金属工艺学部分知识点

合集下载

金属工艺学复习要点

金属工艺学复习要点

1.液态合金本身的流动能力,称为合金的流动性2.浇注温度:浇注温度越高合金的粘度下降且因过热度高,合金在铸型中保持流动的时光越长故充型能力强,反之充型能力差。

鉴于合金的充型能力随浇注温度的提高呈直线升高,因此对薄壁铸件或流动性较差的合金可适当提高其浇注温度,以防止浇不到或冷隔缺陷,但浇注温度过高,铸件容易产生缩孔,缩松,粘沙,析出性气孔,粗晶等缺陷,故浇注温度不宜过高。

3.充型能力:砂型铸造时,提高直浇道高度,使液态合金压力加大,充型能力可改善。

压力铸造,低压铸造和离心铸造时,因充型压力提高甚多,故充型能力强。

4..合金的收缩经历:液态收缩——从浇注温度到凝结开始温度之间的收缩;凝结收缩——从开始凝结到凝结结束之间的收缩;固态收缩——从凝结结束冷却到室温之间的收缩。

5.缩孔位置:扩散在铸件的上部,或最后凝结部位容积较大的孔洞。

6.判断缩孔产生位置的主意:1.画等温线发 2.画最大内接圆发3.计算机凝结模拟法7.消除缩孔的工艺措施:安放冒口和冷铁实现顺序凝结。

8.任何铸件厚壁或心部受拉应力,薄壁或表层受压应力。

9.对于不允许发生变形的重要件,必须举行时效处理。

天然时效是将铸件置于露天场地半年以上,使其缓慢的发生变形,从而使内应力消除。

人工时效是将铸铁加热到550-650举行去应力退火。

时效处理宜在粗加工之后举行,以便将粗加工所产生的内应力一并消除。

10.高温出炉,低温浇注11.下列铸件宜选用哪类铸造合金,请阐述理由:(1)车床床身:宜选用灰铸铁HT300-350 因为车床需要承受高负载(2)摩托车气缸体:铸造铝合金ZL 因为气缸要求气密性好质量要轻(3)火车轮:铸钢车轮要求耐磨性好(4)压气机曲轴:可锻铸铁或球墨铸铁因为曲轴负荷大,受力复杂(5)气缸套:球墨铸铁或孕育铸铁因为要求高负荷高速工作耐磨(6)自来水管道弯头:黑心可锻铸铁承受冲压震动扭转负荷(7)减速器涡轮:铸造锡青铜用于高负荷和高滑速工作的耐磨件12.造型材料必备性能:1 一定的强度 2 一定得透气性 3较高的耐火性 4 一定的退让性13.提高耐火性和防黏沙:铸铁涂石墨水铅粉等铸钢涂石灰粉铬铁矿粉有色金属涂滑石粉14.解决透气性和退让性措施:给砂型加锯木屑,草木粉,煤粉。

