离散数学复习提纲(图论)1
离散图论知识点总结

离散图论知识点总结一、基本概念图(Graph)是离散数学中的一个重要概念,它由顶点集合V和边集合E组成。
一般用G (V,E)来表示,其中V={v1,v2,…,vn}是有限非空集合,E是V中元素的无序对的集合。
图分为有向图和无向图。
无向图中的边是无序的,有向图中的边是有序的。
图中存在一些特殊的图,比如完全图、树、路径、回路等。
二、图的表示方法1. 邻接矩阵邻接矩阵是一种常见的图的表示方法,它使用一个二维数组来表示图的关系。
对于一个n 个顶点的图,邻接矩阵是一个n*n的矩阵A,其中A[i][j]表示顶点i到顶点j之间是否存在边。
对于无向图,A[i][j]=1表示顶点i与顶点j之间存在边,A[i][j]=0表示不存在。
对于有向图,A[i][j]=1表示i指向j的边存在,A[i][j]=0表示不存在。
2. 邻接表邻接表是另一种常见的图的表示方法。
它将图的信息储存在一个数组中,数组的每个元素与图的一个顶点相对应。
对于每个顶点vi,数组中储存与该顶点邻接的顶点的信息。
邻接表可以用链表或者数组来表示,链表表示的邻接表比较灵活,但是在查找某个边的相邻顶点时需要遍历整个链表。
三、图的性质1. 度图中每个顶点的度是与其相邻的边的数目。
对于无向图,顶点的度等于与其相邻的边的数目;对于有向图,则分为入度和出度。
2. 连通性对于无向图G,若图中任意两个顶点都有路径相连,则称图G是连通的。
对于有向图G,若从任意一个顶点vi到任意一个顶点vj都存在路径,则称G是强连通的。
3. 路径和回路路径是指图中一系列的边,连接图中的两个顶点;回路是指起点与终点相同的路径。
路径的长度是指路径中边的数目。
4. 树和森林一个无向图,如果是连通图且不存在回路,则称为树。
一个无向图,若它不是连通图,则称为森林。
四、图的常见算法1. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法,它从图的某个顶点vi出发,访问它的所有邻接顶点,再对其中未访问的顶点继续深度优先搜索。
(完整版)图论复习提纲

复习课件 数学科学学院
1
本次课主要内容 期末复习
(一)、重点概念 (二)、重要结论 (三)、应用
2
(一)、重点概念
1、图、简单图、图的同构与自同构、度序列与图序列、 补图与自补图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
G1 G2
例1 指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。
5
(6) 补图与自补图
1) 对于一个简单图G =(V, E),令集合 E1 uv u v,u,vV
则图H =(V,E1\E)称为G的补图,记为 H G
2) 对于一个简单图G =(V, E),若 G G ,称G为自补图。
(5) 根树
一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶 点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根, 出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点 和树根统称为分支点。
9
(6) 完全m元树
对于根树T,若每个分支点至多m个儿子,称该根树为m元根树; 若每个分支点恰有m个儿子,称它为完全m元树。
(2) 森林
称无圈图G为森林。
8
(3) 生成树
图G的一个生成子图T如果是树,称它为G的一棵生成树;若T 为森林,称它为G的一个生成森林。
生成树的边称为树枝,G中非生成树的边称为弦。
(4) 最小生成树
在连通边赋权图G中求一棵总权值最小的生成树。该生成树称 为最小生成树或最小代价树。
离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
离散数学复习提纲

离散数学复习提纲离散数学是一门关于离散对象的数学分支,它主要研究离散结构及其性质,广泛应用于计算机科学、信息技术、密码学等领域。
下面是一个离散数学的复习提纲,包括离散数学的基本概念、离散结构、图论、关系、逻辑以及集合论等内容。
一、离散数学的基本概念1.数学基础:集合、函数、关系、证明方法(数学归纳法、反证法、递归法等);2.命题逻辑:命题、命题连接词、真值表、逻辑运算、逻辑等价、推理规则等;3.谓词逻辑:谓词、量词、公式、合取范式和析取范式、蕴含、等价、量词的否定规则等;4.证明方法:直接证明、间接证明、归谬证明、证明策略等。
二、离散结构1.图论:图的基本概念、图的表示方法、连通性、路径和回路、图的着色、最小生成树等;2.代数结构:群、环、域的定义、性质及基本例子;3.组合数学:组合基本原理、二项式系数、排列组合、生成函数、递归关系、容斥原理等;4.有限状态自动机:确定性有限状态自动机、非确定性有限状态自动机、正则表达式等。
1.图的基本概念:顶点、边、路径、回路、度等;2.图的表示:邻接矩阵、邻接表、关联矩阵等;3.图的遍历:深度优先、广度优先;4. 最短路径问题:Dijkstra算法、Floyd-Warshall算法;5. 最小生成树问题:Prim算法、Kruskal算法;6.匹配问题:最大匹配、二分图匹配等。
四、关系1.关系的基本概念:关系矩阵、关系的性质(反自反性、对称性、传递性等);2.等价关系:等价关系的性质、等价类等;3.偏序关系:偏序关系的性质、偏序集合、哈斯图等;4.传递闭包:传递闭包的定义、传递闭包的计算方法等。
五、逻辑1.命题逻辑:命题的定义、逻辑运算、真值表、逻辑等价、推理规则等;2.谓词逻辑:量词的定义、公式的定义、量词的否定规则、等价变换等;3.命题逻辑与谓词逻辑的转换;4.形式化推理:前向链式推理、后向链式推理、消解法等。
1.集合的基本概念:子集、并集、交集、差集、补集等;2.集合运算:集合的并、交、差、补等运算的性质;3.集合的关系:包含关系、相等关系、等价关系等;4.集合的表示方法:列举法、描述法、元祖法等;5.集合的基数:有限集合的基数、无穷集合的基数、基数的性质。
电大离散数学图论部分期末复习辅导Word版

