九年级总复习解直角三角形的应用专项训练
2023年中考九年级数学高频考点二轮专题训练--解直角三角形的应用

2023年中考九年级数学高频考点二轮专题训练--解直角三角形的应用一、综合题1.如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∠BP交半圆P于另一点D,BE∠AO交射线PD于点E,EF∠AO于点F,连结BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE= 512时,直接写出∠CDP与∠BDP面积比.2.已知,如图1图2,在等腰三角形ABC中,AB=AC.平面内任意一点D,连接AD,点E是AD 的中点.∠ABC的角平分线AP交BC于点P,点F是射线AP上的一个动点,且AF﹥AP.若G,H是射线BC上的两个动点(点G在点H的左侧),GH=AF,点M始终是GH的中点,连接G,F,H,D,四边形GFHD是平行四边形.(1)【感知探究一】如图1,当点D在线段AP上时,ME与GM的位置关系为,ME与GM的数量关系为(2)【感知探究二】如图2,当点D不在射线AP上时,连接ME,试问ME与GM的数量关系和位置关系怎样?请说明理由;(3)【应用升华】如图3,在∠ABP中,BC∠AP于点M,DC∠BC于点C,MC=AP,PM=DC,连接AD,点E是AD中点,连接ME,若ME=4,AB=2√6.∠ABC=60°,求DC的长.3.平面内,如图,在∠ABCD中,AB=10,AD=15,tanA= 43,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在∠ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)4.在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是∠ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(20 √3﹣20)cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2014秒,交点又在什么位置?请说明理由.5.如图,在四边形ABCD中,∠ABC=90°,DE∠AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.6.如图,ΔABC是⊙O的内接三角形,点D在BC⌢上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2−AC2=AB⋅AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB⋅AC的值最大?7.如图,在矩形ABCD中,E为AD上的点,连接EC,AB=m,BC=n,m>n 2.(1)若m=3,n=4,连接AC,CE平分∠ACD,求DE的长;(2)若E为AD中点,过点E作EF∠EC交AB于F点,连接FC,①补全图形并证明:EF平分∠AFC;②当∠AEF与∠BFC相似时,求mn的值.8.在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB 可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角,即望向屏幕中心P(AP=BP)的视线EP与水平线EA的夹角∠AEP=18°时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为30cm.(1)求眼睛E与显示屏顶端A的水平距离AE.(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,√2≈1.41,√3≈1.73)9.如图1,直线l:y=−34x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<165),以点A为圆心,AC长为半径作∠A交x轴于另一点D,交线段AB于点E,连结OE并延长交∠A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:∠OCE∠∠OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.10.如图是广场健身的三联漫步机,当然踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,漫步机踏板静止时,其侧面示意图可以抽象为如图,其中,AB=AC=120cm,BC=80cm,AE=90cm.(1)求点A到地面BC的高度;(2)如图,当踏板从点E旋转到E′处时,测得∠E′AE=37°,求此时点E′离地面BC的高度(结果精确到1cm).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41)11.如图1,在Rt∠ABC中,∠C=90°,边AC=6,BC=8,点M、N分别在线段AC、BC上,将∠ABC沿直线MN翻折,点C的对应点是点C′(1)当M、N分别是边AC、BC的中点时,求出CC′的长度;(2)若CN=2,点C′到线段AB的最短距离是;(3)如图2,当点C’在落在边AB上时,①点C′运动的路程长度是;②当AM=3611时,求出CN的长度.12.实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A′处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E 的直线折叠,点C恰好落在AD上的点C′处,点B落在点B′处,得到折痕EF,B′C′交AB 于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA′D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC′=4cm,求DN:EN的值.13.