大一金属工艺学知识点

大一金属工艺学知识点

大一金属工艺学知识点金属工艺学是研究金属材料在加工制造过程中的工艺规律和技术手段的学科。

作为机械工程的基础学科,金属工艺学的学习对于培养大一学生的工程实践能力和创新思维至关重要。

以下是大一金属工艺学的一些重要知识点:一、金属材料的分类1. 金属材料的基本概念金属材料是指以金属元素为主要成分,并具有金属性的晶体材料。

常见的金属材料包括钢、铝、铜等。

2. 金属材料的分类根据金属的化学成分和物理性质,金属材料可以分为铁基金属、有色金属和特种金属等几类。

不同类型的金属材料具有不同的特点和应用领域。

二、金属的热处理1. 金属热处理的目的和作用金属热处理是通过控制金属材料的加热、保温和冷却过程,使得金属材料的组织和性能发生变化,从而满足特定的使用要求。

常见的金属热处理过程包括退火、淬火和回火等。

2. 金属的退火处理退火是指将金属材料加热到一定温度,然后缓慢冷却至室温的过程。

退火可以改善金属的塑性、韧性和抗切削性能,同时消除金属材料中的应力和组织缺陷。

三、金属的塑性加工1. 金属的塑性变形金属材料具有良好的塑性,可以通过外力作用下的塑性变形改变材料的形状和尺寸。

常见的塑性加工方式包括锻造、拉伸、压缩和挤压等。

2. 金属的锻造加工锻造是指利用压力将金属材料压制成所需形状的加工方法。

锻造可以提高金属材料的密实性和力学性能,是制造零件的常用工艺方法之一。

四、金属的焊接1. 焊接的基本原理焊接是通过将两个金属材料加热至熔化状态,并在熔融材料中加入填充材料,使两个金属材料连接成为一个整体的加工方法。

2. 常见的金属焊接方法常见的金属焊接方法包括电弧焊、气体焊、激光焊和电阻焊等。

不同的焊接方法适用于不同的金属材料和工作需求。

五、金属的腐蚀与防护1. 金属的腐蚀现象金属在一定环境下会发生腐蚀现象,导致金属材料的性能下降甚至损坏。

常见的金属腐蚀形式包括氧化腐蚀、电化学腐蚀和化学腐蚀等。

2. 金属的防腐方法为了保护金属材料免受腐蚀的侵害,可以采用防护涂层、电镀、合金化和防腐剂等方法对金属进行防腐处理。

《金属工艺学》课程笔记

《金属工艺学》课程笔记

《金属工艺学》课程笔记第一章:绪论,金属材料主要性能一、金属材料的基本概念1. 金属金属是一种具有金属光泽、良好的导电性、导热性和可塑性的物质。

在自然界中,金属以元素形式存在或者以化合物的形式存在。

2. 合金合金是由两种或两种以上的金属,或者金属与非金属通过熔合制成的具有金属特性的物质。

合金的性能通常优于其组成的纯金属。

二、金属材料的分类1. 按化学成分分类- 纯金属:如铁、铜、铝等。

- 合金:如不锈钢、黄铜、青铜等。

2. 按用途分类- 结构材料:用于承受力的材料,如建筑用钢材、飞机用铝合金。

- 功能材料:具有特殊物理、化学或生物功能的材料,如超导材料、形状记忆合金。

3. 按冶金工艺分类- 铸造合金:适用于铸造工艺的合金,如铸铁、铸钢。

- 变形合金:适用于压力加工的合金,如冷轧钢板、热轧型钢。

三、金属材料的主要性能1. 物理性能- 密度:不同金属的密度差异较大,如铁的密度约为7.87 g/cm³,铝的密度约为2.70 g/cm³。

- 熔点:金属的熔点范围很广,如钨的熔点高达3422°C,而汞的熔点为-38.83°C。

- 导电性:金属的导电性通常很好,银的导电性最高,铜和铝也具有良好的导电性。

- 导热性:金属的导热性与其导电性有关,银的导热性最好,其次是铜和铝。

2. 化学性能- 耐腐蚀性:金属在特定环境下的抗腐蚀能力,如不锈钢在空气中具有良好的耐腐蚀性。

- 抗氧化性:金属在高温下抵抗氧化的能力,如镍基合金在高温下具有良好的抗氧化性。

3. 力学性能- 强度:金属抵抗外力作用的能力,分为抗拉强度、抗压强度、抗弯强度等。

- 塑性:金属在受力时产生永久变形而不破裂的能力,如金、银具有良好的塑性。

- 韧性:金属在受到冲击载荷时吸收能量并产生塑性变形的能力,如低碳钢具有较高的韧性。

- 硬度:金属抵抗局部塑性变形的能力,常用的硬度指标有布氏硬度、洛氏硬度等。

四、影响金属材料性能的因素1. 化学成分:不同元素的加入会改变金属的晶格结构,从而影响其性能。

金属工艺学复习资料

金属工艺学复习资料

一、填空:1.合金的收缩经历了(液态收缩)、(凝结收缩)、(固态收缩)三个阶段。

2.常用的热处理主意有(退火)、(正火)、(淬火)、(回火)。

