九年级数学上册第4章一元二次方程4.3用公式法解一元二次方程同步练习(新版)青岛版
人教版九年级数学《解一元二次方程(3)——公式法》课前预习任务单和课堂小练习及答案

C.2x-y=5D.m2-2m=3
2. (10分)把方程3x(x-2)=4(x+1)化为一元二次方程的一般形式是3x2-10x-4=0.
3. (10分)一元二次方程x2-6x+9=0的解为x1=x2=3.
4. (10分)用配方法解方程x2+10x-7=0,则方程可变形为(x+5)2=32.
解:x1=-2+ ,x2=-2- .
启后
任务三:学习教材第9~12页,解答下列问解:移项,将常数项移到等号右边,得
ax2+bx=-c.
二次项系数化为1,得x2+ x=-
.
等号左右两边同时加上 2,得x2+ x+ 2=- + 2
配方,得到形如(x+n)2=p的方程:
思考
任务五:请归纳运用公式法解一元二次方程的一般步骤.
解:①将方程化为一般形式;②准确写出a,b,c的值;③计算b2-4ac的值,并与0比较大小;④当b2-4ac≥0时,可代入求根公式求解;当b2-4ac<0时,方程无实数根.
限时10分钟总分100分得分
非线性循环练
1. (10分)下列方程是一元二次方程的是(D)
5. (10分)若关于x的方程x2+2mx+1=0的一个根是1,则m的值为-1.
当堂高效测
1. (10分)用公式法求解方程2x2-3x-1=0,先确定a,b,c的值,正确的是(A)
A. a=2,b=-3,c=-1
B. a=-2,b=3,c=1
C. a=-2,b=-3,c=-1
D. a=2,b=3,c=-1
九年级数学课前预习任务单和课堂小练习及答案
第4课时 解一元二次方程(3)——公式法
课前预习任务单
目标
任务一:明确本课时学习目标
2021-2022学年人教版九年级上册一元二次方程 同步测试(含解析)

【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
14.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )
A. 1米B. 1.5米C. 2米D. 2.5米
A. x=4 B. x=0
C. D.
【答案】C
【分析】
利用因式分解法求解即可.
详解】方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.
故选C.
【点睛】本题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键.
9.已知实数 满足 ,则代数式x²-x+1的值是( )
【详解】解:移项得:y²-4y=3
配方得: y²-4y+4=3+4
(y-2)²=7
故选A.
【点睛】本题考查解一元二次方程 配方法:将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法 .
7.一元二次方程x2+x﹣1=0的根是()
A. x=1﹣ B. x=
C. x=﹣1+ D. x=
【答案】D
【解析】
【分析】
先计算判别式的值,然后根据判别式的意义可判断方程根的情况.
【详解】解: △ ,
方程有两个不相等的两个实数根,
即 .
故选 .
【点睛】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.
8.方程x²-4x=0的根是( )
故选A.
【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.
九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
九年级数学上册用公式法解一元二次方程同步练习及答案

用公式法解一元二次方程——典型题专项训练知识点 1 一元二次方程的求根公式1.用公式法解-x2+3x=1时,需先求出a,b,c的值,则a,b,c依次为( ) A.-1,3,-1 B.1,-3,-1C.-1,-3,-1 D.-1,3,12.用公式法解方程3x2+4=12x,下列代入公式正确的是( )A.x=122-3×4)2×3B.x=122-4×3×4)2C.x=122+4×3×4)2D.x=(-12)2-4×3×4)2×3知识点 2 用公式法解一元二次方程3.方程x2+3x-14=0的解是( )A.x=65)2 B.x=65)2C.x=23)2 D.x=23)24.方程2x2-4x+1=0的根是( )A.x1=1+2,x2=1-2B.x1=2+2 2,x2=2-2 2C.x1=1+2)2,x2=1-2)2D.x1=2+2,x2=2-25.用公式法解方程:(1)x2-2x=1;(2)4x2-3=12x.知识点 3 一元二次方程根的判别式6.方程2x2-5x+3=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号7.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( ) A.0 B.-1C.2 D.-38.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是________.9.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.10.已知关于x的方程x2+2 kx-1=0有两个不相等的实数根,则k的取值范围是( ) A.k≥0 B.k>0C.k≥-1 D.k>-111.关于x的一元二次方程x2+4kx-1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断12.