IPC-TM-650 Section 2.5.33.4-Measurement of Electrical Overstress from Soldering Hand Tools
IPC-TM-650中文解读

IPC-TM-650中文解读IPC-TM-650是电子工业协会(IPC)制定的测试方法标准,用于评估电子产品的可靠性和性能。
本文将对IPC-TM-650进行中文解读。
1. 引言IPC-TM-650包含了广泛的测试方法,用于评估电子产品的材料、性能和可靠性。
这些测试方法可用于生产过程中的质量控制,也可用于产品验证和故障分析。
2. 标准结构IPC-TM-650标准由多个章节组成,每个章节覆盖了不同的测试方法或测试参数。
以下是标准的主要章节:2.1 第一章:引言该章节介绍了IPC-TM-650的范围和目的,以及如何正确使用该标准进行测试。
2.2 第二章:物理性能测试该章节涵盖了测试材料的物理性能,如硬度、弯曲强度、拉伸强度等。
2.3 第三章:耐热性能测试该章节主要用于评估材料和组件在高温环境下的性能和可靠性。
2.4 第四章:耐湿性能测试该章节用于评估材料和组件在湿度和潮湿环境下的性能和可靠性。
2.5 第五章:化学性能测试该章节涵盖了材料和组件的化学性能测试,如腐蚀性、耐化学剂性等。
2.6 第六章:电气性能测试该章节用于评估电子产品的电气性能,如绝缘电阻、电容、电感等。
2.7 第七章:可靠性测试该章节包括了一系列可靠性测试方法,用于评估电子产品在不同环境条件下的可靠性和寿命。
3. 使用IPC-TM-650进行测试使用IPC-TM-650进行测试时,应根据具体的测试要求选择适当的测试方法和参数。
测试过程中需要严格按照标准中的要求进行操作,并记录测试结果。
4. 测试结果的解读测试结果的解读应根据IPC-TM-650标准中提供的指导进行。
对于不同的测试方法和参数,标准中通常会给出相应的评估标准或参考值,以帮助解读测试结果。
5. 结论IPC-TM-650是评估电子产品性能和可靠性的重要标准,通过正确使用该标准进行测试,可以提高产品质量并满足客户需求。
在进行测试和解读结果时,应严格遵守标准中的要求和指导。
请注意,本文仅对IPC-TM-650进行了简要解读,具体的测试方法和要求请参考标准原文。
IPC-TM-650版全新解析

IPC-TM-650版全新解析1. 简介IPC-TM-650是由国际电子工业协会(IPC)制定的一项关于印刷电路板(PCB)的测试和测量标准。
该标准旨在为PCB制造商、供应商和客户提供一套统一的测试方法和测量准则,以确保产品质量的稳定和可靠。
IPC-TM-650共有14个部分,涵盖了从原材料到成品板的各个方面,包括制造、检验、测试和质量控制等。
2. 主要变化相较于上一版本,IPC-TM-650版在内容上进行了全面的更新和修订,主要变化如下:2.1 结构调整IPC-TM-650版对整个标准进行了重新梳理和结构调整,使得内容更加清晰、易于理解。
标准分为四个部分,分别是通用要求、测试方法、测量方法和质量控制。
2.2 新增内容IPC-TM-650版新增了若干章节,涵盖了近年来PCB行业的新技术、新材料和新工艺,如高频高速PCB、柔性PCB、三维PCB 等。
2.3 更新和修订内容IPC-TM-650版对原有章节进行了更新和修订,主要包括以下方面:- 更新了测试方法和测量设备的要求,以适应新技术的发展;- 修订了部分术语和定义,使其更加准确;- 强化了对环境保护的要求,增加了废液、废气和固体废物的处理规定;- 增加了对产品质量的追溯性要求,以提高供应链的管理效率。
3. 标准解读以下对IPC-TM-650版标准中的一些关键章节进行解读:3.1 通用要求本部分主要对PCB的质量、性能、尺寸和外观等方面进行了规定。
制造商、供应商和客户应根据这些要求进行生产、检验和验收。
3.2 测试方法本部分提供了各种测试方法,包括物理测试、化学测试、电气测试和环境测试等。
测试方法应根据具体产品和客户要求进行选择。
3.3 测量方法本部分主要介绍了测量设备的选择、校准和使用的相关要求。
测量设备应具备足够的精度和稳定性,以确保测量结果的可靠性。
3.4 质量控制本部分对PCB生产过程中的质量控制进行了规定,包括过程控制、质量审核、不良品处理和质量改进等。
IPC650-2.5

2.5.33.4
Measurement of Electrical Overstress from Soldering Hand Tools (Shielded Enclosure)
11/98
Volume and Surface Resistivity of Dielectric Materials
12/94
2.5.17.2
Volume Resistivity of Conductive Resistance Used in High Dentisty Interconnection (HDI) and Microvias, Two-Wire Method
3/79
2.5.28.A
Q Resonance, Flexible Printed Wiring Materials
4/88
2.5.30
Balanced and Unbalanced Cable Attenuation Measurements
12/87
2.5.31
Current Leakage (Through Overglaze Films)
3/98
2.5.5.5.1
Stripline Test for Complex Relative Permittivity of Circuit Board Materials to 14 GHZ
3/98
2.5.5.6
Non-Destructive Full Sheet Resonance Test for Permittivity of Clad Laminates
Propagation Delay of Flat Cables Using Time Domain Reflectometer (TDR)
IPCTM-650实验方法手册

IPCTM-650实验方法手册IPC TM-650实验方法手册IPC TM-650 Test Methods ManualIPC Member Testing Laboratories ListSection 1.0Reporting and Measurement Analysis Methods Section 2.1Visual T est MethodsSection 2.2Dimensional Test MethodsSection 2.3Chemical Test MethodsSection 2.4Mechanical Test MethodsSection 2.5Electrical Test MethodsSection 2.6Environmental Test MethodsSECTION 1.0 - Reporting and Measurement Analysis Methods1.1Introduction1.2Calibration1.3Ambient Conditions1.4Reporting, General1.5Reporting, Format1.6Numerical Reporting1.7Reporting, Invalid Test Results1.8Measurement Precision Estimation for Binary Data - 1/03Measurement Precision Calculator-Binary DataMeasurement Precision Calculator Users Guide(for use with test method 1.8)1.9 Measurement Precision Estimation for V ariables Data- 1/03Measurement Precision Calculator-V ariable DataMeasurement Precision Calculator Users Guide(for use with test method 1.9)SECTION 2.1 - VISUAL TEST METHODS2.1.1D Microsectioning - 3/982.1.1.1Microsectioning, Ceramic Substrate - 12/872.1.1.2Microsectioning - Semi or Automatic Technique Microsection Equipment (Alternate) - 7/932.1.2A Pinhole Evaluation, Dye Penetration Method - 3/762.1.3A Plated-Through Hole Structure Evaluation - 8/762.1.5A Surface Examination, Unclad and Metal Clad Material - 12/822.1.6B Thickness of Glass Fabric - 12/942.1.6.1Weight of Fabric Reinforcements - 12/942.1.7C Thread Count of Glass Fabric - 12/942.1.7.1Thread Count, Organic Fibers - 12/872.1.8B Workmanship - 12/942.1.9Surface Scratch Examination Metal Clad Foil - 5/862.1.10A Visual Inspection for Undissolved Dicyandiamide - 12/942.1.13A Inspection for Inclusions and V oids in Flexible Printed Wiring Materials - 5/98SECTION 2.2 - DIMENSIONAL TEST METHODS2.2.1A Mechanical Dimensional V erification - 8/972.2.2B Optical Dimensional Verification - 8/972.2.4C Dimensional Stability, Flexible Dielectric Materials - 5/98 2.2.5A Dimensional Inspections Using Mircosections - 8/972.2.6A Hole Size Measurement, Drilled - 8/972.2.7A Hole Size Measurement, Plated - 5/862.2.8Location of Holes - 4/732.2.10A Hole Location and Conductor Location - 12/832.2.12A Thickness of Copper by Weight- 3/762.2.12.1Overall Thickness and Profile Factor of Copper FoilsTreated and Untreated - 9/872.2.12.2Weight and Thickness of Copper Foils with Releasable Carriers - 7/892.2.12.3Weight and Thickness Determination of Copper Foils With Etchable Carriers - 7/892.2.13.1A Thickness, Plating in Holes, Microhm Method - 1/832.2.14Solder Powder Particle Size Distribution - Screen Method for Types 1-4 - 1/952.2.14.1Solder Powder Particle Size Distribution - Measuring Microscope Method - 1/952.2.14.2Solder Powder Particle Size Distribution - Optical Image Analyzer Method--1/952.2.14.3Determination of Maximum Solder Powder Particle Size - 1/95 2.2.15Cable Dimensions (Flat Cable) - 6/792.2.16Artwork Master Evaluation by Use of a Drilled Panel - 12/872.2.16.1Artwork Master Evaluation by Overlay - 12/872.2.17Surface Roughness and Profile of Metallic Foils (Contacting Stylus Technique)- 3/902.2.17A Surface Roughness and Profile of Metallic Foils (Contacting Stylus Technique) - 2/012.2.18Determination of Thickness of Laminates by Mechanical Measurement - 12/942.2.18.1Determination of Thickness of Metallic Clad Laminates, Cross-sectional - 12/942.2.19Measuring Hole Pattern Location-12/872.2.19.1Length, Width and Perpendicularity of Laminate and Prepreg Panels - 12/94 2.2.20Solder Paste Metal Content by Weight - 1/952.2.21Planarity of Dielectrics for High Density Interconnection (HDI) Microvia Technology - 11-98SECTION 2.3 - CHEMICAL TEST