3.铸件的表面缺陷主要有(粘砂)、(夹砂)、(冷隔)三种。

4.按照石墨的形态,铸铁分为(灰铸铁)、(可锻铸铁)、(球墨铸铁)、(蠕墨铸铁)四种。

5.铸造时,铸件的工艺参数有(机械加工余量)、(起模斜度)、(收缩率)、(型芯头尺寸)。

6.金属压力加工的基本生产方式有(轧制)、(拉拔)、(挤压)、(锻造)、(板料冲压)。

7.焊接电弧由(阴极区)、(弧柱)和(阳极区)三部分组成。

8.焊接热影响区可分为(熔合区)、(过热区)、(正火区)、(部分相变区)。

9.切削运动包括(主运动)和(进给运动)。

10.锻造的主意有(砂型铸造)、(熔模铸造)和(金属型铸造)。

11.车刀的主要角度有(主偏角)、(副偏角)、(前角)、(后角)、(刃倾角)。

12.碳素合金的基本相有(铁素体)、(奥氏体)、(渗碳体)。

14.铸件的凝结方式有(逐层凝结)、(糊状凝结)、(中间凝结)三种。

15.铸件缺陷中的孔眼类缺陷是(气孔)、(缩孔)、(缩松)、(夹渣)、(砂眼)、(铁豆)。

17.冲压生产的基本工序有(分离工序)和(变形工序)两大类。

20.切屑的种类有(带状切屑)、(节状切屑)、(崩碎切屑)。

21.车刀的三面两刃是指(前刀面)、(主后刀面)、(副后刀面)、(主切削刃)、(副切削刃)。

二、名词解释:1.充型能力:液态合金弥漫铸型型腔,获得形状残破、轮廓清晰铸件的能力,成为液态合金的充型能力。

2.加工硬化:随着变形程度增大,金属的强度和硬度升高而塑性下降的现象称为加工硬化。

3.金属的可锻性:衡量材料在经历压力加工时获得优质制品难易程度的工艺性能,称为金属的可锻性。

4.焊接:利用加热或加压等手段,借助金属原子的结合与蔓延作用,使分离的金属材料结实地衔接起来的一种工艺主意。

5.同素异晶改变:随着温度的改变,固态金属晶格也随之改变的现象,称为同素异晶改变。

《金属工艺学》课程笔记 (2)

《金属工艺学》课程笔记 (2)

《金属工艺学》课程笔记第一章绪论一、金属工艺学概述1. 定义与重要性金属工艺学是研究金属材料的制备、加工、性能、组织与应用的科学。

它对于工程技术的进步和工业发展至关重要,因为金属材料在建筑、机械、交通、电子、航空航天等几乎所有工业领域都有广泛应用。

2. 研究内容(1)金属材料的制备:包括金属的提取、精炼、合金化等过程,以及铸造、粉末冶金等成型技术。

(2)金属材料的加工:涉及金属的冷加工(如轧制、拉伸、切削)、热加工(如锻造、热处理)、特种加工(如激光加工、电化学加工)等。

(3)金属材料的性能:研究金属的物理性能(如导电性、热导性)、化学性能(如耐腐蚀性)、力学性能(如强度、韧性)等。

(4)金属材料的组织与结构:分析金属的晶体结构、相变、微观缺陷、界面行为等。

(5)金属材料的应用:研究金属材料在不同环境下的适用性、可靠性及寿命评估。

3. 学科交叉金属工艺学是一门多学科交叉的领域,它与物理学、化学、材料学、力学、热力学、电化学等学科有着紧密的联系。

二、金属工艺学发展简史1. 古代金属工艺(1)铜器时代:人类最早使用的金属是铜,掌握了简单的铸造技术。

(2)青铜器时代:铜与锡的合金,青铜,使得工具和武器的性能得到提升。

(3)铁器时代:铁的发现和使用,推动了农业和手工业的发展。

2. 中世纪至工业革命(1)炼铁技术的发展:如鼓风炉、熔铁炉的发明,提高了铁的产量。

(2)炼钢技术的进步:如贝塞麦转炉、西门子-马丁炉的出现,实现了钢铁的大规模生产。

3. 近现代金属工艺(1)20世纪初:金属物理和金属学的建立,为金属工艺学提供了理论基础。

(2)第二次世界大战后:金属材料的快速发展,如钛合金、高温合金的出现。

4. 当代金属工艺(1)新材料的开发:如形状记忆合金、超导材料、金属基复合材料等。

(2)新技术的应用:如计算机模拟、3D打印、纳米技术等。

三、金属工艺学在我国的应用与发展1. 古代金属工艺的辉煌(1)商周时期的青铜器:技术水平高超,工艺精美。

金属工艺学方面的知识知识

金属工艺学方面的知识知识

金属工艺学金属工艺学是一门研究有关制造金属机件的工艺方法的综合性技术学科.主要内容:1 常用金属材料性能2 各种工艺方法本身的规律性及应用.3 金属机件的加工工艺过程、结构工艺性。

热加工:金属材料、铸造、压力加工、焊接目的、任务:使学生了解常用金属材料的性质及其加工工艺的基础知识,为学习其它相关课程及以后从事机械设计和制造方面的工作奠定必要的金属工艺学的基础。