已知三角形两边的长分别是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长是( )A.14 B.12C.12或14 D.以上都不对13.2017·通辽若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k 的取值范围在数轴上表示正确的是( )图2-3-114.中国古代数学家杨辉的《田亩比类乘除捷法》有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何.”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步.经过计算,你的结论是:长比宽多( )A.12步 B.24步C.36步 D.48步15.若在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为( )A.x=-2B.x1=-2,x2=3C.x1=3)2,x2=3)2D.x1=5)2,x2=5)216.已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m的值.17.已知关于x的一元二次方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个不相等的实数根?(2)为m选取一个合适的整数值,使方程有两个不相等的实数根,并求出这两个根.18.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC 三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.1.A .2.D .3.B4.C [5.解:(1)x2-2x-1=0,x=(-2)2-4×1×(-1))2×1=1±2,∴x1=1+2,x2=1-2.(2)4x2-12x-3=0,x=(-12)2-4×4×(-3))2×4=3)8=3)2,∴x1=32+3,x2=32-3.6.B7.D .8.49.k≤1且k≠010.A11.A.12.B13.A 14.A15.D16.解:∵关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,∴Δ=(2m-1)2-4×1×4=0,∴2m-1=±4,∴m=52或m=-32.17.解:(1)∵关于x的一元二次方程x2-2(m+1)x+m2=0有两个不相等的实数根,∴Δ>0,即[-2(m+1)]2-4m2>0,解得m>-12.(2)∵m>-12,∴可取m=0,此时方程为x2-2x=0,解得x1=0,x2=2.(答案不唯一)18.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2+2b×(-1)+(a-c)=0,∴a+c-2b+a-c=0,∴a-b=0,即a=b,∴△ABC是等腰三角形.(2)△ABC是直角三角形.理由:∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,即a2=b2+c2,∴△ABC是直角三角形.(3)当△ABC是等边三角形时,(a+c)x2+2bx+(a-c)=0可整理为2ax2+2ax=0,∴x2+x=0,解得x1=0,x2=-1.。
人教版数学九年级上册《公式法解一元二次方程》同步练习题

21.2.2 公式法解一元二次方程同步练习题一、填空题1、把2 3x3 x22的形式后, 则 a =b, c =化成 axbx c 0 a 0,=______.2、用公式法解方程x 28x 15 ,此中 b 2 4ac =, x 1=, x 2 =_______ .3、不解方程,判断所给方程: ① x 2 3x70 ;② x 2 4 0 ;③ x 2x 1 0 中,有实根的方程有 个 .4、对于 x 的一元二次方程x 2m 2 xm 1 0有两个相等的实数根,则m 的值是.5、若一元二次方程bx 2 3x1 0 有解,则 b 应知足的条件是 ________.6、若对于 x 的方程 a 5 x24x 1有实数根,则 a 知足的条件是 _______.7、已知一个矩形的长比宽多2 cm ,其面积为 8 cm 2 ,则此长方形的周长为 ________.8、当 x =_______时,代数式 1 x 与 2x2x1的值互为相反数.349、若对于 x 的一元二次方程 x 2mx n有两个相等的实数根,则m , n 所知足的关系式是.10、若方程x 24x a0 的两根之差为,则 a 的值为 ________ .二、选择题1、利用求根公式求5x 216 x 的根时, a, b, c 的值分别是()2A .5, 1,6B.5,6,1C.5,- 6,1D. 5,- 6,- 12222 2、已知一元二次方程x 2 x10 ,以下判断正确的选项是()A .该方程有两个相等的实数根B.该方程有两个不相等的实数根 C .该方程无实数根D.该方程根的状况不确立3、方程 2 x24 3x 6 2 0的根是()A . x 12, x 2 3B . x 1 6, x 2 2C . x 1 2 2, x 22D . x 1 x 264、一元二次方程 x 2 ax 1 0 的两实数根相等,则a 的值为()A . a 0B . a 2, 或 a2C . a 2D . a 2或a 05、若对于 x 的一元二次方程k1 x2 kx 10 有实根,则 k 的取值范围是()A . k 1B . k2C. k2且k 1 D . k 为一确实数6、假如对于 x 的一元二次方程 kx 22k 1x 1 0有两个不相等的实数根,那么 k 的取值范围是()1A . k1 B . k 1且 k 0C .1k1 D .1 k1且 k 02222227、已知 a 、b 、 c 是△ ABC 的三边长,且方程 a 1 x 22bx c 1x 2 0 的两根相等, ?