已知:矩形ABCD内接于∠O,连接BD,点E在∠O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,∠O上有一点N,连接CN分别交BD和AD于√10点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.14.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C 点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度15.在等腰直角∠ABC中,∠BAC=90°,点D、E分别在AB、AC上,且AD=AE,连接DC,点M、N分别为DE、BC的中点.(1)如图①,若点P为DC的中点,连接MN、PM、PN.①求证:PM=PN;②求证:∠ADE∠∠PNM;(2)如图②,若点D在BA的延长线上,点P为EC的中点,求MNMP的值.16.如图,梯形ABCD中,AD∠BC,AE∠BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与∠O相切;(2)若BF=24,OE=5,求tan∠ABC的值.答案解析部分1.【答案】(1)解:如图1,∵PA=PC=PD,∴∠PDC=∠PCD,∵CD//BP,∴∠BPA=∠PCD、∠BPD=∠PDC,∴∠BPA=∠BPD,∵BP=BP,∴△BAP∠ △BDP,∴∠BDP=∠BAP=90∘(2)解:∵∠BAO=90∘,BE//AO,∴∠ABE=∠BAO=90∘,∵EF⊥AO,∴∠EFA=90∘,∴四边形ABEF是矩形,设BE=AF=x,则PF=x−4,∵∠BDP=90∘,∴∠BDE=90∘=∠PFE,∵BE//AO,∴∠BED=∠EPF,∵△BAP∠ △BDP,∴BD=BA=EF=8,∴△BDE∠ △EFP,∴PE=BE=x,在Rt△PFE中,PF2+FE2=PE2,即(x−4)2+82=x2,解得: x =10 , ∴BE 的长为10(3)解: ① 如图1,当点C 在AF 的左侧时, ∵AF =3CF ,则 AC =2CF , ∴CF =AP =PC =m ,∴PF =2m , PE =BE =AF =3m ,在 Rt △PEF 中,由 PF 2+EF 2=PE 2 可得 (2m)2+82=(3m)2 ,解得: m =8√55( 负值舍去 ) ;如图2,当点C 在AF 的右侧时,∵AF =3CF , ∴AC =4CF ,∴CF =12AP =12PC =12m ,∴PF =m −12m =12m , PE =BE =AF =m +12m =32m ,在 Rt △PEF 中,由 PF 2+EF 2=PE 2 可得 (12m)2+82=(32m)2,解得: m =4√2( 负值舍去 ) ; 综上,m 的值为 8√55或 4√2 ;② 如图3,过点D 作 DG ⊥AC 于点G ,延长GD 交BE 于点H ,∵△BAP ∠ △BDP ,∴S△BDP=S△BAP=12AP⋅AB,又∵S△CDP=12PC⋅DG,且AP=PC,∴S△CDPS△BDP=12PC⋅DG12AP⋅AB=DGAB,当点D在矩形ABEF的内部时,由tan∠DBE=DHBH=512可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH−DH=8x,则S△CDPS△BDP=DGAB=8x13x=813;如图4,当点D在矩形ABEF的外部时,由tan∠DBE=DHBH=512可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH+DH=18x,则S△CDPS△BDP=DGAB=18x13x=1813,综上,△CDP与△BDP面积比为813或1813.2.【答案】(1)ME∠GM;ME=GM(2)解:EM与GM相等且互相垂直,理由如下,如图2,连接DF,在平行四边形GFHD中,∵GM=MH , ∴M 是DF 的中点, 在∠DAF 中, ∵AE=ED∴EM=12AF ,EM ∥AF ,∵AF=GH , ∴EM=12GH=GM ,∵AB=AC ,AP 平分∠BAC , ∴AF∠BC , ∴EM∠GM ,∴ME∠GM ;ME=GM ;(3)解:连接PD 交MC 于点O ,连接EO ,MD ,∵BC ∠AP ,AB=2√6, ∠ABC=60°, ∴2√6=sin60°=√32, ∴AM=3√2,∵PM ∠ BC ,DC ∠BC , ∴PM// DC .∵ PM=DC ,∴四边形MPCD 是平行四边形, ∴PO=DO ,MO=12MC ,∵AE=ED ,∴ EO ∥AP ,EO =12AP ,∴EO∠MO .∵AP=MC ,EO =12MC=MO ,∴∠EOM 为等腰直角三角形, ∴∠EMO=45°,.在等腰Rt∠MOE 中,ME=4,∴EOME =sin45°,∴ EO=4×sin 45°=2√2, ∴AP=2EO=4√2,∴DC=PM=AP-AM=4√2−3√2=√2.3.【答案】(1)解:如图1中,①当点Q 在平行四边形ABCD 内时,∠AP′B=180°﹣∠Q′P′B ﹣∠Q′P′D=180°﹣90°﹣10°=80°, ②当点Q 在平行四边形ABCD 外时,∠APB=180°﹣(∠QPB ﹣∠QPD )=180°﹣(90°﹣10°)=100°,综上所述,当∠DPQ=10°时,∠APB 的值为80°或100° (2)解:如图2中,连接BQ ,作PE∠AB 于E .∵tan∠ABP:tanA=3:2,tanA= 4 3,∴tan∠ABP=2,在Rt∠APE中,tanA= PEAE=43,设PE=4k,则AE=3k,在Rt∠PBE中,tan∠ABP= PEEB=2,∴EB=2k,∴AB=5k=10,∴k=2,∴PE=8,EB=4,∴PB= √82+42=4 √5,∵∠BPQ是等腰直角三角形,∴BQ= √2PB=4 √10(3)解:①如图3中,当点Q落在直线BC上时,作BE∠AD于E,PF∠BC于F.