[以综合为基础,通过综合形成能力]第一篇金属材料第一章金属材料的主要性能两大类:1 使用性能:机械零件在正常工作情况下应具备的性能。

包括:机械性能、物理、化学性能2 工艺性能:铸造性能、锻造性能、焊接性能、热处理性能、切削性能等。

第一节金属材料的机械性能指力学性能---受外力作用反映出来的性能。

一弹性和塑性:1弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。

力和变形同时存在、同时消失。

如弹簧:弹簧靠弹性工作。

2 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。

(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。

塑性变形:在外力消失后留下的这部分不可恢复的变形。

3 拉伸图金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。

以低碳钢为例ζbζkζsζeε(Δl)将金属材料制成标准式样。

在材料试验机上对试件轴向施加静压力P,为消除试件尺寸对材料性能的影响,分别以应力ζ(即单位面积上的拉力4P/πd2)和应变(单位长度上的伸长量Δl/l0)来代替P和Δl,得到应力——应变图1)弹性阶段oeζe——弹性极限2)屈服阶段:过e点至水平段右端ζs——塑性极限,s——屈服点过s点水平段——说明载荷不增加,式样仍继续伸长。

(P一定,ζ=P/F一定,但真实应力P/F1↑ 因为变形,F1↓)发生永久变形3)强化阶段:水平线右断至b点P↑变形↑ζb——强度极限,材料能承受的最大载荷时的应力。

金属工艺学知识点总结

第一篇金属材料的基本知识第一章金属材料的重要性能金属材料的力学性能又称机械性能, 是金属材料在力的作用所表现出来的性能。

零件的受力情况有静载荷, 动载荷和交变载荷之分。

用于衡量在静载荷作用下的力学性能指标有强度, 塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。

金属材料的强度和塑性是通过拉伸实验测定的。

P6低碳钢的拉伸曲线图1,强度强度是金属材料在力的作用下, 抵抗塑性变形和断裂的能力。

强度有多种指标, 工程上以屈服点和强度最为常用。

屈服点: δs是拉伸产生屈服时的应力。

产生屈服时的应力=屈服时所承受的最大载荷/原始截面积对于没有明显屈服现象的金属材料, 工程上规定以席位产生0.2%变形时的应力, 作为该材料的屈服点。

抗拉强度: δb是指金属材料在拉断前所能承受的最大应力。

拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积2,塑性塑性是金属材料在力的作用下, 产生不可逆永久变形的能力。

常用的塑性指标是伸长率和断面收缩率。

伸长率: δ试样拉断后, 其标距的伸长与原始标距的比例称为伸长率。

伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100%伸长率的数值与试样尺寸有关, 因而实验时应对所选定的试样尺寸作出规定, 以便进行比较。

同一种材料的δ5 比δ10要大一些。

断面收缩率:试样拉断后, 缩颈处截面积的最大缩减量与原始横截面积的比例称为断面收缩率, 以ψ表达。

收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100%3,伸长率和断面收缩率的数值愈大, 表达材料的塑性愈好。

4,硬度金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。

金属材料的硬度是在硬度计上测出的。

常用的有布氏硬度法和洛氏硬度法。

1,布氏硬度(HB)2,是以直径为D的淬火钢球HBS或硬质合金球HBW为压头, 在载荷的静压力下, 将压头压入被测材料的表面, 停留若干秒后卸去载荷, 然后采用带刻度的专用放大镜测出压痕直径d, 并依据d的数值从专门的表格中查出相应的HB值。

金属工艺学

金属工艺学绪论金属工艺学是一门传授有关制造金属零件工艺方法的综合性技术基础课,主要讲述各种工艺方法本身的规律性及其在机械制造中的应用和相互联系,金属零件的加工工艺过程和机构工艺性。