METHODS2.3.1Chemical Processing, Suitable Processing Material- 4/732.3.1.1B Chemical Cleaning of Metal Clad Laminates- 5/862.3.2F Chemical Resistance Of Flexible Printed Wiring Materials - 5/98 2.3.3A Chemical Resistance of Insulating Materials- 2/782.3.4B Chemical Resistance, Marking Paints and Inks - 8/972.3.4.2A Chemical Resistance of Laminates, Prepreg and Coated Foil Products, by Solvent Exposure - 12/942.3.4.3Chemical Resistance of Core Materials to Methylene Chloride- 5/86 2.3.5B Density, Insulating Material - 8/972.3.6A Etching, Ammonium Persulfate Method - 7/752.3.7A Etching, Ferric Chloride Method - 7/752.3.7.1A Cupric Chloride Etching Method - 12/942.3.7.2A Alkaline Etching Method - 12/942.3.8A Flammability, Flexible Insulating Materials- 12/822.3.8.1Flammability of Flexible Printed Wiring- 12/882.3.9D Flammability of Prepreg and Thin Laminate - 8/972.3.10B Flammability of Laminate - 12/942.3.10.1Flammability of Soldermask on Printed Wiring Laminate- 8/98 2.3.11Glass Fabric Construction- 4/732.3.13Determination of Acid V alue of Liquid Solder Flux- Potentiometric and Visual Titration Methods- 1/952.3.14Print, Etch, and Plate Test- 4/732.3.15C Purity, Copper Foil or Plating - 8/972.3.16B Resin Content of Prepreg, by Burn-off - 12/942.3.16.1C Resin Content of Prepeg, by Treated Weight--12/942.3.16.2Treated Weight of Prepreg - 12/942.3.17D Resin Flow Percent of Prepreg - 8/972.3.17.1B Resin Flow of Adhesive Coated Films and Unsupported Adhesive Films - 5/98 2.3.17.2B Resin Flow of "No Flow" Prepreg - 8/972.3.18A Gel Time, Prepreg Materials - 4/862.3.19C V olatile Content of Prepreg - 12/942.3.21Plating Quality, Hull Cell Method - 8/972.3.22Copper Protective Coating Quality - 2-782.3.23B Cure (Permanency) Thermally Cured Solder Mask - 2/882.3.23.1A Cure (Permanency) UV Initiated Dry Film Solder Mask - 2/88 2.3.24Porosity of Gold Plating- 2/782.3.24.1Porosity Testing of Gold Electrodeposited on a Nickel Plated Copper Substrate Electrographic Method - 10/852.3.24.2A Porosity of Metallic Coatings on Copper-Based Alloys and Nickel (Nitric Acid V apor Test) - 8/972.3.25B Detection and Measurement of Ionizable Surface Contaminants - 8/97---Supersedes 2.3.26 and 2.3.26.12.3.25C Detection and Measurement of Ionizable Surface Contaminants by Resistivity of Solvent Extract - 2/012.3.25.1Ionic Cleanliness Testing of Bare PWBs2.3.26A Superseded by Test Method 2.3.252.3.26.1Superseded by Test Method 2.3.252.3.26.2Mobile Ion Content of Polymer Films - 7/952.3.27Cleanliness T est - Residual Rosin - 1/952.3.27.1Rosin Flux Residue Analysis-HPLC Method - 1/952.3.28Ionic Analysis of Circuit Boards, Ion Chromatography Method - 1/95 2.3.29Flammability, Flexible Flat Cable- 11/882.3.30A Solvent pH Determination in Anhydrous Flourocarbon Solvents- 11/81 2.3.31Relative Degree of Cure ofU.V. Curable Material - 2/882.3.32C Flux Induced Corrosion (Copper Mirror Method)- 1/952.3.33C Presence of Halides in Flux, Silver Chromate Method - 1/952.3.34B Solids Content, Flux - 1/952.3.34.1B Percentage of Flux on/in Flux-Coated and/or Flux-Cored Solder - 1/952.3.35B Halide Content, Quantitative (Chloride and Bromide)- 1/95 2.3.35.1Fluorides by Spot Test, Fluxes - Qualitative - 1/952.3.35.2Flouride Concentration, Fluxes - Quantitative--1/952.3.36Acid Acceptance of Chlorinated Solvents- 10/852.3.37B V olatile Content of Adhesive Coated Dielectric Films - 5/98 2.3.38B Surface Organic Contaminant Detection T est - 8/972.3.39B Surface Organic Contaminant Identification Test (Infrared Analytical Method) - 8/972.3.40Thermal Stability - 7/95SECTION 2.4 - MECHANICAL TEST METHODS2.4.1D Adhesion, T ape Testing--8/972.4.1.1B Adhesion, Marking Paints and Inks--11/882.4.1.2Adhesion of Conductors on Hybrid Substrates--12/872.4.1.3Adhesion, Resistors (Hybrid Circuits)--12/872.4.1.4Adhesion, Overglaze (Hybrid Circuits)--12/872.4.1.5A Determination of Heat Transfer--5/952.4.1.6Adhesion, Polymer Coating--7/952.4.2A Ductility of Copper Foil--3/762.4.2.1D Flexural Fatigue and Ductility, Foil--3/912.4.3D Flexural Fatigue, Flexible Printed Wiring Materials--5/98 2.4.3.1C Flexural Fatigue and Ductility, Flexible Printed Wiring--3/912.4.3.2C Flexural Fatigue and Ductility, Flexible Metal-Clad Dielectrics--3/91 2.4.4B Flexural Strength of Laminates (at Ambient Temperature)--12/94 2.4.4.1A Flexural Strength of Laminates (at Elevated Temperature)--12/94 2.4.5Folding Endurance, Flexible Printed Wiring Materials--4/732.4.5.1Flexibility - Conformal Coating2.4.6Hot Oil--4/732.4.7A Machinability, Printed Wiring Materials--7/752.4.8C Peel Strength of Metallic Clad Laminates--12/942.4.8.1Peel Strength, Metal Foil (Keyhole Method for Thin Laminates)--1/862.4.8.2A Peel Strength of Metallic Clad Laminates at Elevated Temperature (Hot Fluid Method)--12/942.4.8.3A Peel Strength of Metallic Clad Laminates at Elevated Temperature (Hot Air Method)--12/942.4.8.4Carrier Release, Thin Copper--1/902.4.9D Peel Strength, Flexible Dielectric Materials--10/882.4.9.1Peel Strength of Flexible Circuits - 11/982.4.9.2Bonding Process - 11/982.4.10Plating Adhesion--4/732.4.11Shear Strength Flexible Dielectric Materials--4/732.4.12A Solderability, Edge Dip Method--6/912.4.13F Solder Float Resistance Flexible Printed Wiring Materials--5/98 2.4.13.1Thermal Stress of Laminates--12/942.4.14Solderability of Metallic Surfaces--4/732.4.14.1Solderability, Wave Solder Method--3/792.4.14.2Liquid Flux Activity, Wetting Balance Method--1/952.4.15A Surface Finish, Metal Foil--3/762.4.16A Initiation T ear Strength, Flexible Insulating Materials--12/822.4.17Tear Strength, Propagation--4/732.4.17.1A Propagation, Tear Strength, Flexible Insulating Materials--12/822.4.18B Tensile Strength and Elongation, Copper Foil--8/802.4.18.1Tensile Strength and Elongation, In-House Plating--8/972.4.18.2Hot Rupture Strength, Foil--7/892.4.18.3Tensile Strength, Elongation, and Modulus--7/952.4.19C Tensile Strength and Elongation, Flexible Printed Wiring Materials--5/98 2.4.20Terminal Bond Strength, Flexible Printed Wiring--4/732.4.21D Land Bond Strength, Unsupported Component Hole--8/972.4.21.1C Bond Strength, Surface Mount Lands Perpendicular Pull Method--5/912.4.22C Bow and Twist (Percentage)--6/992.4.22.1C Bow