离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
离散数学复习提纲(完整版)解析

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
离散数学复习提纲

离散数学复习提纲第一章1、集合的三种表示法:①穷举列表法;例A={a,b,c};B={1,2,3,……,200};②特性刻划法;例A={x|x∈I并且I<0};③由计算规则定义;例设a1=1,a2=2,ai+1=ai+ai-1 S={ak|k>0}。
2、没有元素的的集合称为空集。
3、设A和B是两个集合,A B,表示A中的每个元素都可以在B中找到,称A是B 的一个子集(A被B包含),如果A中至少有一个元素不属于B,则A B。
4、幂集ρ(s)就是S的所有子集组成的集合(共2S个),例:S={1,{2,3}},则ρ(s)={{1},{{2,3}},{1,{2,3}},φ}5、文氏图是一种集合的图形表示。
|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| 第二章1、笛卡尔积A×B={(a,b)|a∈A,b∈B},即A到B的所有有序偶构成的集合。
2、(a,b)称为有序偶,若(a,b)= (c,d),当且仅当a=c,b=d,通常(a,b)≠(b,a),除非a=b。
3、A到B的二元关系R是A×B的一个子集,R A×B,若R= A×B,称R为全关系,R=φ称为空关系。
4、两个元素的有序偶(x,y)∈R,称x和y具有关系R,例:A上的小于关系定义为:L={(a1,a2)| a1,a2∈A∩a1<a2}。
5、对于每个x∈A,有(x,x)∈R,称R是A上的自反关系;对于每个x,y∈A,如有(x,y)∈R,有(y,x)∈R,则称R是A上的对称关系;对于每个x,y,z∈A,如有(x,y)∈R,并且(y,z)∈R,便有(x,z)∈R,则称R是A上的传递关系;例:A={1,2,3},R1={(1,1),(2,2),(3,3),…},R2={(1,2),(2,1),(3,3)},R3={(1,2),(2,3),(1,3)},则R1是自反的,R2是对称的,R3是传递的。
(完整word版)离散数学复习提纲(完整版)