则四边形BEPF 是矩形.在Rt∠AEB中,∵tanA= BEAE=43,∵AB=10,∴BE=8,AE=6,∴PF=BE=8,∵∠BPQ 是等腰直角三角形,PF∠BQ , ∴PF=BF=FQ=8, ∴PB=PQ=8 √2 ,∴PB 旋转到PQ 所扫过的面积= 90⋅π⋅(8√2)2360=32π.②如图4中,当点Q 落在CD 上时,作BE∠AD 于E ,QF∠AD 交AD 的延长线于F .设PE=x .易证∠PBE∠∠QPF , ∴PE=QF=x ,EB=PF=8, ∴DF=AE+PE+PF ﹣AD=x ﹣1, ∵CD∠AB , ∴∠FDQ=∠A ,∴tan∠FDQ=tanA= 43 = FQ DF,∴xx−1 = 43,∴x=4,∴PE=4, √42+82 =4 √5 ,在Rt∠PEB 中,PB=, √42+82 =4 √5 , ∴PB 旋转到PQ 所扫过的面积= 90⋅π⋅(4√5)2360 =20π③如图5中,当点Q落在AD上时,易知PB=PQ=8,∴PB旋转到PQ所扫过的面积= 90⋅π⋅82360=16π,综上所述,PB旋转到PQ所扫过的面积为32π或20π或16π4.【答案】(1)解:如图1,过A点作AD∠BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2tcm.在Rt∠ABD中,AD= 12AB=t,BD=√32AB= √3t.在Rt∠AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD﹣MD.即√3t﹣t=20 √3﹣20.解得t=20.∴AB=2×20=40cm.答:AB的长为40cm.(2)解:如图2,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt∠ABN中,BN=ABcos30∘= √32= 80√33.∴光线AP旋转6秒,与BC的交点N距点B 80√33cm处.如图3,设光线AP旋转2014秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2014=125×16+14,即AP旋转2014秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN= 80√33,∵AB=AC,∠BAC=120°,∴BC=2ABcos30°=2×40× √32=40 √3,∴BQ=BC﹣CQ=40 √3﹣80√33= 40√33,∴光线AP旋转2014秒后,与BC的交点Q在距点B 40√33cm处.5.【答案】(1)解:∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12.∵DE∠AC,DE=5,∴在Rt∠ADE中,由勾股定理得AD= √AE2+DE2= √122+52=13(2)解:∵在Rt∠ABC中,∠CAB=30°,AC=AE+CE=24,∴BC=12,AB=AC•cos30°=12 √3,∵DE∠AC,AE=CE,∴AD=DC=13,∴四边形ABCD的周长为AB+BC+CD+AD=38+12 √36.【答案】(1)证明:∵四边形BDCE为菱形,∴CD=CE ,∠CBD=∠CBE , ∴CD=AC , ∴AC=CE .(2)证明:如图1,过点C 作CF∠AB 交于点F ,∵AC=CE ,∴AF=EF .在Rt∠BCF 和Rt∠ACF 中, BC 2=BF 2+CF 2,AC 2=AF 2+CF 2, ∴BC 2−AC 2=BF 2−AF 2=(BF +AF)(BF −AF)=AB ·BE , ∵四边形BDCE 是菱形,∴BE=CE=AC , ∴BC 2−AC 2=AB ⋅AC .(3)解:①∵AB AC =53 ,可设AB=5k ,BE=AC=3k ,则AE=AB-BE=2k ,AF=k .在Rt∠ACF 中,cos∠A= AF AC =k 3k =13.如图2,连接CO 并延长交∠O 与点G ,连接BG ,则∠G=∠A ,则cos∠G= 13,∵CG 是直径,∴∠BCG 是直角三角形, ∵CG=6,cos∠G= 13 ,∴BG=2,∴BC= √CG 2−BG 2=√36−4=4√2 .②如图2,设ABAC=m,其中m>1,AC=a,则AB=ma,AE=ma-a,AF= AE2=12(ma−a),在Rt∠AFC中,cos∠A= AFAC=12(ma−a)a=12(m−1),在Rt∠BCG中,CG=6,cos∠G=cos∠A= 12(m−1),∴BG=CG·cos∠G=6· 12(m−1)=3m-3,BC2= CG2−BG2=36−(3m−3)2,由(2)得BC2=AB·AC+AC2=ma2+a2,∴36−(3m−3)2=ma2+a2,∴9(m+1)(3−m)=a2(m+1),又∵m+1≠0,∴a2=9(3−m).∴AB·AC=ma2=9m(3−m)=−9m2+27m.当m= −272×(−9)=32时,−9m2+27m的值最大.∵0<BG<6,∴0<3(m-1)<6,∴1<m<3.∴当m= 32时,AB·AC的值最大,即ABAC=32时,AB·AC的值最大.7.【答案】(1)解:如图,过点E作EF⊥AC于点F,∵四边形ABCD是矩形,∴∠B=∠D=90°∵CE平分∠ACD∴DE=FE,CF=CD∵AB=m=3,BC=n=4∴AC=5∵CF=CD=AB=3∴AF=AC−CF=2∵AE=AD−DE=4−DE ∴Rt△AEF中,根据勾股定理得,(4−DE)2=22+DE2∴16−8DE+DE2=4+DE2∴DE=32;(2)解:①如图,延长FE和CD交于点G,∵E是AD的中点∴AE=DE∵∠A=∠GDE=90°,∠AEF=∠DEG∴△AEF≅△DEG(ASA)∴∠G=∠AFE,EF=EG∴E为FG的中点,∵CE⊥FG∴CE是FG的垂直平分线∴CF=CG∴∠G=∠CFE∴∠AFE=∠CFE∴EF平分∠AFC;②若∠AFE=∠BCF,则∠EFC=∠BCF∴FG//BC,这与题目相矛盾,即∠AFE≠∠BCF∴当∠AEF ∼∠BCF相似时,∴∠AFE=∠BFC,由①可知,∠AFE=∠CFE,∴∠AFE=∠CFE=∠BFC∴∠AFE=∠CFE=∠BFC=180°3=60°∴∠BCF=∠AEF=∠ECF=90°−60°=30°∴∠DEC=60°∴tan∠DEC=DC ED∴√3=DC ED∴DC2ED=√32∴DCAD=√32∴m n=√32.8.