则△ ABC 为()A .等腰三角形B .等边三角形C.直角三角形D.随意三角形8、假如不为零的 n 是对于 x 的方程 x 2mx n 0 的根,那么 mn 的值为()A .-1B .-1C.1D. 1229、若 m 2 n 2 m 2n 2 2 80 ,则 m 2n 2 的值是()A . 4B. -2C.4或-2D.-4 或2三、利用公式法解以下方程( 1) x25 2x 2 0(2) 3x26x 12 0( 3) 2y21y 2 033( 4) x 22x 4 0 ( 5) 2x x 3 x 3( 6) 5x 2 5 2x 1( 7) x 1 x 812(8) 2 x32x29( )3x 222x 24 09四、解答题1、如图,是一个正方体的睁开图,标明了字母A 的面是正方体的正面, ?假如正方体的左面与右边所标明代数式的值相等,求x 的值.2、小明在一块长 18m 宽 14m 的空地上为班级建筑一个花园(暗影部分),所建花园占节余空地面积的1,请你求出图中的 x .23。
用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)(原卷版)-初中数学9年级上册

专题06用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1:求根公式知识点2:用公式法解一元二次方程(重点)知识点3:一元二次方程的判别式(重难点)【方法二】实例探索法题型1:不解方程判断方程根的情况题型2:用公式法解一元二次方程题型3:解系数中有字母的一元二次方程题型4:根据一元二次方程根的情况确定字母参数的值或取值范围题型5:利用一元二次方程根的情况讨论分式有无意义的问题题型6:新定义与一元二次方程综合题型7:一元二次方程与一次函数的综合题型8:用公式法解关于一元二次方程的实际应用题型9:利用根的判别式判断三角形的形状【方法三】差异对比法易错点1:根据一元二次方程根的情况,求方程中所含字母的值或取值范围时,忽略二次项系数不为0这一隐含条件易错点2:考虑问题不全面,误认为方程问题就是一元二次方程问题【方法四】仿真实战法考法1:用公式法解一元二次方程考法2:根据根的判别式判断方程根的情况考法3:由一元二次方程根的情况,求参数的值或取值范围【方法五】成果评定法【倍速学习五种方法】【方法一】脉络梳理法知识点1:求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac -≥时,有两个实数根:142b x a-+=,2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式.知识点2:用公式法解一元二次方程(重点)用公式法解一元二次方程一般步骤1把一元二次方程化成一般形式20ax bx c ++=(0a ≠);2确定a 、b 、c 的值;3求出24b ac -的值(或代数式);4若240b ac -≥,则把a 、b 、c 及24b ac -的值代入求根公式,求出1x 、2x ;若240b ac -<,则方程无解.知识点3:一元二次方程的判别式(重难点)1.根的判别式1.一元二次方程根的判别式:我们把24b ac -叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆-.2.一元二次方程20(0)ax bx c a ++=≠,当2=40b ac ∆->时,方程有两个不相等的实数根;当2=40b ac ∆-=时,方程有两个相等的实数根;当2=40b ac ∆-<时,方程没有实数根.2.根的判别式的应用(1)不解方程判定方程根的情况;(2)根据参数系数的性质确定根的范围;(3)解与根有关的证明题.【方法二】实例探索法题型1:不解方程判断方程根的情况1.不解方程,判别下列方程的根的情况:(1)24530x x --=;(2)22430x x ++=;(3)223x +=;(4)22340x x +-=.2.当m 取何值时,关于x 的方程221(2)104x m x m +-+-=,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?题型2:用公式法解一元二次方程3.用公式法解下列方程:(1)2270x x -+=;(2)211042x x -=.4.用公式法解下列方程:(1)2320x x +-=;(2)25610x x -++=.5.用公式法解下列方程:(1)(24)58x x x -=-;(2)2(53)(1)(1)5x x x -+=++.6.用公式法解下列方程:(1)20.2 2.5 1.30.1x x x +-=;(2)22(3)(31)(23)1552x x x x +--+-=.7.用公式法解下列方程:(1)291x +=;(220+-=.题型3:解系数中有字母的一元二次方程8.用配方法解下列关于x 的方程:220ax x ++=(0a ≠).9.用公式法解下列关于x 的方程:(1)20x bx c --=;(2)2100.1a x a --=.题型4:根据一元二次方程根的情况确定字母参数的值或取值范围10.(2023•罗山县三模)若关于x 的方程x 2+2x =c 无实数根,则c 的值可以是()A .﹣2B .﹣1C .0D .113.已知关于x 的方程()21230m x mx m +++-=总有实数根,求m 的取值范围.15.