第一篇 金属材料的基本知识第一章 金属材料的主要性能第一节 金属材料的力学性能金属材料的力学性能是金属材料在力的作用下所表现出来的性能。

一、强度与塑性1.强度金属材料的抗变形能力(永久变形)和断裂能力称之为强度。

抵抗能力越大,则强度越高。

2.塑性塑性是指金属材料受力后在断裂之前产生不可逆永久变形的能力。

断面收缩率是指试样拉断后,缩颈处面积变化量与原始横截面积比值的百分率。

⨯-=0l s s ψ100% 二、硬度 硬度是指金属材料抵抗其他更硬物体压入其表面的能力。

(1)布氏硬度 102.O SF H B W ⨯=(2)洛氏硬度(3)维氏硬度三、韧性冲击韧性是指金属材料在断裂前吸收变形能量的能力。

韧性主要反映了金属抵抗冲击力而不断裂的能力。

韧性好的金属抗冲击的能力强。

S A k k =α 四、疲劳强度 金属材料在无数次交变载荷的作用下而不发生断裂的最大应力称为疲劳强度,用1-σ表示。

提高疲劳强度的措施:通过改善零件的结构形状,避免应力集中,改善表面粗糙度,进行表面热处理和表面强化处理等可以提高材料的疲劳强度。

第二节 金属材料的物理、化学及工艺性能一、物理性能金属材料的物理性能主要有密度、熔点、热胀冷缩、导热性、导电性和磁性等。

二、化学性能金属材料的化学性能主要是指在常温或高温时,抵抗各种介质侵蚀的能力。

三、工艺性能工艺性能是指是否易于进行冷、热加工的性能。

第二章 铁碳合金第一节 纯铁的晶体结构及其同素异形体转变一、纯铁晶体结构及同素异晶转变晶体:原子在空间呈规律性排列。

结晶:金属的结晶就是金属液态转变为晶体的结构。

过冷度:理论结晶温度与实际结晶温度之差,称为过冷度。

晶核:液态中先出现一些极小晶体,称为晶核。

晶粒:每个晶核长成的晶体称为晶粒。

金属工艺学知识点总结资料讲解

金属工艺学知识点总结资料讲解1.金属材料的分类和特性:-金属材料的分类:金属材料分为黑色金属和有色金属两大类。

黑色金属包括铁、钢和铸铁等,有色金属包括铜、铝、镁、锌、铅等。

-金属材料的特性:金属材料具有导电性、导热性、延展性、可塑性、机械性能好等特点,适用于各种加工工艺。

2.金属加工方法:-切削加工:包括车削、铣削、钻削、刨削等,通过切削废料的去除改变工件形状和尺寸。

-成形加工:包括锻造、拉伸、锤压、挤压等,通过对金属材料的塑性变形改变工件形状。

-组合加工:包括焊接、铆接、螺纹连接等,通过将多个部件组合在一起形成复杂的工件。

-热处理加工:包括淬火、回火、退火等,通过控制材料的结构和性能来改变其力学性能和使用性能。

3.金属成形工艺:-钣金工艺:包括剪切、冲裁、弯曲等,用于制造薄板金属构件。

-铸造工艺:包括砂铸、压铸、精密铸造等,通过将熔融金属注入模具中,得到所需形状的铸件。

-高温成形工艺:包括真空热压、粉末冶金等,通过在高温条件下对金属进行成形,得到复杂形状的工件。

-冷镦工艺:通过在室温下使用特殊的冷镦机械设备,将金属材料进行快速塑性变形,得到各种螺纹、螺栓等小尺寸工件。

4.金属热处理工艺:-淬火:通过将加热至临界温度的金属材料迅速冷却,使其得到高硬度和高强度。

-回火:在淬火后,将金属加热至适当温度,然后冷却,以减轻淬火后的脆性和应力。

-退火:将金属材料加热至一定温度,保持一段时间后缓慢冷却,以改善其组织和性能。

-焊后热处理:焊接后的金属材料会产生应力和变形,通过热处理可以消除这些问题,提高焊接接头的强度和耐腐蚀性。

5.金属表面处理工艺:-镀层:通过在金属表面镀上一层金属或非金属涂层,增加其耐腐蚀性、装饰性和机械性能。

-涂装:通过在金属表面涂上油漆、涂料等防护层,保护金属不受氧化、腐蚀等损害。

-喷砂:通过在金属表面喷射高压喷砂颗粒,清除污物和氧化层,改善表面质量和光泽度。

-抛光:通过机械或化学方法对金属表面进行抛光,使其光洁度达到要求,提高外观质量。

金属工艺学知识点(3篇)