and Twist-Laminate--5/932.4.22.2Substrate Curvature: Silicon Wafers with Deposited Dielectrics--7/952.4.23Soldering Resistance of Laminate Materials--3/792.4.24C Glass Transition Temperature and Z-Axis Thermal Expansion by TMA--12/94 2.4.24.1Time to Delamination (TMA Method)--12/942.4.24.2Glass Transition Temperature of Organic Films - DMA Method--7/952.4.24.3Glass Transition Temperature of Organic Films - TMA Method--7/952.4.24.4Glass Transition and Modulus of Materials Used in High Density Interconnection (HDI) and Microvias -DMA Method - 11/982.4.24.5Glass Transition Temperature and Thermal Expansion of Materials Used In High Density Interconnection (HDI) and Microvias -TMA Method -11/982.4.25C Glass Transition Temperature and Cure Factor by DSC--12/942.4.26Tape Test for Additive Printed Boards--3/792.4.27.1B Abrasion (Taber Method), Solder Mask and Conformal Coating--1/95 2.4.27.2A Solder Mask Abrasion (Pencil Method)--2/882.4.28B Adhesion, Solder Mask (Non-Melting Metals)--8/972.4.28.1C Adhesion, Solder Resist (Mask), Tape Test Method--3/982.4.29B Adhesion, Solder Mask, Flexible Circuit--2/882.4.30Impact Resistance, Polymer Film--10/862.4.31A Folding, Flexible Flat Cable--4/862.4.32A Fold Temperature Testing, Flexible Flat Cable--4/862.4.33C Flexural Fatigue and Ductility, Flat Cable--3/912.4.34Solder Paste Viscosity - T-Bar Spin Spindle Method (applicable for 300,000 to 1,600,000 Centipose)--1/952.4.34.1Solder Paste Viscosity - T-Bar Spindle Method (Applicable at Less Than 300,000 Centipose)--1/952.4.34.2Solder Paste Viscosity - Spiral Pump Method (Applicable for 300,000 to 1,600,000 Centipose)--1/952.4.34.3Solder Paste Viscosity - Spiral Pump Method (Applicable at Less Than 300,000 Centipose)--1/952.4.34.4Paste Flux Viscosity - T-Bar Spindle Method--1/952.4.35Solder Paste - Slump Test--1/952.4.36B Rework Simulation, Plated-Through Holes for Leaded Components--8/97 2.4.37A Evaluation of Hand Soldering Tools for Terminal Connections--7/912.4.37.1A Evaluation of Hand Soldering Tools for Printed Wiring Board Applications--7/91 2.4.37.2Evaluation of Hand Soldering Tools on Heavy Thermal Loads--7/932.4.38A Prepeg Scaled Flow Testing--6/912.4.39A Dimensional Stability, Glass Reinforced Thin Laminates--2/862.4.40Inner Layer Bond Strength of Multilayer Printed Circuit Boards--10/872.4.41Coefficient of Lintear Thermal Expansion of Electrical Insulating Boards--3/862.4.41.1A Coefficient of Thermal Expansion by the Vitreous Silica (Quartz) Dilatometer Method--8/972.4.41.2Coefficient of Thermal Expansion - Strain Gage Method--8/972.4.41.3In-Plane Coefficient of Thermal Expansion, Organic Films--7/952.4.41.4V olumetric Thermal Expansion Polymer Coatings on Inorganic Substrates--7/95 2.4.42T orsional Strength of Chip Adhesives--2/882.4.42.1High Tempreature Mechanical Strength Retention of Adhesives--3/882.4.42.2Die Shear Strength--2/982.4.42.3Wire Bond Pull Strength--2/982.4.43Solder Paste - Solder Ball Test--1/952.4.44Solder Paste - Tack Test--3/982.4.45Solder Paste - Wetting Test--1/952.4.46Spread Test, Liquid or Extracted Solder Flux, Solder Paste and Extracted Cored Wires or Preforms--1/952.4.47Flux Residue Dryness--1/952.4.48Spitting of Flux-Cored Wire Solder--1/95 2.4.49Solder Pool Test--1/952.4.50Thermal Conductivity, Polymer Films--7/952.4.51Self Shimming Thermally Conductive Adhesives--1/95SECTION 2.5 - ELECTRICAL TEST METHODS2.5.1B Arc Resistance of Printed Wiring Materials--5/862.5.2A Capacitance of Insulating Materials--7/752.5.3B Current Breakdown, Plated Through Holes--8/972.5.4Current Carrying Capacity, Multilayer Printed Wring--4/732.5.4.1A Conductor Temperature Rise Due to Current Changes in Conductors--8/97 2.5.5A Dielectric Constant of Printed Wiring Materials--7/752.5.5.1B Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) of Insulating Material at 1MHz (Contacting Electrode Systems)--5/862.5.5.2A Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Clip Method--12/872.5.5.3C Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) of Materials (Two Fluid Cell Method)--12/872.5.5.4Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Micrometer Method--10/852.5.5.5C Stripline Test for Permittivity and Loss Tangent (Dielectric Constant and Dissipation Factor) at X-Band--3/982.5.5.5.1Stripline T est for Complex Relative Permittivity of Circuit Board Materials to 14 GHZ--3/982.5.5.6Non-Destructive Full Sheet Resonance Test for Permittivity of Clad Laminates--5/892.5.5.7Characteristic Impedance and Time Delay of Lines on Printed Boards by TDR--11/922.5.5.8Low Frequency Dielectric Constant and Loss Tangent, Polymer Films--7/95 2.5.5.9Permittivity and Loss Tangent, Parallel Plate, 1MHz to 1.5 GHz--11/982.5.6B Dielectric Breakdown of Rigid Printed Wiring Material--5/862.5.6.1A Dielectric Strength, Polymer Solder Mask and/or Conformal Coatings--2/88 2.5.6.2A Electric Strength of Printed Wiring Material--8/972.5.6.3Dielectric Breakdown V oltage and Dielectric Strength--10/862.5.7C Dielectric Withstanding V oltage, PWB--8/972.5.7.1Dielectric Withstanding V oltage - Polymeric Conformal Coating - 7/002.5.8A Dissipation Factor of Flexible Printed Wiring Material--7/752.5.10A Insulation Resistance, Multilayer Printed Wiring (Between Layers)--12/87 2.5.10.1Insulation Resistivity for Adhesive Interconnection Bonds--11/982.5.11Insulation Resistance, Multilayer Printed Wiring (Within a Layer)--4/732.5.12Interconnection Resistance, Multilayer Printed Wiring--4/732.5.13A Resistance of Copper Foil--3/762.5.14A Resistivity of Copper Foil--8/762.5.15A Guidelines and Test Methods for RFI-EMI Shielding of Flat Cable--10/862.5.16A Shorts, Internal on Multilayer Printed Wiring--11/882.5.17E V olume Resistivity and Surface Resistance of Printed Wiring Materials--5/98 2.5.17.1A V olume and Surface Resistivity of Dielectric Materials--12/942.5.17.2V olume Resistivity of Conductive Resistance Used in High Dentisty Interconnection (HDI) and Microvias, Two-Wire Method--11/982.5.18B Characteristic Impedance Flat Cables (Unbalanced)--7/842.5.19A Propagation Delay of Flat Cables Using Time Domain Reflectometer--7/842.5.19.1A Propagation Delay of Flat Cables Using Time Domain Reflectometer(TDR)--7/842.5.21A Digital