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学复习提纲(图论)
1. 判别图6-1的两幅图是否可以一笔画出?
解 在图6-1(a ) 中,
deg(v 1)=deg(v 2)=deg(v 3)=3
有两个以上的结点的度为3. 故在(a )中不存在欧拉通路,不能一笔画出.
在图6-1(b ) 中,deg(A )=2, deg(B ) =deg(C )= deg(D )=4,deg(E ) =deg(F )=3
只有两个奇数度的结点,所以存在欧拉通路,可以一笔画出. 一条欧拉通路,如EDBEFCABCDF .
2. 画出具有下列条件的有5个结点的无向图.
(1) 不是哈密顿图,也不是欧拉图; (2) 有哈密顿回路,没有欧拉回路; (3) 没有哈密顿回路,有欧拉回路; (4) 是哈密顿图,也是欧拉图. 解 作图如图6-3(不唯一).
(1) (2) (3) (4) 在图(1)中,可以走遍5个点,但不是回路,无哈密顿回路,故不是哈密顿图。
无论指定怎样的方向,可以走遍所有边,但不是回路,不能构成欧拉路。
在图(2)中,容易找出走遍5个点的回路,即有哈密顿回路,故是哈密顿图。
但是构成
回路,要么出现重复边,要么漏掉边,即不存在欧拉回路,因此不是欧拉图。
在图(3)中,不重复地走遍5个点是不可能的,故不是哈密顿图。
如指定右边垂直边方
向向上,就可以画出一个走遍所有的边,又不重复的回路,所以有欧拉回路,故是哈欧拉图。
v 4 v 5 E F
A
v 2 v 3 B C v 1 D (a ) (b ) 图6-1
第1个面,边界为a b e a ,次数为3;第2个面,边界为b d e b ,次数为3; 第3个面,边界为a b c a ,次数为3;第4个面,边界为a d e a ,次数为3; 第5个面,边界为a c b d a ,次数为4。
(b )图中共有两个面,第1个面,边界为 g f c d e f g ,次数为6; 第2个面,边界为 a b c d e f c b a ,次数为8。
4.在具有n 个结点的完全图K n 中,需要删去多少条边才能得到树?
解 n 个结点的完全图共有2
)
1(2
-=
n n C n 条边,而n 个结点的树共有n -1条边. 因此需要删去2
)2)(1()1(2
--=--n n n C n 条边后方可得到树.
5.设G 是图,无回路,但若外加任意一条边于G 后,就形成一回路. 试证明G 必为树.
证明 由树的定义可知,只需证G 连通即可. 任取不相邻两点u ,v , 由题设,加上边<u ,v >就形成一回路,于是去掉边<u ,v >,从u 到v 仍有路u ,…,v ,即u ,v 连通,由u ,v 的任意性可知,G 是连通的,故G 必是树.
6.如图6-5是有6个结点a ,b ,c ,d ,e ,f
的带权无向图,各边的权如图所示. 试求 其最小生成树.
解 构造连通无圈的图,即最小生成树,
b ∙ 23 1 15
c ∙ 25 ∙ a 4 ∙ f 28 9 16 3
d ∙ 15 ∙
e 图6-5
用克鲁斯克尔算法:
第一步: 取ab =1;第二步: 取af =4;第三步: 取fe =3;第四步: 取ad =9; 第五步: 取bc =23.
如图6-6。
权为1+4+3+9+23=30
7.试画出一棵带权1,2,2,3,4,5,5,6,7,8,10的最优二叉树。
解:最优二叉树如下:
9.试证明下图中两个无向图是不同构的。
10.一个简单无向图同构于它的补图,称为自补图,证明其结点必是4k 或者4k+1.
11.非平凡的树至少有两个叶子。
12.证明: 在任何n (n ≥2)个顶点的简单图G 中,至少有两个顶点具有相同的度。
证 如果G 有两个孤立顶点,那么它们便是具有相同的度的两个顶点。
如果G 恰有一个孤立顶点,那么我们可对有n – 1 个顶点但没有孤立顶点的G’(它由G 删除孤立顶点后得到)作下列讨论。
不妨设G 没有孤立顶点,那么G 的n 个顶点的度数应是:1,2,3,…,n –1 这n –1种
b ∙ 23 1
c ∙ ∙ a 4 ∙ f 9 3
d ∙ ∙
e 图6-6
可能之一,因此必定有两个顶点具有相同的度。
13.n 个城市间有m 条相互连接的直达公路。
证明:当2)
2)(1(-->
n n m 时,人们便能通
过这些公路在任何两个城市间旅行。
证 用n 个顶点表示n 个城市,顶点间的边表示直达公路,据题意需证这n 个城市的公路网络所构成的图G 是连通的。
反设G 不连通,那么可设G 由两个不相关的子图(没有任何边关联分别在两个子图中的顶点)G1,G2组成,分别有n 1,n 2个顶点,从而,n = n 1+n 2,n 1 ≥1,n 2 ≥1。
由于各子图的边数不超过2)
1(-i i n n ,因此G 的边数m 满足: ))
1()1((21
)1(2122111-+-=-≤∑=n n n n n n m k i i i
))
1)(1()1)(1((21
21--+--=n n n n
)
2)(1(21
)2)(1(21
21--=-+-=n n n n n
与已知2)2)(1(-->
n n m 矛盾,故图G 是连通的。
14.有7人a ,b ,c ,d ,e ,f ,g 分别精通下列语言,问他们7人是否可以自由交谈(必要时借助他人作翻译)。
a 精通英语。
b 精通汉语和英语。
c 精通英语、俄语和意大利语。
d 精通日语和英语。
e 精通德语和意大利语。
f 精通法语、日语和俄语。
g 精通法语和德语。
解 下图中7个顶点表示7个人,关联两个顶点的边表示两个人同时精通某一种语言:
由于该图是连通的,因此他们7人是可以自由交谈(必要时借助他人作翻译)。
15.证明:恰有两个奇数度顶点u,v 的无向图G 是连通的,当且仅当在G 上添加边(u ,v )后所得的图G*是连通的。
证 必要性是显然的。
a
b d
c e g f
设G*是恰有两个奇数度顶点u,v的无向图G添加边(u,v)后所得,且是连通的,那么图G*是一个欧拉图(每一个顶点都是偶数度的连通图),因此G*中删除边(u,v)后所得的图G仍是连通的。
判别图8.31中各图是否为哈密顿图,若不是,请说明理由,并回答它是否有哈密顿通路。
图8.31
解(a),(b) 是为哈密顿图。
(c) 不是哈密顿图,也没有哈密顿通路。
在图(c)中增加顶点k ,并对其顶点做二着色,构成图(d)(如下)。
图(d) 不是哈密顿图,也没有哈密顿通路。
因为图中白色顶点比黑色顶点多两个。
故(c) 不是哈密顿图,
课后习题:
p279: 1,2,3,5
p287: 3,4,5,7,8
p300: 1,2,3,4
p311: 1,2,3,6
p317: 1,2,4
p321: 1,3,5
p327: 1,2,6
p337: 1,3,6,8。