第1篇一、金属工艺学概述金属工艺学是一门研究金属材料的加工、成形、连接和表面处理等方面的学科。

它广泛应用于机械制造、航空航天、交通运输、建筑、电子等领域。

以下是金属工艺学的一些基本知识点。

二、金属材料的分类1. 金属材料的分类方法金属材料的分类方法主要有以下几种:(1)按化学成分分类:可分为纯金属、合金和特种金属材料。

(2)按组织结构分类:可分为固溶体、共晶体、化合物和陶瓷等。

(3)按性能分类:可分为结构金属材料、功能金属材料和复合材料。

2. 常见金属材料(1)纯金属:如铜、铝、铁、镍等。

(2)合金:如不锈钢、铝合金、铜合金等。

(3)特种金属材料:如钛合金、镍基高温合金、钴基高温合金等。

三、金属材料的加工方法1. 金属切削加工金属切削加工是指利用切削工具在金属表面上进行切削,使金属表面产生一定的形状和尺寸的加工方法。

常见的金属切削加工方法有车削、铣削、刨削、磨削等。

2. 金属塑性加工金属塑性加工是指在外力作用下,使金属材料产生塑性变形,从而获得所需形状和尺寸的加工方法。

常见的金属塑性加工方法有锻造、轧制、挤压、拉拔等。

3. 金属粉末冶金金属粉末冶金是一种将金属粉末进行成型、烧结和热处理等工艺,制成具有一定性能和形状的金属材料或零件的加工方法。

四、金属材料的连接方法1. 焊接焊接是一种将金属材料加热到熔化状态,通过冷却和结晶形成连接的方法。

常见的焊接方法有熔化极气体保护焊、气体保护焊、等离子弧焊、电弧焊等。

2. 铆接铆接是一种将两个或多个金属部件通过铆钉连接在一起的方法。

铆接具有连接强度高、结构稳定等优点。

3. 螺纹连接螺纹连接是一种利用螺纹连接件将两个或多个金属部件连接在一起的方法。

常见的螺纹连接有普通螺纹连接、自锁螺纹连接等。

五、金属材料的表面处理1. 表面热处理表面热处理是一种通过加热和冷却使金属表面层产生一定的组织结构,从而提高表面性能的方法。

常见的表面热处理有淬火、回火、渗碳、氮化等。

2. 表面涂层表面涂层是一种在金属表面涂覆一层保护膜或装饰层的方法,以提高金属的耐腐蚀性、耐磨性、导电性等性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一篇金属材料的基本知识P11:(1):应力:试样单位横截面上的拉力,。

应变:试样单位长度上的伸长量,。

(5)::抗拉强度,指金属材料在拉断之前所能承受的最大应力。

:屈服点,指拉伸试样产生屈服现象时的应力。

:屈服点,对没有明显屈服现象的金属材料,工程上规定以试样产生0.2%塑性变形时的应力作为该材料的屈服点,用σr0.2表示。

:疲劳强度,金属材料在无数次循环载荷作用下不致引起断裂的最大应力,当应力按正弦曲线对称循环时,疲劳强度以符号σ-1表示。

:伸长率,衡量塑性的指标之一:冲击韧性,材料抵抗冲击载荷作用下断裂的能力,其值大小是试样缺口处单位截面积上所吸收的冲击功。

HRC:洛氏硬度,以顶角为120度金刚石圆锥体为压头,在1500N载荷下硬度计的硬度标尺。

HBS:布氏硬度,钢球压头测出的硬度值。

HBW:布氏硬度,硬质合金球压头测出的硬度值。

第二章铁碳合金P232.一般来说,同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑性和韧性也愈好。

3.随着温度的改变,固态金属晶格也随之改变的现象,同素异晶转变;室温时,纯铁的晶格是体心立方晶格。

1100摄氏度时是面心立方晶格。

5.缓慢冷却条件下,45钢的结晶过程如下:1点以上:L; 1-2点:L+A; 2-3点:A; 3-4点:A+F; 室温时:P+FT10钢的结晶过程如下:1点以上:L; 1-2点:L+A; 2-3点:A; 3-4点:A+Fe CII 室温时:P+Fe3 CII第三章钢的热处理P292.答:在此温度范围内加热,淬火后可获得细小的马氏体组织。

这样的组织硬度高、耐磨性好,并且脆性相对较小。

如果淬火加热的温度不足,因未能完全形成奥氏体,致使淬火后的组织除马氏体外,还残存有少量的铁素体,使钢的硬度不足。

如果淬火温度过高,因奥氏体晶粒长大,淬火后的马氏体晶粒也粗大,会增加钢的脆性,致使工件产生裂纹、变形倾向。

4.答:钢在淬火后回火是为了消除淬火内应力,以降低钢的脆性,防止产生裂纹,同时使钢获得所需的力学性能.①.低温回火的目的是降低淬火钢的内应力和脆性,但基本保持淬火所获得的高硬度(56~64HRC)和高的耐磨性。

淬火后的低温回火主要用于工具钢的热处理。

②.中温回火的目的是使钢获得高弹性,保持较高的硬度(35~50HRC)和一定的韧性。

中温回火主要用于各种弹簧、发条、锻摸等。

③.高温回火的热处理合称为调质处理,调质处理广泛用于承受疲劳载荷的中碳钢重要件,其硬度为20~35HRC。

调质处理的钢可获得强度及韧性都很好的综合力学性能。

5.汽车发动机缸盖螺钉采用高温回火,因为高温回火广泛用于承受载荷的中碳钢重要零件,并可获得较好的综合力学性能,故使用高温回火来处理.第二篇铸造(1)砂型铸造的关键技术包括:1.造型方法的选择。