【答案】(1)解:由已知得AP=BP=12AB=15cm,在Rt△APE中,∵sin∠AEP=APAE,∴AE=APsin∠AEP=15sin18°≈150.31≈48cm,答:眼睛E与显示屏顶端A的水平距离AE约为48cm;(2)解:如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB⋅cos∠BAF=30×cos18°≈30×0.95≈28.5,BF=AB⋅sin∠BAF=30×sin18°≈30×0.31≈9.3,∵BF//CD,∴∠CBF=∠BCD=30°,∴CF=BF⋅tan∠CBF=9.3×tan30°=9.3×√33≈5.36,∴AC=AF+CF=28.5+5.36≈34cm.答:显示屏顶端A与底座C的距离AC约为34cm.9.【答案】(1)解:把A(4,0)代入y=−34x+b,得−34×4+b=0,解得b=3,∴直线l的函数表达式为y=−34x+3,∴B(0,3),∵AO∠BO,OA=4,BO=3,∴tan∠BAO= 3 4.(2)①证明:如图,连结AF,∵CE=EF,∴∠CAE=∠EAF,又∵AC=AE=AF,∴∠ACE=∠AEF,∴∠OCE=∠OEA,又∵∠COE=∠EOA,∴∠OCE∠∠OEA.②解:如图,过点E作EH∠x轴于点H,∵tan∠BAO= 3 4,∴设EH=3x,AH=4x,∴AE=AC=5x,OH=4-4x,∴OC=4-5x,∵∠OCE∠∠OEA,∴OEOA=OCOE,即OE2=OA·OC,∴(4-4x)2+(3x)2=4(4-5x),解得x1= 1225,x2=0(不合题意,舍去)∴E(5225,3625).(3)解:如图,过点A作AM∠OF于点M,过点O作ON∠AB于点N,∵tan∠BAO= 3 4,∴cos∠BAO= 4 5,∴AN=OA·cos∠BAO= 16 5,设AC=AE=r,∴EN= 165-r,∵ON∠AB,AM∠OF,∴∠ONE=∠AME=90°,EM= 12EF,又∵∠OEN=∠AEM,∴∠OEN∠∠AEM,∴OEAE=ENEM,即OE· 12EF=AE·EN,∴OE·EF=2AE·EN=2r·(165-r),∴OE·EF=-2r2+ 325r-2(r- 85)2+ 12825(0<r<165),∴当r= 85时,OE·EF有最大值,最大值为12825.10.【答案】(1)解:过A作AF⊥BC于F,∵AB=AC=120cm,BC=80 cm,∴BF =CF =40 cm∴AF =√1202−402=80√2 (cm )∴ A 到地面 BC 的高度是 80√2 cm.(2)解:过 E ′ 作 E ′H ⊥BC 于 H , E ′G ⊥AE 于 G∴四边形E’HFG 为矩形,在 RtΔAE ′G 中, AG =AE ′cos370=90×0.8=72 (cm ), ∴E ′H =AF −AG =80√2−72=40.8≈41 (cm ).∴E ′ 离地面高度约为41cm.11.【答案】(1)解:如图,设MN 交CC′于O ,∵AM =CM ,CN =BN ,∴MN∠AB ,∵MC=MC′,NC=NC′,∴MN 垂直平分线段CC′,∴CC′∠AB ,且点C′落在AB 上,在Rt∠ABC 中,AB =√AC 2+BC 2=10,∵12AB ×CC ′=12AC ×BC ,∴CC ′=6×810=245;(2)85(3)解:① 4②如下图,过点M 作ME∠AB 于E ,过点N 作NF∠AB 于F ,设CN=x ,则BN=8-x ,NF =35(8−x),BF =45(8−x), ∵∠A=∠A ,∠AEM=∠ACB=90°,∴∠MEA∠∠BCA ,∴AM AB =AE AC =EM BC, ∴361110=AE 6=EM 8, ∴ME =14455,AE =10855, ∵MC =MC ′=6−3611=3011, ∴EC ′=√MC ′2−ME 2=√(3011)2−(14455)2=4255, ∴C ′F =10−10855−4255−45(8−x)=8011−45(8−x), 由∠MEC′∠∠C′FN ,可得EM C ′F =EC ′FN , ∴144558011−45(8−x)=425535(8−x), 解得:x =6011, 经检验,x =6011是分式方程的解, ∴CN =6011. 12.【答案】(1)正方形(2)解: MC ′=ME理由如下:如图,连接 EC ′ ,由(1)知:AD=AE∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°由折叠知:B′C′=BC,∠B′=∠B∴AE=B′C′,∠EAC′=∠B′=90°又EC′=C′E,∴Rt△EC′A≌Rt△C′EB′∴∠C′EA=∠EC′B′∴MC′=ME(3)解:∵Rt△EC′A≌Rt△C′EB′,∴AC′=B′E 由折叠知:B′E=BE,∴AC′=BE∵AC′=2(cm),DC′=4(cm)∴AB=CD=2+4+2=8(cm)设DF=xcm,则FC′=FC=(8−x)cm在Rt△DC′F中,由勾股定理得:42+x2=(8−x)2解得:x=3,即DF=3(cm)如图,延长BA,FC′交于点G,则∠AC′G=∠DC′F∴tan∠AC′G=tan∠DC′F=AGAC′=DFDC′=34∴AG=32(cm)∴EG=32+6=152(cm)∵DF//EG,∴△DNF∽△ENG∴DN:EN=DF:EG=3:152=2513.