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.题型7:一元二次方程与一次函数的综合18.(2023春·安徽合肥·八年级统考期末)若关于x 的一元二次方程2210x x kb +++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是()....2023春·山东济南·八年级统考期末)关于的一元二次方程axax b+的图象经过第一、二、四象限,设2a b=+,则t的取值范围是(.1142t<<B.1122t-≤<20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为了减少库存量,且在月内赚取8000元的利润,售价应定为每件多少元?题型9:利用根的判别式判断三角形的形状21.(2022•天津模拟)已知关于x的一元二次方程(a+c)x2﹣2bx﹣a+c=0,其中a,b,c为△ABC的三边.(1)若x=1是方程的根,判断△ABC的形状,并说明理由;(2)若方程有两个相等的实数根,判断△ABC的形状,并说明理由.求此时m 的值.【方法三】差异对比法易错点1:根据一元二次方程根的情况,求方程中所含字母的值或取值范围时,忽略二次项系数不为0这一隐含条件23.(2023春·北京西城·九年级北师大实验中学校考阶段练习)已知关于x 的一元二次方程2(4)(21)0m x m x m ---+=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足要求的最小正整数时,求方程的解.易错点2:考虑问题不全面,误认为方程问题就是一元二次方程问题24.(2023春·上海杨浦·八年级校考期中)解关于x 的方程:()()2245260k x k x ---+=.25.(2022秋·上海奉贤·八年级校考期中)已知关于x 的方程()()212110k x k x k +--+-=(1)当k 取什么值时,方程只有一个根?(2)若方程有两个不相等的实数根,求k 的取值范围.【方法四】仿真实战法考法:用公式法解一元二次方程26.(2021•无锡)(解方程:2x(x﹣2)=1;27.(2020•无锡)解方程:x2+x﹣1=0;考法2:根据根的判别式判断方程根的情况28.(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根29.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定30.(2023•广元)关于x的一元二次方程2x2﹣3x+=0根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定31.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定32.(2023•广安)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断33.(2023•泸州)关于x的一元二次方程x2+2ax+a2﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关考法3:由一元二次方程根的情况,求参数的值或取值范围34.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.935.(2023•兰州)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.436.(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0 37.(2023•眉山)关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.B.m>3C.m≤3D.m<338.(2023•辽宁)若关于x的一元二次方程x2﹣6x+k=0有两个不相等的实数根,则k的取值范围是.39.(2023•宁夏)方程x2﹣4x﹣m=0有两个相等的实数根,则m的值为.40.(2023•泰安)已知关于x的一元二次方程x2﹣4x﹣a=0有两个不相等的实数根,则a的取值范围是.【方法五】成功评定法一、单选题二、填空题三、解答题18.(2023秋·河北秦皇岛·九年级统考期末)已知关于x的一元二次方程:2++=.240x x k k=时,解方程;(1)当1x-,求k.(2)若2++=的一个解是=1x x k24019.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)解方程:23270x x--=(1)当点E与点C重合时,求ME的长;(2)求y关于x的函数解析式,并写出函数的定义域;(3)当MN经过△ABC一边中点时,请直接写出ME的长.(1)点B的坐标为,直线AB的表达式为.(2)点C在y轴上移动过程中,当等边三角形ACP的顶点(3)当点C在y轴上移动时,点P也随之运动,探究点关系式表达出来;为等腰三角形时,直接写出点(4)点C在y轴上移动过程中,当OBP(1)求点C 的坐标;(2)连接AD ,在直线CD 上是否存在点E ,使得2EAC DAC S S = .若存在,求出点E 的坐标;若不存在,请说明理由;(3)如图2,已知()7.5,0G -,()1,0H ,过B 作BF x ∥轴且 3.5BF =;若点G 沿GH 方向以每秒2个单位长度运动,同时,F 点沿FB 方向以每秒1个单位长度运动经过t 秒的运动,G 到达G '处,F 到达F '处,连接F H '、F G ''.问:F G ''能否平分FF H '∠?若能,请直接写出t 的值;若不能,请说明理由.。