Unbalanced Crosstalk, Flat Cable--3/842.5.24Conductor Resistance, Flexible Flat Cable--6/792.5.25A Dielectric Withstand V oltage Flexible Fat Cable--11/852.5.26A Insulation Resistance Flexible Flat Cable--11/852.5.27Surface Insulation Resistance of Raw Printed Wiring Board Material--3/79 2.5.28A Q Resonance, Flexible Printed Wiring Materials--4/882.5.30Balanced and Unbalanced Cable Attenuation Measurements--12/872.5.31Current Leakage (Through Overglaze Films)--12/872.5.32Resistance T est, Plated Through-Holes--12/872.5.33Measurement of Electrical Overstress from Soldering Hand Tools--11/982.5.33.1Measurement of Electrical Overstress from SolderingHand Tools(Ground Measurements)--11/982.5.33.2Measurement of Electrical Overstress from Soldering Hand Tools(Transient Measurements)--11/982.5.33.3Measurement of Electrical Overstress from Soldering Hand Tools(Current Leakage Measurements)--11/982.5.33.4Measurement of Electrical Overstress from Soldering Hand Tools(Shielded Enclosure)--11/98SECTION 2.6 - ENVIRONMENTAL TEST METHODS2.6.1E Fungus Resistance Printed Wiring Materials--8/97 2.6.1.1Fungus Resistance – Conformal Coating --7/002.6.2C Moisture Absorption, Flexible Printed Wiring--5/982.6.2.1A Water Absorption, Metal Clad Plastic Laminates--5/862.6.3E Moisture and Insulation Resistance, Printed Boards--8/972.6.3.1C Moisture and Insulation Resistance-Polymeric Solder Masks and ConformalCoatings--11/982.6.3.1D Moisture and Insulation Resistance - Solder Mask--7/002.6.3.2B Moisture and Insulation Resistance, Flexible Base Dielectric--5/882.6.3.3A Surface Insulation Resistance, Fluxes--1/952.6.3.4A Moisture and Insulation Resistance –Conformal Coating--7/032.6.4A Outgassing, Printed Boards--8/972.6.5C Physical Shock, Multilayer Printed Wiring--8/972.6.6B Temperature Cycling, Printed Wiring Board--12/872.6.7A Thermal Shock and Continuity, Printed Board--8/972.6.7.1Thermal Shock--Polymer Solder Mask Coatings--2/882.6.7.1A Thermal Shock - Conformal Coating--7/002.6.7.2A Thermal Shock, Continuity and Microsection, Printed Board--8/972.6.7.3Thermal Shock - Solder Mask--7/002.6.8D Thermal Stress, Plated Through-Holes--3/982.6.8.1Thermal Stress, Laminate--9/912.6.9A Vibration, Rigid Printed Wiring--8/972.6.9.1Test to Determine Sensitivity of Electronic Assemblies to UltrasonicEnergy--1/952.6.9.2Test to Determine Sensitivity of Electronic Components to UltrasonicEnergy--1/952.6.10A X-Ray (Radiography), Multilayer Printed Wiring Board Test Methods--8/972.6.11B Hydrolytic Stability Solder Mask and/or Conformal Coating--8/982.6.11C Hydrolytic Stability Solder Mask - 7/002.6.11.1Hydrolytic Stability - Conformal Coating - 7/002.6.12Temperature Testing, Flexible Flat Cable--6/792.6.13Assessment of Susceptibility to Metallic Dendritic Growth: Uncoated PrintedWiring--10/852.6.14A Resistance to Electrochemical Migration, Polymer Solder Mask--8/872.6.14C Resistance to Electrochemical Migration, Solder Mask--7/002.6.14.1Electrochemical Migration Resistance Test--9/002.6.15B Corrosion, Flux--1/952.6.16Pressure V essel Method for Glass Epoxy Laminate Integrity--7/852.6.16.1Moisture Resistance of HDIS Under High Temperature and Pressure (PressureV essel)--8/982.6.17Hydrolitic Stability, Flexible Printed Wiring Material--12/822.6.18A Low Temperature Flexibility, Flexible Printed Wiring Materials--7/852.6.19Environmental and Insulation Resistance T est of Hybrid Ceramic MultilayerSubstrate Boards--12/872.6.20A 2.6.20A Superseded by J-STD-020A2.6.21Service Temperature of Flexible Printed Wiring--12/882.6.22Superseded by J-STD-035 (.pdf file)2.6.23Test Procedure for Steam Ager Temperature Repeatability--7/932.6.24Junction Stability Under Environmental Conditions2.6.25Conductive Anodic Filament (CAF) Resistance Test: X-Y Axis2.6.26DC Current Induced Thermal Cycling--5/01。
IPC-TM-650中文版新视角

IPC-TM-650中文版新视角1. 简介IPC-TM-650是由国际电子工业协会(IPC)制定的一套关于印刷电路板(PCB)的测试和测量标准。
该标准为PCB制造商、供应商和用户提供了一套全面的测试方法,以确保产品质量、一致性和可靠性。
2. 更新内容2.1 版本差异- IPC-TM-650第1版:主要针对印刷电路板的基本测试方法进行了规范。
- IPC-TM-650第2版:在第一版的基础上增加了关于高频高速印刷电路板的测试方法。
- IPC-TM-650第3版:进一步增加了对三维打印电路板、柔性电路板和刚挠结合电路板的测试方法。
2.2 新增测试方法- 高频高速测试:对于工作在高频和高速条件下的PCB,第2版增加了专门的测试方法,以满足通信、航空航天等领域的需求。
- 三维打印电路板测试:第3版中增加了对三维打印PCB的测试方法,包括尺寸测量、机械性能测试等。
- 柔性电路板和刚挠结合电路板测试:第3版中也增加了对这些新型PCB的测试方法,包括柔韧性、疲劳寿命等指标的测试。
3. 测试方法详解3.1 尺寸测量- 使用高精度的测量工具,如投影仪、激光测距仪等,对PCB 的尺寸进行精确测量。
3.2 电气性能测试- 通过专门的测试仪器,如信号发生器、网络分析仪等,对PCB的电气性能进行测试,包括信号传输、反射、损耗等指标。
3.3 机械性能测试- 通过机械试验机等设备,对PCB的机械性能进行测试,如拉伸强度、弯曲强度等。
3.4 化学性能测试- 通过化学分析方法,对PCB的化学成分、耐腐蚀性等指标进行测试。
4. 应用领域IPC-TM-650标准广泛应用于电子工业,尤其是PCB制造商、供应商和用户。
它可以帮助这些企业确保产品质量,提高竞争力,同时也可以帮助用户选择合适的PCB产品。
5. 总结IPC-TM-650中文版新视角为我们提供了一个全面了解这一标准的途径。
通过深入研究和应用这些测试方法,我们可以更好地保证PCB产品的质量、一致性和可靠性,满足各种应用场景的需求。
IPC-TM-650测试方法手册-得迈斯仪器

IPC-TM-650 测试方法手册编号:2.6.26目的:直流热循环测试生成日期:99.111.0 概述:此项测试测量PCB板通孔孔壁和孔和内层连接在热循环下的电阻的变化,应用特定设计的测试COUPON进行相应的测试。
该测试技术通过在特定的科邦的内层和通孔的连接回路上通3分钟的直流电,使被测COUPON测试区的温度升温至设定的温度,该温度略高于生产材料的Tg温度。
测试采用直流的通断使测试COUPON从室温达到设定温度,在温度变化下对被测COUPON进行抗疲劳测试,加速潜在问题的发生。
测试通过的循环测试为生产出成品的性能决定。
详细的测试信息请见6.0。
2.0 应用文档2.1 IPC-TM-650 2.1.1 微切片制作2.2 IPC-TM-650 2.1.1.2 微切片制作-半自动/自动技术3.0 测试样件典型的测试COUPON如图一所示。
4.0 仪器或材料4.1 内层连接应力测试系统(IST)如6.04.2 四线2.54mm(0.1inch)公头连接器(参见MOLEX 2241-4042)4.3 Sn60Pb40或Sn63Pb37焊料4.4 阻焊剂4.5 电烙铁4.6 万用表-可选4.7 热影仪-可选5.0 程序5.1 测试样件准备5.1.1 在COUPON的第一面左右两端分别在0.040inch孔径中焊接上4个公头连接器,不能出现焊接不良即焊锡需灌满通孔。
5.1.2 由于测试前需进行预处理,故在COUPON安装入IST测试区前需使被测COUPON的温度降低到室温(降温过程大概需要10分钟)。
5.2 IST测试程序5.2.1 将测试COUPON 安装入IST 设备测试箱内5.2.3 输入数据文件名和启动预测试循环处理。
当预测试循环结束后,IST 测试系统开始对被测COUPON 进行热循环测试。
IST 测试过程中将对孔铜和孔壁与内层连接之间的电阻变化进行监控,并且记录各个COUPON 的测试表现资料。
04 EVDC-特性阻抗测量课程-第四部-IPC-TM-650阻抗测量标准规范
IPC-TM-650阻抗测量标准规范
8 IPC(美国电子电路和电子互连行业协会)是国际性的行业协 会,拥有约2500家会员公司,他们代表着当今电子互连行 业所有的领域。 8 IPC-TM-650是IPC其中订立的一分约束如何通过TDR方法 进行阻抗测量的规范,广泛地受到行业内各个企业的认同 与遵行。其标准可以在以下网址免费下载:
8 偏置漂移与幅度漂移在校准期内(一般为1年)应少于0.25% 8 水平时基的准确度最起码为10 ps + 0.1%的时间间隔, 分辨
率起码为250fs (TDS8000B为10fs) 8 示波器主机的带宽 >10 GHz
现时世界上唯一只有TDS8000B+80E04能满足及超过IPC-TM-650的要求
测试结果
8 这样便完成了按照IPC-TM-650进行的校准与阻抗测量的步
重复键
骤 – TDR-Impedance-Meas使整个程序更容易了解与方便 。现时只有泰克能满足IPC-TM-650的测试要求。
/4.0_Knowledge/4.1_Standards/test/2.5.5.7.pdf
8 下面就基于IPC-TM-650规范介绍阻抗、差分阻抗测试方法 ,去除测量误差,增加测量精度的校准方法等。
IPC-TM-650阻抗测量标准规范
8 通过遵照IPC-TM-650的校准与测量方法,实现更高的测量精 度与重复性(测量50Ω时实现±0.5Ω的误差与0.1Ω的重复性), 并去掉绝大部分测量阻抗时的误差:
IPC-TM-650 – Stored Reference方法
8 校准步骤:
0首先在被测件的位置连接Airline空气线,假设阻抗值为:Zref,
IPC-TM-650中文版
IPC-TM-650中文版标准概述IPC-TM-650是一本详细描述了各种电子连接器和相关产品的测试方法的标准。
它涵盖了多个测试领域,包括机械性能、电气性能、环境适应性、可靠性和可持续性等。
该标准的目的是提供一套统一的测试方法,以便制造商和用户能够在同一标准下进行测试和评估。
标准内容IPC-TM-650标准的内容非常丰富,其中包括了大量的测试方法和指导。
以下是该标准的一些主要内容:1. 机械性能测试:包括插拔力测试、插座接触力测试、挤压力测试等,旨在评估连接器的机械强度和稳定性。
机械性能测试:包括插拔力测试、插座接触力测试、挤压力测试等,旨在评估连接器的机械强度和稳定性。
2. 电气性能测试:包括接触电阻测试、绝缘电阻测试、电气连通性测试等,用于评估连接器的电气性能和稳定性。
电气性能测试:包括接触电阻测试、绝缘电阻测试、电气连通性测试等,用于评估连接器的电气性能和稳定性。
3. 环境适应性测试:包括高温、低温、湿热和振动等环境条件下的测试,以评估连接器在不同环境下的可靠性和适应性。
环境适应性测试:包括高温、低温、湿热和振动等环境条件下的测试,以评估连接器在不同环境下的可靠性和适应性。
4. 可靠性测试:包括寿命测试、重复使用测试、耐腐蚀性测试等,用于评估连接器的长期可靠性和耐久性。
可靠性测试:包括寿命测试、重复使用测试、耐腐蚀性测试等,用于评估连接器的长期可靠性和耐久性。
5. 可持续性测试:包括可焊性测试、可清洗性测试等,用于评估连接器在制造过程中的可持续性和易用性。
可持续性测试:包括可焊性测试、可清洗性测试等,用于评估连接器在制造过程中的可持续性和易用性。
标准应用IPC-TM-650标准广泛应用于电子制造行业,特别是在连接器制造和使用领域。
制造商可以使用该标准来测试和评估他们的产品,以确保其符合质量和可靠性要求。
用户可以参考该标准来选择和采购符合要求的连接器产品。
总之,IPC-TM-650标准是电子制造行业中一项重要的测试方法标准。
IPC-TM-6502018
IPC-TM-6502018IPC-TM-6502018-May IPC Test Method ManualA standard developed by IPC英文版是2018年刚刚整理发行的最新版本,全文共计700多页,升级了较多的文件内容,同时,也取消并删除了很多章节。
中文版官方未正式发行,只是个别几个章节有翻译成中文。
第三方发行的也较早,也只有书本扫描件,很多和最新的英文版章节对不上,只能做为参考资料。
建议使用英文原版。
更多IPC文件参考:www.file123.topTest Methods ApprovedSECTION 1.0 - 1.0 Reporting and Measurement Analysis MethodsTM 1.1C Introduction 1/03TM 1.2A Calibration 1/03TM 1.3A Ambient Conditions 1/03TM 1.4A Reporting, General 1/03TM 1.5A Reporting, Format 1/03TM 1.6ANumerical Reporting 1/03TM 1.7AReporting, Invalid Test Results 1/03TM 1.8AMeasurement Precision Estimation for Binary Data 1/03Includes Calculator and User GuideTM 1.9AMeasurement Precision Estimation for Variables Data 1/03 Includes Calculator and User GuideSECTION 2.1 - 2.1 Visual Test MethodsMicrosectioning, Manual and Semi or Automatic 6/15TM 2.1.2APinhole Evaluation, Dye Penetration Method 3/76TM 2.1.3APlated-Through Hole Structure Evaluation 8/76TM 2.1.5ASurface Examination, Unclad and Metal-Clad Material 12/82 TM 2.1.6BThickness of Glass Fabric 12/94TM 2.1.6.1Weight of Fabric Reinforcements 12/94renumbered from 2.3.12TM 2.1.7CThread Count of Glass Fabric 12/94TM 2.1.7.1Thread Count, Organic Fibers 12/87TM 2.1.8BWorkmanship 12/94TM 2.1.9Surface Scratch Examination Metal-Clad Foil 5/86TM 2.1.10AVisual Inspection for Undissolved Dicyandiamide 12/94TM 2.1.13BInspection for Voids in Flexible Printed Board Materials 5/12 SECTION 2.2 - 2.2 Dimensional Test MethodsTM 2.2.1AMechanical Dimensional Verification 8/97TM 2.2.2BOptical Dimensional Verification 8/97Dimensional Stability, Flexible Dielectric Materials 5/98TM 2.2.5ADimensional Inspections Using Microsections 8/97TM 2.2.6AHole Size Measurement, Drilled 8/97TM 2.2.7AHole Size Measurement, Plated 5/86TM 2.2.12AThickness of Copper by Weight 3/76TM 2.2.12.1Overall Thickness and Profile Factor of Copper Foils Treated and Untreated 9/87TM 2.2.12.2Weight and Thickness of Copper Foils with Releasable Carriers 7/89 TM 2.2.12.3Weight and Thickness Determination of Copper Foils With Etchable Carriers 7/89Thickness, Plating in Holes, Microhm Method 1/83TM 2.2.14Solder Powder Particle Size Distribution - Screen Method for Types 1-4 1/95TM 2.2.14.1Solder Powder Particle Size Distribution - Measuring Microscope Method 1/95TM 2.2.14.2Solder Powder Particle Size Distribution - Optical Image Analyzer Method 1/95TM 2.2.14.3Determination of Maximum Solder Powder Particle Size 1/95Surface Roughness and Profile of Metallic Foils (Contacting Stylus Technique) 2/01TM 2.2.18Determination of Thickness of Laminates by Mechanical Measurement 12/94TM 2.2.18.1Determination of Thickness of Metallic Clad Laminates, Cross-sectional 12/9412/94TM 2.2.20Solder Paste Metal Content by Weight 1/95TM 2.2.21Planarity of Dielectrics for High Density Interconnection(HDI)/Microvia Technology 11/98SECTION 2.3 - 2.3 Chemical Test MethodsTM 2.3.1Chemical Processing, Suitable Processing Material 4/73TM 2.3.1.1BChemical Cleaning of Metal-Clad Laminate 5/86TM 2.3.2GChemical Resistance of Flexible Printed Board Materials 12/07TM 2.3.4BChemical Resistance, Marking Paints and Inks 8/87TM 2.3.4.2AChemical Resistance of Laminates, Prepreg, and Coated Foil Products, by Solvent Exposure 12/94TM 2.3.6AEtching Ammonium Persulfate Method 7/75Etching, Ferric Chloride Method 7/75TM 2.3.7.1ACupric Chloride Etching Method 12/94TM 2.3.7.2AAlkaline Etching Method 12/94TM 2.3.9DFlammability of Prepreg and Thin Laminate 8/97TM 2.3.10BFlammability of Laminate 12/94TM 2.3.10.1Flammability of Soldermask on Printed Wiring Laminate 8/98 TM 2.3.11Glass Fabric Construction 4/73TM 2.3.13ADetermination of Acid Value of Liquid Solder Flux- Potentiometric and Visual Titration Methods 6/04Print, Etch, and Plate Test 4/73TM 2.3.15DPurity, Copper Foil or Plating 5/04TM 2.3.16BResin Content of Prepreg, by Burn-off 12/94TM 2.3.16.1CResin Content of Prepreg, by Treated Weight 12/94 TM 2.3.16.2Treated Weight of Prepreg 12/94TM 2.3.17DResin Flow Percent of Prepreg 8/97TM 2.3.17.2BResin Flow of "No Flow" Prepreg 8/97Gel Time, Prepreg Materials 4/86TM 2.3.19CVolatile Content of Prepreg 12/94TM 2.3.21APlating Quality Hull Cell Method 8/97Copper Protective Coating Quality 2/78TM 2.3.24Porosity of Gold Plating 2/78TM 2.3.24.1Porosity Testing of Gold Electrodeposited on a Nickel Plated Copper Substrate Electrographic Method 10/85TM 2.3.24.2APorosity of Metallic Coatings on Copper-Based Alloys and Nickel (Nitric Acid Vapor Test) 8/97TM 2.3.25DDetection and Measurement of Ionizable Surface Contaminations by Resistivity of Solvent Extract (ROSE) 11/12 TM 2.3.25.1Ionic Cleanliness Testing of Bare PWBs 10/00TM 2.3.28BIonic Analysis of Circuit Boards, Ion Chromatography Method 11/12 TM 2.3.28.1Halide Content of Soldering Fluxes and Pastes 6/04TM 2.3.28.2Bare Printed Board Cleanliness by Ion Chromatography 12/09Solvent pH Determination in Anhydrous Fluorocarbon Solvents 11/81 TM 2.3.32DFlux Induced Corrosion (Copper Mirror Method) 6/04Presence of Halides in Flux, Silver Chromate Method 6/04TM 2.3.34CSolids Content, Flux 6/04TM 2.3.34.1BPercentage of Flux on/in Flux-Coated and/or Flux-Cored Solder 1/95 TM 2.3.35CHalide Content, Quantitative (Chloride and Bromide) 6/04TM 2.3.35.1AFluorides by Spot Test, Fluxes - Qualitative 6/04TM 