【答案】(1)解:如图1,∵矩形ABCD∴AB∠CD,∠A=90°∴∠BDC=∠DBA,BD是∠O的直径∴∠BED=90°∵∠BFD=∠ABF+∠A,∠BFD=∠BDC+45°∴∠ABF+∠A=∠BDC+45°即∠ABF+90°=∠DBA+45°∴∠DBA-∠ABF=45°∴∠EBD=45°∴∠EBD=∠EDB(2)证明:如下图,在图2中,过点K作KS∠BE,垂足为R,交AB于点S.∵KG∠AB∴∠BGH=∠KRH=∠SRB=∠KGS=90°∴∠SBR=∠HKR∵∠RBK=∠RKB=45°∴BR=KR∵∠SRB=∠HRK=90°∴∠SRB∠∠HRK∴SB=HK∵SB=BG+SG,HK=BG+AF∴BG+SG=BG+AF∴SG=AF∵∠ABF=∠GKS,∠BAF=∠KGS=90°∴∠ABF∠∠GKS∴AB=KG(3)解:如下图,在图3中,过点O分别作AD和CN的垂线,垂足分别为Q和T,连接OC.∵∠APO=∠CPO∴OQ=OT∵OD=OC,∠OQD=∠OTC=90°∴∠OQD∠∠OTC∴DQ=CT∴AD=CN=BC连接ON∵OC=OC,ON=OB∴∠NOC∠∠BOC∴∠BCO=∠NCO设∠OBC=∠OCB=∠NCO=α∴∠MOC=2α过点M作MW∠OC,垂足为W在OC上取一点L,使WL=OW,连接ML∴MO=ML∴∠MOL=∠MLO=2α∴∠LCM=∠LMC=α∴ML=CL设OM=ML=LC=a则OD=a+8=OC,∴OL=8,OW=WL=4∵OM2-OW2=MW2=MC2-CW2∴a2+4a−45=0a1=-(9舍去),a2=5∴OM=5∴MW=3,WC=9,∴OB=OC=OD=13,BD=26∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW= 1 3∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW= 1 3∴CD=GK=AB =135√10在Rt∠GKB中,tan∠GKB= GB GK=13∴GB =1315√1014.【答案】(1)解:如图由题意得BD=a,CD=b,∠ACE=α∠B=∠D=∠CEB=90°∴四边形CDBE为矩形,则BE=CD=b,BD=CE=a,在Rt∆ACE 中,tanα=AE CE, 得AE=CE=CE×tanα=a tanα而AB=AE+BE ,故AB= a tanα+b答:灯杆AB 的高度为atanα+b 米(2)解:由题意可得,AB∠GC∠ED ,GC=ED=2,CH=1,DF=3,CD=1.8 由于AB∠ED ,∴∆ABF~∆EDF , 此时ED DF =AB BF即23=AB BC+1.8+3①, ∵AB∠GC∴∆ABH~∆GCH ,此时AB BH =GC CH, 21=AB BC+1② 联立①②得{AB BC+4.8=23AB BC+1=2, 解得:{AB =3.8BC =0.9答:灯杆AB 的高度为3.8米15.【答案】(1)①证明:∵点P ,N 分别是CD ,BC 的中点,∴PN//BD , PN =12BD , ∵点P ,M 分别是CD ,DE 的中点,∴PM//CE , PM =12CE , ∵AB =AC , AD =AE ,∴BD =CE ,∴PM =PN ;②证明:∵PN//BD ,∴∠DPN =∠ADC ,∵PM//CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴∠MPN=∠BAC=90°,又由①知PM=PN,∴△PMN为等腰直角三角形,又∵△ADE为等腰直角三角形,∴△ADE∠ △PNM(2)解:如图,连接BE,∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴△ABE∠ △ACD,∴BE=DC,∠ABE=∠ACD,∵点M、N、P分别为DE,BC,EC中点,∴PM//DC,MP=12DC,PN//BE,NP=12BE,∴MP=NP,∠NPA=∠BEA,∠MPA=∠DCA,∵∠BAC=90°,∴∠ABE+∠AEB=90°,∴∠NPM=∠NPA+∠APM=∠BEA+∠ACD=∠BEA+∠ABE=90°,∴△MPN为等腰直角三角形,∴cos∠NMP=cos45°=MPMN=√22,∴MNMP=√2.16.【答案】(1)解:过点O 作OG∠DC ,垂足为G .∵AD∠BC ,AE∠BC 于E ,∴OA∠AD .∴∠OAD=∠OGD=90°.在∠ADO 和∠GDO 中 {∠OAD =∠OGD ∠ADO =∠GDO OD =OD,∴∠ADO∠∠GDO .∴OA=OG .∴DC 是∠O 的切线(2)解:如图所示:连接OF .∵OA∠BC ,∴BE=EF= 12BF=12. 在Rt∠OEF 中,OE=5,EF=12,∴OF= √OE 2+EF 2 =13.∴AE=OA+OE=13+5=18.∴tan∠ABC= AE BE = 32。
九年级数学下册专题28.4 解直角三角形的应用中考真题专项训练(50道)(举一反三)(人教版)

专题28.4 解直角三角形的应用中考真题专项训练(50道)【人教版】考卷信息:本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,涵盖了解直角三角形的应用中考真题的综合问题的所有类型!一.解答题(共50题)1.(2022·辽宁阜新·中考真题)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα= 4.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,5C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:3≈1.7)2.(2022·山东东营·中考真题)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:2≈1.41,3≈1.73)3.(2022·河南·中考真题)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)4.