九年级上册数学解一元二次方程配方法、公式法同步练习及答案
九年级上册数学解一元二次方程配方法、公式法同步练习及答案1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( )A .4,13B .-4,19C .-4,13D .4,193.方程x 2-x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程:(1)x 2+5x -1=0;(2)2x 2-4x -1=0;(3)2x 2+1=3x .7.用公式法解下列方程:(1)x 2-6x -2=0;(2)4y 2+4y -1=-10-8y .8.阅读下面的材料并解答后面的问题:小力:能求出x 2+4x +3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x 2+4x +3=x 2+4x +4-4+3=(x 2+4x +4)+(-4+3)=(x +2)2-1,而(x +2)2≥0,所以x 2+4x +3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x 2-8x +5的最小值?如果能,写出你的求解过程.9.已知关于x 的一元二次方程x 2-mx -2=0.(1)若x =-1是这个方程的一个根,求m 的值和方程的另一根;(2)对于任意的实数m ,判断方程的根的情况,并说明理由.10.已知关于x 的方程x 2-2x -2n =0有两个不相等的实数根.(1)求n 的取值范围;(2)若n <5,且方程的两个实数根都是整数,求n 的值.答案1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292. ∴x 1=29-52,x 2=-29-52. (2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12. 配方,得x 2-2x +1=32,(x -1)2=32. ∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2,∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0.∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32. 8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11,∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根,所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2.所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0,a =1,b =-2,c =-2n ,∴Δ=b 2-4ac =4+8n >0.解得n >-12. (2)由原方程,得(x -1)2=2n +1.∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5,∴0<2n +1<11,且2n +1是完全平方形式.∴2n +1=1,2n +1=4或2n +1=9.解得,n =0,n =1.5或n =4.。
人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)
一元二次方程的解法 公式法 因式分解法一、选择题1. 方程x 2+x ﹣12=0的两个根为( )A .x 1=﹣2,x 2=6B .x 1=﹣6,x 2=2C .x 1=﹣3,x 2=4D .x 1=﹣4,x 2=32.整式x+1与整式x-4的积为x 2-3x-4,则一元二次方程x 2-3x-4=0的根是( ).A .x 1=-1,x 2=-4B .x 1=-1,x 2=4C .x 1=1,x 2=4D .x 1=1,x 2=-43.如果x 2+x -1=0,那么代数式3227x x +-的值为( )A .6B .8C .-6D .-84.若最新x 的一元二次方程(m -1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.若代数式(2)(1)||1x x x ---的值为零,则x 的取值是( ). A .x =2或x =1 B .x =2且x =1C .x =2D .x =-16.一个等腰三角形的两条边长分别是方程x 2-7x+10=0的两根,则该等腰三角形周长是( ).A .12B .9C .13D .12或9二、填空题7.已知实数x 满足4x 2-4x+1=0,则代数式122x x +的值为________. 8.已知y =x 2+x-6,当x =________时,y 的值是24.9.若方程2x mx n ++可以分解成(x-3)与(x+4)的积的形式,则m =________,n =________.10.若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如2※6=4×2×6=48.(1)则3※5的值为 ;(2)则x ※x+2※x-2※4=0中x 的值为 ;(3)若无论x 是什么数,总有a ※x =x ,则a 的值为 .11.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y+4=0 ①,解得y 1=1,y 2=4.