的力学性能,使其在结构材料和复合材料领域有一定的应用前景。

光学性能:(石墨相和氮化碳的光学性能也可能影响复合材料的性能,因此在光学和传感器等领域也可能有应用。

这种复合材料的具体性质和应用取决于石墨相和氮化碳的相对含量、制备方法以及具体的应用需求。

石墨相氮化碳复合材料的研究仍在不断发展,未来可能会有更多新的发现和应用。

改性石墨相氮化碳的制备与光催化性能研究

改性石墨相氮化碳的制备与光催化性能研究

改性石墨相氮化碳的制备与光催化性能探究摘要:本文探究了改性石墨相氮化碳的制备与光催化性能。

起首通过改变含铁酸盐的前驱体比例来合成不同浓度的铁掺杂石墨烯氮化碳材料,然后接受氨基硅油原位水解-缩合的方法在材料表面进行硅改性。

接下来,通过控制溶剂的类型和离子强度,制备了不同形貌的石墨相氮化碳。

最后,将改性后的铁掺杂石墨烯氮化碳材料和不同形貌的石墨相氮化碳进行光催化性能测试。

结果表明,在紫外光照耀下,改性后的铁掺杂石墨烯氮化碳材料表现出更好的光催化活性和稳定性,其表面硅改性有助于增强光吸纳能力,而铁掺杂则增加了活性位点的数量。

此外,当溶剂为甲醇时,制备的石墨相氮化碳表面遮盖了更多的碳球状纳米颗粒,从而有效提高了光催化活性。

关键词:改性石墨相氮化碳,铁掺杂,硅改性,光催化性能,甲醇Abstract:In this paper, the preparation and photocatalyticperformance of modified graphene-like nitrogen-doped carbon materials were studied. Firstly, different concentrations of iron-doped graphene nitrogen carbon materials were synthesized by changing the precursor ratio containing iron salt, and then the silicon modification was carried out on the surface of the material by aminoalkylsiloxane in situ hydrolysis-condensation method. Then, by controlling the type of solvent and ionic strength, different morphologies of graphene-like nitrogen-doped carbon were prepared. Finally, the modified iron-doped graphene nitrogen carbon materials and graphene-like nitrogen-doped carbon with different morphologies were tested for photocatalytic performance.The results showed that under UV irradiation, the modified iron-doped graphene nitrogen carbon material showed better photocatalytic activity and stability. The surface silicon modification enhanced the light absorption capacity and the iron doping increased the number of active sites. In addition, when the solvent was methanol, more carbon spherical nanoparticles were covered on the surface of the prepared graphite-like nitrogen-doped carbon, which effectively improved the photocatalytic activity.Keywords: modified graphene-like nitrogen-doped carbon,iron doping, silicon modification, photocatalytic performance, methanol。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 引言
2008年
N C
王心晨
1. 引言
e-
Ef 2.7 eV
h+
优点:非金属半导体、原料丰富价格低、带隙合适、化学稳定且无毒 缺点:比表面积比较低、有限的可见光吸收、光生载流子易复合
2. g-C3N4的合成制备
主流方法:热聚合——简单、快捷、大批量 其他方法:CVD、溶剂热——复杂、耗时、产量低
3. g-C3N4材料改性
I. g-C3N4的剥离
石墨
石墨烯
Bulk g-C3N4
g-C3N4 nanosheet
0.9-2.1 nm 3-6 layers
3. g-C3N4材料改性
II. 元素掺杂
金 属 元 素:Fe、Cu、Zn、Ni等 非金属元素:O、P、S、B、I、F等
P
133.1 eV
CB
2. g-C3N4的合成制备
Templates: SiO2 AAO CaCO3
ionic liquids surfactants
hollow nanospheres
rous
nanorod
nanoflower
3. g-C3N4材料改性
目的: 增加比表面积
增加可见光吸收范围
抑制光生电子-空穴的简单复合
4. g-C3N4的应用领域
III. CO2还原
目标产物的选择性取决于g-C3N4的纳米结构设计以及能带位置的构建
5.展望
a) 开发可量产的剥离方法来制备单(几)层g-C3N4纳米片 b) 寻找有效的水分解及CO2还原助催化剂,尤其是非贵金属助催化剂 c) 提高光催化反应的量子产率 d) 将氮化碳的应用拓展到传感器、生物成像以及光电器件等领域
4. g-C3N4的应用领域
II. 光降解污染物/杀菌
水相中
NO、NO2
NO3-
Cr(VI)
H+ ·OH
Pollutants Degradation products
OHPollutants
·OH Degradation products
Cr(III) Bacterial Disinfection
2. g-C3N4的合成制备
1.
2.
3.
Cyanamide Dicyanamide
Melamine
Tri-s-triazine
2. g-C3N4的合成制备
4.
5.
Urea
Thiourea
异原子
Urea : 58 m2/g Thiourea: 18 m2/g Dicyanamide: 10 m2/g
石墨相氮化碳(g-C3N4)材料简介
➢ 引言 ➢ g-C3N4的合成制备 ➢ g-C3N4的材料改性 ➢ g-C3N4的应用领域 ➢ 展望
1. 引言
1967
TiO2 光解水示意图
Fujishima
1. 引言
常见半导体在pH=0时的禁带宽度以及与标准氢电极电位、真空能 级的相对位置
带隙较宽——对可见光响应弱或无响应 (如TiO2、ZnO) 带隙较窄——部分光腐蚀现象严重(如CdS) 均含有过渡金属元素
Midgap states
2.68 eV
2.2 eV
VB
3. g-C3N4材料改性
III. 有机分子共聚
嘧啶
噻吩
吡啶
3. g-C3N4材料改性
IV. 构建异质结
与其他半导体
与金属
与光敏剂
4. g-C3N4的应用领域
I. 光解水
2008: 100μmol/h/g
2019: >10mmol/h/g
相关文档
最新文档