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进1003米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)5.(2022·辽宁朝阳·中考真题)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m 到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:3≈1.7)6.(2022·湖北襄阳·中考真题)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士的而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD 为10m ,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.80)7.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G 移动通信技术日趋完善.某市政府为了实现5G 网络全覆盖,2021~2025年拟建设5G 基站3000个,如图,在斜坡CB 上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan 53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.8.(2022·辽宁鞍山·中考真题)北京时间2022年4月16日9时56分,神舟十三号载人飞船返回舱成功着陆.为弘扬航天精神,某校在教学楼上悬挂了一幅长为8m 的励志条幅(即GF =8m ).小亮同学想知道条幅的底端F 到地面的距离,他的测量过程如下:如图,首先他站在楼前点B 处,在点B 正上方点A 处测得条幅顶端G 的仰角为37°,然后向教学楼条幅方向前行12m 到达点D 处(楼底部点E 与点B ,D 在一条直线上),在点D 正上方点C 处测得条幅底端F 的仰角为45°,若AB ,CD 均为1.65m (即四边形ABDC 为矩形),请你帮助小亮计算条幅底端F到地面的距离FE的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)9.(2022·山东菏泽·中考真题)荷泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80, tan37°≈0,75,3≈1.73)10.(2022·甘肃兰州·中考真题)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G 处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)(参考数据:sin 31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)11.(2022·江苏盐城·中考真题)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,5≈2.24)12.(2022·山东日照·中考真题)2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC 长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.13.(2022·辽宁大连·中考真题)如图,莲花山是大连著名的景点之一,游客可以从山底乘坐索道车到达山项,索速车运行的速度是1米/秒,小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角的为30°,测得白塔顶部C的仰角的为37°.索道车从A 处运行到B处所用时间的为5分钟.(1)索道车从A处运行到B处的距离约为________米;(2)请你利用小明测量的数据,求白塔BC的高度(结果取整数).(参考数据:sin37°≈0.60, cos37°≈0.80,tan37°≈0.75,3≈1.73)14.(2022·上海·中考真题)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC 方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度15.(2022·湖南郴州·中考真题)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC 的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:3,求背水坡新起点A与原起点B之间的距离.(参考数据:2≈1.41,3≈1.73.结果精确到0.1m)16.(2022·辽宁锦州·中考真题)某数学小组要测量学校路灯P―M―N的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:测量项目测量数据从A处测得路灯顶部P的仰角αα=58°从D处测得路灯顶部P的仰角ββ=31°测角仪到地面的距离AB=DC=1.6m两次测量时测角仪之间的水平距离BC=2m计算路灯顶部到地面的距离PE约为多少米?(结果精确到0.1米.参考数据;cos31°≈0.86, tan31°≈0.60,cos58°≈0.53,tan58°≈1.60)17.(2022·辽宁盘锦·中考真题)如图,小欢从公共汽车站A出发,沿北偏东30°方向走2000米到达东湖公园B处,参观后又从B处沿正南方向行走一段距离,到达位于公共汽车东南方向的图书馆C处.(参考数据:2≈1.414,3≈1.732)(1)求小欢从东湖公园走到图书馆的途中与公共汽车站之间最短的距离;(2)若小欢以100米/分的速度从图书馆C沿CA回到公共汽车站A,那么她在15分钟内能否到达公共汽车站?18.