当y=1时,x 2=1,∴x=±1;当y=4时,x 2=4,∴x=±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)方程(x 2+x )2﹣4(x 2+x )﹣12=0的解为 .12.三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x +60=0的一个实数根,则该三角形的面积是 .三、解答题13. 用公式法解下列方程:2(1)210x ax --=; (2)22222(1)()ab x a x b x a b +=+> .14.用适当方法解下列方程:(1)(2x-3)2=25 (2)x 2-4x+2=0 (3)x 2-5x-6=015.(1)利用求根公式计算,结合①②③你能得出什么猜想?①方程x 2+2x+1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.②方程x 2-3x-1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.③方程3x 2+4x-7=0的根为x 1=_______,x 2=________,x 1+x 2=________,x 1·x 2=________.(2)利用求根公式计算:一元二次方程ax 2+bx+c =0(a ≠0,且b 2-4ac ≥0)的两根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.(3)利用上面的结论解决下面的问题:设x 1、x 2是方程2x 2+3x-1=0的两个根,根据上面的结论,求下列各式的值:①1211x x +; ②2212x x +.答案与解析一、选择题1.【答案】D【解析】x 2+x ﹣12=(x +4)(x ﹣3)=0,则x +4=0,或x ﹣3=0,解得:x 1=﹣4,x 2=3.故选D .2.【答案】B ;【解析】∵ 234(1(4)x x x x --=+-,∴ 2340x x --=的根是11x =-,24x =.3.【答案】C .【解析】∵ 210x x +-=,∴ 21x x +=.∴ 32322222277()77176x x x x x x x x x x x +-=++-=++-=+-=-=-.4.【答案】B ;【解析】由常数项为0可得m 2-3m+2=0,∴ (m -1)(m -2)=0,即m -1=0或m -2=0, ∴ m =1或m =2,而一元二次方程的二次项系数m -1≠0,∴ m ≠1,即m =2.5.【答案】C ;【解析】(2)(1)0x x --=且||1x ≠,∴ 2x =.6.【答案】A ;【解析】x 2-7x+10=0,x 1=2,x 2=5,此等腰三角形的三边只能是5,5,2,其周长为12.二、填空题7.【答案】2;【解析】用因式分解法解方程24410x x -+=得原方程有两个等根,即1212x x ==, 所以121122x x+=+=. 8.【答案】5或-6;【解析】此题把y 的值代入得到最新x 的一元二次方程,解之即可.如:根据题意,得2624x x +-=,整理得2300x x +-=,解得15x =,26x =-. 9.【答案】 1 ; -12 ;【解析】22(3)(4)12x mx n x x x x ++=-+=+-,∴ m =1,n =-12.10.【答案】(1)60;(2) 12x =,24x =-;(3) 14a =. 【解析】(1)3※5=4×3×5=60;(2)∵ x ※x +2※2x -※4=24(28)0x x +-=,∴ 12x =,24x =-; (3)∵ a ※4x ax ==x ,4(41)0ax x a x -=-=,∴ 只有410a -=,等式才能对任何x 值都成立.∴ 14a =. 11.【答案】(1) 换元; 降次; (2) x 1=﹣3,x 2=2.【解析】解:(1)换元,降次(2)设x 2+x=y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x=6,得x 1=﹣3,x 2=2.由x 2+x=﹣2,得方程x 2+x+2=0,b 2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.12.【答案】24或8.【解析】解:∵x 2﹣16x +60=0,∴(x ﹣6)(x ﹣10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①:AB=AC=6,BC=8,AD 是高,∴BD=4,AD==2,∴S △ABC =BC•AD=×8×2=8; 当x=10时,如图②,AC=6,BC=8,AB=10,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°,S △ABC =BC•A C=×8×6=24.∴该三角形的面积是:24或8.故答案为:24或8.三、解答题13.【答案与解析】(1)∵1,2,1,a b a c ==-=-∴2224(2)41(1)440b ac a a -=--⨯⨯-=+> ∴2224412a a x a a ±+==±+ ∴22121, 1.x a a x a a =++=-+(2)222(1)ab x a x b x +=+,即222()0abx a b x ab -++=,令A =ab ,B =22()a b -+,C =ab .∵ 22222224()4()0B AC a b ab ab a b ⎡⎤-=-+-•=-⎣⎦>, ∴ 222224()2B B AC a b a b x ab-±-+±-==, ∴ 222221222a b a b a a x ab ab b++-===, 222222()222a b a b b b x ab ab a+--===, ∴ 1a x b =,2b x a=. 