2.浇注位置和分型面的选择。

3. 工艺参数的选择。

(2)铸件浇注位置选择应遵循以下原则:1.铸件的重要加工面应朝下。

2.铸件的大平面应朝下。

3.为防止铸件薄壁部分产生浇不足或冷隔缺陷,应将面积较大的薄壁部分置于铸型下部或使其处于垂直或倾斜位置。

4.对于容易产生缩孔的铸件,应使厚的部分放在铸型的上部或侧面,以便在铸件厚壁处直接安置冒口,使之实现自下而上的定向凝固。

铸型分型面的选择原则:应使造型工艺简化。

应尽量使铸件全部或大部置于同一砂箱,以保证铸件的精度。

为便于造型,下芯,合箱和检验铸件的壁厚,应尽量使型腔及主要型芯位于下箱。

但型腔也不宜过深,并尽量避免使用吊芯和大的吊砂。

(3)型芯通常用于形成铸件的内腔,有时还可用它来简化铸件的外形,以制出妨碍起模的凸台,凹槽等。

芯头起定位,支撑,排气的作用。

(4) 特点应用金属型铸造可“一型多铸”,便于实现机械化和自动化,可大大提高生产率,精度,表面质量力学性能也显著提高,但制造成本高,生产周期长,工艺要求严格,铸件的形状和尺寸还有一定的限制。

主要用于铜,铝合金铸件的大批量生产。

如:铝活塞,气缸盖等。

熔模铸造铸件精密,型腔表面极为光滑,铸件的精度和表面质量均优,能用于生产高熔点的黑色金属铸件生产批量不受限制,可用于单件,成批,大量生产,但原材料价格昂贵,工艺过程复杂生产成本高,铸件成本高。

最适合于高熔点合金精密铸件的成批生产,主要用于形状复杂难以切削加工的小零件。

压力铸造精度及表面质量较其他铸造方法均高,可压铸形状复杂的薄壁件,或直接铸出小孔,螺纹,齿轮等铸件的强度和硬度都较高,生产率较其它铸造方法均高,但设备投资大,制造压型费用高,周期长。

型腔内气体很难排除,后壁处的收缩很难补缩,致使铸件内部常有气孔和缩松。

热处理加热时孔内气体膨胀将导致铸件表面起泡,所以压铸件不能用热处理方法来提高性能。

广泛应用在汽车,拖拉机,航空,兵仪,仪表,电器,计算机,轻纺机械,日用品等制造业。

如箱体,汽缸体等。

实型铸造铸造没有分型面,省去起模和修型工序,便于制出凸台,法兰,肋条,吊钩,等在普通砂铸造中需要活块的结构,从而可简化造型工艺,降低劳动强度。

加大了铸件结构的自由度,简化了铸件结构和工设计。

铸件尺寸精度优于普通砂型铸造,铸件无飞翅,减轻了铸件清理工作量。

适用范围较广,几乎不受铸造合金,铸件大小及生产批量限制,尤其适用于形状复杂件。

(5)下列零件在大批量生产是最宜采用的方法:1. 汽轮机叶片:熔模铸造2. 铝活塞:金属型铸造3. 柴油机缸套:离心铸造4. 车床床身:砂型铸造锻造部分简述自由锻造的成型特点及其基本工序。

答:自由锻造的成型特点是:生产所用工具简单,具有较大的通用性,应用范围较为广泛,是生产大型和特大型锻件的唯一成型方法,锻件精度低。

其基本工序为:镦粗拔长冲孔弯曲扭转错移切割。

简述模膛锻造的成型特点及其基本工序。

答:模膛锻造的成型特点是:所生产的锻件尺寸精确,加工余量较小,结构可以较复杂,而且生产率高。

其基本工序为:长轴类:制坯—预锻—终锻短轴类:镦粗—预锻—终锻106图3-26是齿轮坯模锻件图,就图说明模膛锻造的工艺设计内容及分模面的选择原则。

答:模膛锻造的工艺设计内容是:(1)绘制锻件图(主要内容有确定机械加工余量、敷料、公差;分模面的选择;设计模锻斜度;设计模锻圆角;确定冲孔连皮)(2)坯料重量和尺寸的确定(3)锻造工序(工步)的确定分模面的选择原则是:(1)应保证模锻件能从模膛中取出来,一般应选在模锻件的最大截面处,如图中的a—a面就不符合此要求(2)按选定的分模面制成锻模后,应使上下两模沿分模面的模膛轮廓一致,如图中的c—c面就不符合此原则(3)分模面应选在能使模膛深度最浅的位置上,如图中的b—b面就不适合作分模面(4)选定的分模面应使零件上所加的敷料最少,如图中的b—b面就不适宜作分模面(5)分模面最好是一个平面。