2.3.35.2AFluoride Concentration, Fluxes - Quantitative 6/04TM 2.3.36Acid Acceptance of Chlorinated Solvents 10/85TM 2.3.40Thermal Stability 7/95TM 2.3.41Test Method for T otal Halogen Content in Base Materials 4/06TM 2.3.42Solder Mask - Resistance to Solvents and Cleaning Agents 3/07TM 2.3.44Determination of Thickness and Phosphorus Content in Electroless Nickel (EN) Layers by X-Ray Fluorescence (XRF) Spectrometry 11/17 SECTION 2.4 - 2.4 Mechanical Test Methods TM 2.4.1EAdhesion, Tape Testing 5/04TM 2.4.1.5ADetermination of Treatment Transfer 5/95Adhesion, Polymer Coating 7/95TM 2.4.2ADuctility of Copper Foil 3/76TM 2.4.3EFlexural Endurance, Flexible Printed Wiring Materials 6/11TM 2.4.3.1CFlexural Fatigue and Ductility, Flexible Printed Wiring 3/91TM 2.4.3.2CFlexural Fatigue and Ductility, Flexible Metal-Clad Dielectrics 3/91 TM 2.4.4BFlexural Strength of Laminates (at Ambient Temperature) 12/94 TM 2.4.4.1AFlexural Strength of Laminates (at Elevated Temperature) 12/94 TM 2.4.5.1Flexibility - Conformal Coating 7/00TM 2.4.6Hot Oil 4/73TM 2.4.7AMachinability, Printed Wiring Materials 7/75TM 2.4.7.1Solder Mask - Determination of Machineability 3/07Peel Strength of Metallic Clad Laminates 12/94TM 2.4.8.1Peel Strength, Metal Foil (Keyhole Method for Thin Laminates) 1/86 TM 2.4.8.2APeel Strength of Metallic Clad Laminates at Elevated Temperature (Hot Fluid Method) 12/94TM 2.4.8.3APeel Strength of Metallic Clad Laminates at ElevatedTemperature (Hot Air Method) 12/94TM 2.4.8.4Carrier Release, Thin Copper 1/90TM 2.4.9EPeel Strength, Flexible Dielectric Materials 6/14TM 2.4.9.1Peel Strength of Flexible Circuits 11/98TM 2.4.9.2Bonding Process 11/98TM 2.4.12ASolderability, Edge Dip Method 6/91TM 2.4.13.1Thermal Stress of Laminates 12/94TM 2.4.14.2ALiquid Flux Activity, Wetting Balance Method 6/04TM 2.4.15ASurface Finish, Metal Foil 3/76TM 2.4.16BInitiation Tear Strength, Flexible Insulating Materials 3/14 TM 2.4.17Tear Strength (Propagation) 4/73TM 2.4.17.1BPropagation Tear Strength, Flexible Insulating Material 2/13 TM 2.4.18BTensile Strength and Elongation, Copper Foil 8/80TM 2.4.18.1ATensile Strength and Elongation, In-House Plating 5/04TM 2.4.18.2Hot Rupture Strength, Foil 7/89Tensile Strength, Elongation, and Modulus 7/95TM 2.4.19CTensile Strength and Elongation, Flexible Printed Wiring Materials 5/98TM 2.4.21FLand Bond Strength, Unsupported Component Hole 1/07TM 2.4.22CBow and Twist (Percentage) 6/99TM 2.4.22.1CBow and Twist-Laminate 5/93TM 2.4.22.2Substrate Curvature: Silicon Wafers with Deposited Dielectrics 7/95 TM 2.4.23Soldering Resistance of Laminate Materials 3/79TM 2.4.24CGlass Transition Temperature and Z-Axis Thermal Expansion by TMA 12/94TM 2.4.24.1Time to Delamination (TMA Method) 12/94TM 2.4.24.3Glass Transition Temperature of Organic Films - TMA Method 7/95 TM 2.4.24.4Glass Transition and Modulus of Materials Used in High Density Interconnection (HDI) and Microvias -DMA Method 11/98TM 2.4.24.5Glass Transition T emperature and Thermal Expansion of Materials Used In High Density Interconnection (HDI) and Microvias -TMA Method 11/98TM 2.4.24.6Decomposition Temperature (Td) of Laminate Material UsingTGA 4/06TM 2.4.25DGlass Transition Temperature and Cure Factor by DSC 11/17 TM 2.4.26Tape Test for Additive Printed Boards 3/79TM 2.4.27.1BAbrasion (Taber Method) Solder Mask and Conformal Coating 1/95 TM 2.4.28.1FSolder Mask Adhesion - Tape Test Method 3/07Adhesion, Solder Mask, Flexible Circuit 3/07TM 2.4.30Impact Resistance, Polymer Film 10/86TM 2.4.34Solder Paste Viscosity - T-Bar Spin Spindle Method (Applicable for 300,000 to 1,600,000 Centipose) 1/95 TM 2.4.34.1Solder Paste Viscosity - T-Bar Spindle Method (Applicable at Less Than 300,000 Centipose) 1/95TM 2.4.34.2Solder Paste Viscosity - Spiral Pump Method (Applicable for 300,000 to 1,600,000 Centipose) 1/95TM 2.4.34.3Solder Paste Viscosity - Spiral Pump Method (Applicable at Less Than 300,000 Centipose) 1/95TM 2.4.34.4Paste Flux Viscosity - T-Bar Spindle Method 1/95TM 2.4.35Solder Paste - Slump Test 1/95TM 2.4.36CPrepreg Scaled Flow Testing 6/91Dimensional Stability, Glass Reinforced Thin Laminates 2/86 TM 2.4.40Inner Layer Bond Strength of Multilayer Printed Circuit Boards 10/87 TM 2.4.41Coefficient of Linear Thermal Expansion of Electrical Insulating Boards 3/86TM 2.4.41.1ACoefficient of Thermal Expansion by the Vitreous Silica (Quartz) Dilatometer Method 8/97TM 2.4.41.2ACoefficient of Thermal Expansion - Strain Gage Method 5/04 TM 2.4.41.3In-Plane Coefficient of Thermal Expansion, Organic Films 7/95TM 2.4.41.4Volumetric Thermal Expansion Polymer Coatings on Inorganic Substrates 7/95High Temperature Mechanical Strength Retention of Adhesives 3/88 TM 2.4.43Solder Paste - Solder Ball Test 1/95TM 2.4.44Solder Paste - Tack Test 3/98TM 2.4.45Solder Paste - Wetting Test 1/95TM 2.4.46ASpread Test, Liquid or Extracted Solder Flux, Solder Paste and Extracted Cored Wires or Preforms 6/04TM 2.4.47Flux Residue Dryness 1/95Spitting of Flux-Cored Wire Solder 1/95 TM 2.4.49Solder Pool Test 1/95TM 2.4.50Thermal Conductivity, Polymer Films 7/95。
IPC-TM-650 Section 2.4.39A Dimensional Stability, Glass Reinforced Thin Laminates
1.0Scope This procedure defines a test method used to determine dimensional stability of glass reinforced,copper-clad,thin laminates intended for use in rigid multilayer printed boards.The test is appropriate for checking material consistency.It is not intended for defining suitability of the raw material to be used in a specific printed board product or process.2.0Applicable DocumentsIPC-TR-483‘‘Dimensional Stability Testing of Thin Lami-nates’’3.0Test Specimen The specimen shall be300mm x280 mm[12in x11in]in size with the warp direction in the300 mm dimension.A minimum of three specimens is required per inspection lot.When evaluating laminate sheets,specimens should be taken from opposite diagonal corners and from the center of the sheet.For precut panels three randomly selected panels shall be used to obtain the test specimens.4.0Apparatus4.1The measurement apparatus shall be capable of mea-suring the specimen within an accuracy of0.0125mm[0.0005in],over250mm[10.0in]dimension.