14.【答案与解析】解:(1)直接开平方得:2x-3=±5,∴2x-3= 5或2x-3=-5∴x 1= 4,x 2= -1(2)∵a=1,b=-4,c=2,∴△=b 2-4ac=16-8=8.∴ 42x ±=± ∴12=2=2.x x +(3)分解因式得:(x-6)(x+1)=0∴ x-6= 0或 x+1=0∴x 1= 6,x 2= -1.15.【答案与解析】(1)两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数.① -1 ; -1 ; -2 ; 1.② 32 ;32; 3 ;-1. ③ 73- ; 1 ; 43- ; 73- . ;;b a - ;c a. (3)1232x x +=-,1212x x =-. ①1212123112312x x x x x x -++===-. ②22212121291913()2214244x x x x x x ⎛⎫+=+-=-⨯-=+= ⎪⎝⎭.1、最困难的事就是认识自己。
九年级数学(一元二次方程的解法--公式法)同步练习 试题
轧东卡州北占业市传业学校一元二次方程的解法用适当的方法解以下方程:(1)2 x 2+x -6=0; (2) 0422=+-x x ; (3)5x 2-4x -12=0; (4)4x 2+4x +10=1-8x.〔5〕3x 2-4x =2x ; 〔6〕31〔x +3〕2=1; 〔7〕x 2+(3+1)x =0; 〔8〕x 〔x -6〕=2〔x -8〕;〔9〕〔x +1〕〔x -1〕=x 22; 〔10〕x 〔x +8〕=16;11、用公式法解方程:3x (x -3) =2(x -1) (x +1).12、不解方程,判别方程05752=+-x x 的根的情况。
13、假设关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,求m 的取值范围。
14、y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2?15、课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道〔如图〕,要使种植面积为600平方米,求小道的宽.达标测评1.用公式法解以下方程:〔16〕2220x x +-=; 〔17〕23470x x +-=;〔18〕22810y y +-=; 〔19〕212308x x -+=. 2.用适当的方法解以下方程:〔20〕2(2)3y -=; 〔21〕2(23)3(43)x x +=+; 〔22〕2320x x --=; 〔23〕(1)(2)5x x -+=. 解方程〔1—3配方法,4—6公式法,7、8因式分解法〕〔24〕2230x x --= 〔25〕2450x x +-= 〔26〕(1)(3)8x x --= 〔27〕2310x x --= 〔28〕23740x x -+= 〔29〕(23)46x x x +=+〔30〕(x -3)2+2x(x -3)=0 〔31〕()963222+-=+x x x 32、关于x 的方程04)2(2=+++k x k kx 〔1〕当k 为何值时,方程有两个不相等的实数根,〔2〕当k 为何值时,方程有两个相等的实数根, 〔3〕当k 为何值时,方程没有实数根,33、关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值。
九年级数学上册( 配方法公式法解一元二次方程)练习 试题
轧东卡州北占业市传业学校<配方法公式法解一元二次方程>◆根底过关1、将二次三项式x 2-4x+1配方后得〔 〕 A .〔x-2〕2+3 B .〔x-2〕2-3 C .〔x+2〕2+3 D .〔x+2〕2-3 2、x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的选项是〔 〕 A 、x 2-8x+42=31 B 、x 2-8x+42=1 C 、x 2+8x+42=1 D 、x 2-4x+4=-11 3、用配方法解方程x 2+x=2,应把方程的两边同时〔 〕 A 、加41 B 、加21 C 、减 41 D 、减21 4、一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程为〔 〕A.(x -1)2=m 2+1B.(x -1)2=m -1C.(x -1)2=1-mD.(x -1)2=m +1 5、填写适当的数使下式成立.①x 2+6x +______=(x +3)2 ②x 2-______x +1=(x -1)2③x 2+4x +______=(x +______)2 ④ x 2-3x+________=〔x-_______〕2⑤ a 〔x 2+x+_______〕=a 〔x+_______〕2 6、假设代数式322--x x为()k m x +-2的形式,其中k m ,为常数,那么m+k= 。
7、假设方程()01342=+--x m x 的左边是一个完全平方式,那么m 的值为 。