4.简述冲压成型的基本工序。

当对坯料进行圆筒形拉深时,需要合理控制材料的变形程度。

试问:何谓拉深系数?其数值大小应如何控制?答:冲压成型的基本工序有分离工序和变形工序两大类。

拉深系数是指拉深件直径与坯料直径的比值,其数值大小一般情况下不应小于0.5—0.8(坯料塑性差取上限,坯料塑性好取下限)。

需多次拉深时,后一道的拉深系数比前一道的拉深系数大,在一两次拉深后,应安排工序间的退火处理第四篇焊接部分P1661.焊接电弧是怎样一种物理现象?电弧各区的温度有多高?温度高对焊接质量会带来什么后果?答:焊接电弧是在电极与工件之间的气体介质中长时间的放电现象,即在局部气体介质中有大量电子流通过的导电现象。

阳极区温度约为2600K中心区约为6000~8000K。

2.何谓焊接热影响区?各区段对焊接头性能有何影响?答:焊接热影响区是只焊缝两侧金属因焊接热作用而发生组织何性能变化的区域。

1)熔合区焊缝与母材交界区,局部熔化组织:铸造组织+受热长大的粗晶。

晶粒大小不均,化学成分不均性能;接头中性能最差。

2)过热区:温度远高于相变温度,晶粒产生急剧长大。

过热组织。

性能:塑性韧性下降。

接头中性能较差3)正火区:组织:发生重结晶,晶粒细化,正火组织性能:其力学性能优于母材4)部分相变区:组织:部分相变(F、P)晶粒不均(部分F和P重结晶成为较细晶粒,未转变的F长大)力学性能比正火区稍差。

3.产生焊接应力与变形的原因时什么?如何减小或消除焊接应力?如何预防和消除焊接变形?答:金属材料具有热胀冷缩的基本属性。

由于焊件在焊接过程中是局部受热且各部分材料冷却速度不同,因而导致焊件各部分材料产生不同程度的变形,引起了应力。

焊接时局部加热是焊件产生应力与变形的根本原因。

减小焊接应力的工艺措:(1)选择合理的焊接顺序;设计时,焊缝不要密集交叉,截面和长度也应尽可能小。

(2)预热法即在焊前将工件预热到350~400℃,然后再进行焊接。

预热可使焊接金属和周围金属的温差减小,焊后又比较均匀地同时缓慢冷却收缩,因此,可显著减小焊接应力,也可同时减小焊接变形。

(3)焊后退火处理这也是最常用的、最有效的消除焊接应力的一种方法。

整体退火处理一般可消除80%~90%的焊接应力。

6.防止与减小焊接变形的工艺措施(1)反变形法用试验或计算方法,预先确定焊后可能发生变形的大小和方向,在焊前将工件安置在与变形相反的位置上,以抵消焊后所发生的变形。

(2)加余量法根据经验,在焊件下料时加一定余量,通常为工件尺寸的0.1%~0.2%,以补充焊后的收缩,特别是横向收缩。

(3)刚性夹持法焊前将焊件固定夹紧,焊后变形即可大大缩小。

但刚性夹持法只适用于塑性较好的低碳钢结构,对淬硬性较大的钢材及铸铁不能使用,以免焊后产生裂纹。

(4)选择合理的焊接顺序如果在构件的对称两侧都有焊缝,应设法使两侧焊缝的收缩互相抵消或减弱。

(5)机械矫正或火焰矫正来矫正焊接变形下册切削加工P304. ⑴较高的硬度。

刀具材料的硬度必须高于工件材料的硬度,常温硬度一般在60HRC以上。

⑵足够的强度和韧度,以承受切削力、冲击、和振动。

⑶较好的耐磨性,以抵抗切削过程中的磨损,维持一定的切削时间。

⑷较高的耐热性,以便在高温下仍能保持较高硬度,又称为红硬性或热硬性。

⑸较好的工艺性,以便于制造各种刀具。

工艺性包括锻造、轧制、焊接、切削加工、磨削加工和热处理性能等。

⑾答:刃磨后的刀具自开始切削直到磨损量达到磨钝标准所经历的实际切削时间,称为刀具耐用度,以表示。

粗加工时,多以切削时间(min)表示刀具耐用度。

精加工时,常以走刀次数或加工零件个数表示刀具的耐用度。

相关文档
最新文档