(Supergauge,or equivalent,may be used.)4.2Ovens used for baking must be of the air circulating type and capable of±2°C control.The recovery time of the tem-perature must be less than15minutes after specimens are placed in the oven.4.3A stabilization chamber(drying cabinet)containing cal-cium chloride or silica gel capable of maintaining less than20 RH at21±2°C.5.0Test Procedure5.1Preparation of the Specimen5.1.1Mark the specimen for traceability in the identification area(see Figure1).No mechanical or chemical pre-cleaning is permitted on the specimen.5.1.2Prepare the four location points(see Figure1)by drill-ing or scribing.5.1.3Measure distances Fl,F2,W1,and W2utilizing the apparatus defined in paragraph4.1.Define distances to the nearest2.5microns[0.0001in];the last digit of the reading may be estimated.Record all values as initial measurements.5.1.3.1If optical measurement must be used,a rigid plate shall maintain the test specimen in a flat and horizontal posi-tion.5.1.4Place a12mm[0.5in]diameter tape dot over holes or scribe marks on side of laminate to be measured and a piece of25mm x12mm[1.0in x0.5in]wide tape over iden-tifying information.IPC-2439-a Figure1All dimensions are in inches.Four measurements are required as indicated.Locate measuring points approximately12.7mm[0.500in]from each edge in thefill direction,and25.4mm[1.00in]from each edge in the warp direction.The Institute for Interconnecting and Packaging Electronic Circuits 2215Sanders Road•Northbrook,IL60062-6135IPC-TM-650TEST METHODS MANUAL Number2.4.39SubjectDimensional Stability,Glass Reinforced Thin LaminatesDate2/86RevisionAOriginating Task GroupN/AMaterial in this Test Methods Manual was voluntarily established by Technical Committees of the IPC.This material is advisory onlyand its use or adaptation is entirely voluntary.IPC disclaims all liability of any kind as to the use,application,or adaptation of thisers are also wholly responsible for protecting themselves against all claims or liabilities for patent infringement.Equipment referenced is for the convenience of the user and does not imply endorsement by the IPC.Page1of35.2Copper Removal Remove copper by etching in cupric chloride containing spray etcher at less than50°C(122°F). Rack samples upon exit from etcher,rinse,remove the tape, and air-dry laminate.Submit to bake cycle(paragraph5.3) within four hours.(Note:Do not use resist stripping solutions.)5.3If only the thermal stress cycle is to be used proceed to 5.5.If not,proceed to5.4.5.4Bake Cycle5.4.1Bake specimens at105°C±5°C for four hours±10 minutes.Vertically rack and place specimens in oven parallel to air flow with specimens being separated by a minimum of 1/2inch.5.4.2After baking,immediately place the test specimens ina stabilization chamber(paragraph4.3).5.4.3Remove from stabilization chamber after one hour+1⁄2/-0hours and,within5minutes,measure W11,W21,F11,and F21,using the apparatus defined in paragraph4.1.5.4.4If the thermal stress cycle is to be included in this test, proceed to paragraph5.5.If not,proceed to5.6.5.5Thermal Stress Cycle After the bake cycle measure-ment(5.4),if immediate further processing is not feasible, place specimens in a stabilization chamber until test is contin-ued.5.5.1If a stabilization chamber is used,remove from the stabilization chamber and bake specimens at150°C±5°C for two hours±5minutes.Vertically rack and place specimens in oven parallel to air flow,with specimens being separated by a minimum of1/2in.5.5.2After baking,immediately place the test specimen in a stabilization chamber(paragraph4.3).5.5.3Remove from stabilization chamber after1hour+1/2 hour,-0hours,and,within5minutes,measure W1,W2,F1, and F2,using the apparatus indicated in paragraph 4.1.Record values as W12,W22,F12,and F22.5.6Evaluation Determine the change in dimensional sta-bility using the following formulation:5.6.1Warp EvaluationsWarp=W11−W1W1x103=Mils/per inch for W1after bakeW21−W2W2x103=Mils/per inch for W2after bakeRepeat for W12and W22for after stressWhere W1/W2=initial dimensions,W11/W21=after bake dimensions,andW12/W22=after thermal stress.5.6.2Fill EvaluationsFill=F11−F1F1x103=Mils/per inch for F1after bakeF21−F2F2x103=Mils/per inch for F2after bakeRepeat for F12and F22for after stressWhere F1/F2=initial dimensions,F11/F21=after bake dimensions,andF12/F22=after thermal stress.5.6.3Calculations Take the warp dimensions made on all the measured specimens and determine the mean value for the warp dimensional stability characteristics of the laminate after bake.Follow similar procedures on the calculations for the fill dimensional stability characteristics after bake.Extreme values should be eliminated using the procedure defined in paragraph5.6.4.Similar measurements are made to calculate the after thermal stress dimensional stability characteristics.5.6.4Extreme Value Eliminated Take measurements in subgroup(warp or fill)and arrange in descending order of magnitude.Solve for D,using procedure detailed in Table1.If calculated D is larger than the value of D shown in Table2for the number of measurements being evaluated,the outlier is significant and should be deleted.6.0Notes The following is a checklist that should be used by personnel responsible for performing this method in order to provide repeatable/correlatable results.The IPC Dimen-sional Stability Task Group responsible for the technical report on dimensional stability has determined that checklist items2, 5,6,9,14,15,16and18are critical to appropriate use of this procedure.(See IPC-TR-463.)APage2of3CHECKLIST1.Is the specimen size300mm x280mm[12in x11in]?.........................................................____2.Is the warp direction properly identified?.................____3.Were the four location points prepared by eitherdrilling or scribing?...................................................____4.Were the measured points located approximately12mm[0.5in]from each edge of the fill directionand approximately25mm[1.0in]from each edgeof the warp direction?..............................................____5.Were the measurements taken from the samefeature location,i.e.,edge of the hole,center,scribe mark,etc?.....................................................