8、代数式2221x x x ---的值为0,求x 的值.9、解以下方程:〔1〕x 2+6x+5=0; 〔2〕2x 2+6x-2=0; 〔3〕2420x x ++= ●拓展提高1、配方法解方程2x 2-43x-2=0应把它先变形为〔 〕A 、〔x - 13〕2 =89B 、〔x - 23〕2 =0C 、〔x - 13〕2 =89D 、〔x - 13〕2 =109 2、用配方法解方程x 2 - 23x+1=0正确的解法是〔 〕 A 、〔x - 13〕2 =89,x=13B 、〔x - 13〕2 = -89,原方程无解C 、〔x - 23〕2 =59,x 1=23x 2D 、〔x - 23〕2 =1,x 1 =53,x 2 = -13 3、不管x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值〔 〕A .总不小于2B .总不小于7C .可为任何实数D .可能为负数4、无论x 、y 取任何实数,多项式222416x y x y +--+的值总是_______数. 5、如果16〔x-y 〕2+40〔x-y 〕+25=0,那么x 与y 的关系是________. 6、三角形的两边长分别是3和4,第三边的长是方程035122=+-x x的一个根,那么该三角形的周长是 7、用配方法解以下方程:〔1〕x 2+4x+1=0; 〔2〕〔1+x 〕2+2〔1+x 〕-4=0. 〔3〕9y 2-18y-4=0 〔4〕x 2x.8、如果a 、b2-12b+36=0,求ab 的值. 9、用配方法解方程22300x -=,下面的过程对吗?如果不对,找出错在哪里,并改正.解:方程两边都除以2并移项,得215x =,配方,得2211()1524x +=+, 即2161()24x -=,解得12x -=,即12x x ==.●中考链接1、 用配方法解方程2250x x --=时,原方程应变形为〔 〕A .()216x +=B .()216x -=C .()229x +=D .()229x -=2、 方程2(2)9x -=的解是〔 〕 A .125,1x x ==- B .125,1x x =-= C .1211,7x x ==- D .1211,7x x =-=3、〔2021年,〕x 是一元二次方程0122=+-x x 的根,求代数式)252(6332--+÷--x x x x x 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用公式法解一元二次方程
一、填空题
1.配方法解一元二次方程的基本思路是:
(1)先将方程配方
(2)如果方程左右两边均为非负数则两边同时开平方,化为两个__________
(3)再解这两个__________
2.用配方法解一元二次方程ax2+bx+c=0(a≠0)时:
∵a≠0,方程两边同时除以a 得________________,
移项得________
配方得__________
即(x+__________)2=__________
当_________时,原方程化为两个一元一次方程__________和__________
∴x1=_________,x2=____________
3.利用求根公式解一元二次方程时,首先要把方程化为__________,确定__________的值,当__________时,把a ,b ,c 的值代入公式,x1,2=____________求得方程的解.
4.方程3x2-8=7x 化为一般形式是_____,a=______,b=________,c=________,方程的根x1=________,x2=________.
二、选择题
1.用公式法解方程3x2+4=12x ,下列代入公式正确的是
A.x1、2=24
312122⨯-±
B.x1、2=24
312122⨯-±-
C.x1、2=24
312122⨯+±
D.x1、2=324
34)12()12(2⨯⨯⨯---±--
2.方程x2+3x=14的解是
A.x=265
3±
B.x=265
3±-
C.x=223
3±
D.x=223
3±
-
3.下列各数中,是方程x2-(1+5)x+5=0的解的有
①1+5②1-5③1 ④-5
A.0个
B.1个
C.2个
D.3个
4.方程x2+(2
3+)x+6=0的解是
A.x1=1,x2=6
B.x1=-1,x2=-6
C.x1=2,x2=3
D.x1=-2,x2=-3
三、用公式法解下列各方程
1.5x2+2x-1=0
2.6y2+13y+6=0
3.x2+6x+9=7
四、你能找到适当的x的值使得多项式A=4x2+2x-1与B=3x2-2相等吗?
参考答案
一、1.一元一次方程 一元一次方程 2.x2+0=+a c x a b x2+a c x a
b -= 222222222442 04 44 2 4)2(a a
c b a b x ac b a
ac b a b a b a c a b x a b x -=+≥--+-=++ a ac b b a ac b b a ac b a b x 24 24 44222
22-
---+---=+
3.一般形式 二次项系数、一次项系数、常数项 b2-4ac≥0
a ac
b b 242-±-
4.3x2-7x -8=0 3 -7 -8
6145
7 61457-+
二、1.D 2.B 3.B 4.D
三、1.解:a=5,b=2,c=-1
∴Δ=b2-4ac=4+4×5×1=24>0 ∴x1·2=56
110242±-=±- ∴x1=56
1,5612--=+-x
2.解:a=6,b=13,c=6
∴Δ=b2-4ac=169-4×6×6=25>0 ∴x1·2=125
13122513±-=±- ∴x1=-23,x2=-32
3.解:整理,得:x2+6x+2=0
∴a=1,b=6,c=2
∴Δ=b2-4ac=36-4×1×2=28>0
∴x1·2=228
6±
-
=-3±7
∴x1=-3+7,x2=-3-7
四、解:若A=13,即4x2+2x-1=3x2-2 整理,得x2+2x+1=0
∴(x+1)2=0,∴x1=x2=-1
∴当x=-1时,A=13.。