(2022·辽宁辽宁·中考真题)数学活动小组欲测量山坡上一棵大树CD的高度,如图,DC ⊥AM 于点E ,在A 处测得大树底端C 的仰角为15°,沿水平地面前进30米到达B 处,测得大树顶端D 的仰角为53°,测得山坡坡角∠CBM =30°(图中各点均在同一平面内).(1)求斜坡BC 的长;(2)求这棵大树CD 的高度(结果取整数).(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43,3≈1.73)19.(2022·辽宁锦州·中考真题)如图,一艘货轮在海面上航行,准备要停靠到码头C ,货轮航行到A 处时,测得码头C 在北偏东60°方向上.为了躲避A ,C 之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B 处后,又沿着南偏东70°方向航行20海里到达码头C .求货轮从A 到B 航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).20.(2022·山东青岛·中考真题)如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan 40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)21.(2022·贵州贵阳·中考真题)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4)22.(2022·四川广安·中考真题)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7523.(2022·辽宁营口·中考真题)在一次数学课外实践活动中,某小组要测量一幢大楼MN 的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处.在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比)求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)24.(2022·贵州遵义·中考真题)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD的长(结果保留根号);(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:3≈1.73).25.(2022·江苏泰州·中考真题)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1 m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)26.(2022·湖北鄂州·中考真题)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°,若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:(1)两位市民甲、乙之间的距离CD;(2)此时飞机的高度AB,(结果保留根号)27.(2022·山西·中考真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E 处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC 的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,3≈1.73).28.(2022·湖南常德·中考真题)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos 25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)29.(2022·湖南湘潭·中考真题)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小≈0.618):文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中DHAH伞柄AH始终平分∠BAC,AB=AC=20cm,当∠BAC=120°时,伞完全打开,此时∠BDC=90°.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:3≈1.732)30.(2022·海南·中考真题)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A 处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB 的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=___________度,∠ADC=___________度;(2)求楼CD的高度(结果保留根号);(3)求此时无人机距离地面BC的高度.31.(2022·四川自贡·中考真题)在东西方向的海岸线上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1h20min,又测得该轮船位于A的北偏东60°,且与A相距83km的C处.(1)求该轮船航行的速度.(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.32.(2022·四川达州·中考真题)某地是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40∘,从前脚落地点D看上嘴尖A的仰角刚好60∘,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.2≈1.41,3≈1.73)33.