____6.Were specimens processed without mechanicalor chemical pre-cleaning?........................................____7.Was cupric chloride etching with spray used toremove the copper?................................................____8.Was the temperature of the etching less than50°C?......................................................................____9.The specimens were not exposed to resiststripping solution?....................................................____10.Were specimens racked after removal frometching cycle?..........................................................____11.Is the oven used for baking capable of±2°Ccontrol and has a recovery time of less than15minutes?.............................................................____12.Were specimens subjected to the bake cyclewithin4hours after etching?....................................____13.Were the specimens baked at105°C±5°C for4hours and vertically racked?.................................____14.Was the stabilization chamber capable ofmaintaining20%RH maximum at21±2°C?..........____15.Was each specimen removed from stabilizationafter1hour+1/2hour-0hours and were allmeasurements taken within5minutes?...................____16.Were samples stored in stabilization chamberbetween after bake and after thermal stressmeasurements if immediate processing notfeasible?...................................................................____17.Were specimens thermal stressed at150°C±5°C for two hours and vertically racked?..............____18.Was each specimen removed from stabilizationafter1hour+1/2hour-0hours and were allmeasurements taken within5minutes?...................____ Note:When using the above checklist,all answers should beaffirmative.The technician performing the test should sign the report,record the date and times of all actions taken,and report any deviations on the procedure.Table1Calculation ProcedureSubgroupSize If Apparent Outlieris Largest ValueIf Apparent Outlieris Smallest Valuen=3-7D=Largest Value−2nd Largest ValueLargest Value−Smallest ValueD=2nd Smallest Value−Smallest ValueLargest Value−Smallest Valuen=8-10D=Largest Value−2nd Largest ValueLargest Value−2nd Smallest ValueD=2nd Smallest Value−Smallest Value2nd Largest Value−Smallest ValueTable2Extreme Value Tablen D(Confidence Level95%)30.94140.76550.64260.56070.50780.55490.512100.433APage3of3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1Scope The following information is a supporting docu-ment in support of Method2.5.33.The test methods within this group of procedures can be falsely influenced by radio frequency interference and electromagnetic interference from lighting and equipment found in the workplace and testing area.To avoid these influences,the leakage and transient tests should be performed in a screen room.In lieu of a screen room,this test method has been provided to make a low cost shielded enclosure,which should provide adequate shielding for the performance of these test procedures.
2Applicable Documents.
ANSI/J-STD-001Requirements for Soldered Electrical and Electronic Assemblies.
3Test Specimens None required
4Equipment/Apparatus Only general guidelines are pro-vided.The enclosure can be made from readily available materials obtainable from any hardware store or lumber yard. Dimensions may be adjusted up or down to accommodate equipment to be tested.Experience has shown that best results will be obtained with a full length piano hinge across the back of the lid.The lid should be secured in the closed position with a metal,cam-type locking mechanism.The screening material from the lid should contact the material covering the sides to ensure a complete seal.
In addition to information on the enclosure,Section6also includes information on the filtered AC power module and test electrode mounting that should be incorporated into the local design to achieve best performance.
5Procedure No construction procedure is provided.Each local activity should construct the enclosure to meet their spe-cific needs based on the information in Section6.
6Notes
6.1Shielded Enclosure High measuring impedance is used so as not to load down the signal being generated by the UUT.Because a high measuring impedance is used, there’s a threat that transients emanating from sources other than the UUT might be displayed.To prevent the apparatus from picking up ambient EMI/RFI,the UUT is placed inside a ‘‘benchtop’’shielded enclosure.Filtered AC line voltage is available from within.
Some construction suggestions are given in6.2and6.3.
6.2Basic Enclosure Although Figure1illustrates wire mesh walls,sheet metal walls also work.Metals other than copper or brass may be used.If mesh is used,it should be 6.5mm or tighter weave.Whatever metallic materials are used,continuity across seams and to the lid should be ensured.
Figure2suggests a way for mounting to an AC power entry.
6.3Test Electrode The test electrode(see Figure3)is shown mounted to the sidewall of the enclosure to facilitate connection of test equipment to the UUT.Moving this struc-ture entirely into shielded enclosure and providing an access port through which test cables may be routed will slightly increase the construction cost,but will also serve to better isolate the test setup.
Figure1Enclosure Construction Suggestion
The Institute for Interconnecting and Packaging Electronic Circuits 2215Sanders Road•Northbrook,IL60062
IPC-TM-650
TEST METHODS MANUAL Number
2.5.3
3.4
Subject
Measurement of Electrical Overstress from Soldering Hand Tools-Shielded Enclosure
Date
11/98
Revision
Originating Task Group
Manual Soldering Task Group(5-22c)
Material in this Test Methods Manual was voluntarily established by Technical Committees of the IPC.This material is advisory only
and its use or adaptation is entirely voluntary.IPC disclaims all liability of any kind as to the use,application,or adaptation of this
ers are also wholly responsible for protecting themselves against all claims or liabilities for patent infringement.
Equipment referenced is for the convenience of the user and does not imply endorsement by the IPC.
Page1of3
Figure2AC Power Entry Mounting Suggestion Page2of3
Figure3Test Electrode Mounting Suggestion
Page3of3。