(2022·广东广州·中考真题)如图,某无人机于空中A处探测到目标B、D的俯角分别是30°、60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续水平飞行303m到达A′处.(1)求之间的距离(2)求从无人机A′上看目标的俯角的正切值.34.(2022·浙江舟山·中考真题)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?35.(2022·重庆·中考真题)某水库大坝的横截面是如图所示的四边形BACD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:1.5,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)36.(2022·贵州遵义·中考真题)下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin 31°≈0.52,cos31°≈0.86,tan31°≈0.60)37.(2022·四川巴中·中考真题)2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为300和600,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据2≈1.41,3≈1.73)38.(2022·广西南宁·中考真题)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF 的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)39.(2022·湖北黄石·中考真题)如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,公司规定:AD与水平面夹角为θ1,且在水平线上的射影AF为1.4m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1=1.082,tanθ2 =0.412.如果安装工人确定支架AB高为25cm,求支架CD的高(结果精确到1cm)?40.(2022·四川泸州·中考真题)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距82nmile.求B,D间的距离(计算过程中的数据不取近似值).41.(2022·重庆·中考真题)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)42.(2022·重庆·中考真题)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:3=1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)43.(2022·辽宁朝阳·中考真题)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)44.(2022·辽宁锦州·中考真题)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC//MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1∶3(即坡面上点B处的铅直高度BN 与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)45.(2022·江苏徐州·中考真题)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°.后排光伏板的前端H在AB 上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:2≈1.41,3≈1.73,6≈2.45三角函数锐角A13°28°32°sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6246.(2022·内蒙古呼伦贝尔·中考真题)如图,在山坡AP的坡脚A处竖有一根电线杆AB(即AB⊥MN),为固定电线杆,在地面C处和坡面D处各装一根引拉线BC和BD,它们的长度,∠PAN=30°,求点D到AB的距离.相等.测得AC=6米,tan∠BCA=4347.(2022·内蒙古鄂尔多斯·中考真题)图①是一种手机平板支架、由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图、托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B 落在直线DE上即可、求CD旋转的角度.(参考数:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan 26.6°≈0.5,3≈1.7)48.(2022·辽宁营口·中考真题)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,2≈1.4,3≈1.7,6≈2.4)49.(2022·辽宁本溪·中考真题)如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无人机从点A的正上方点C,沿正东方向以8m s 的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s 到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan2137°≈0.75,3≈1.73)50.(2022·贵州安顺·中考真题)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C 两点之间的距离.如图所示,小星站在广场的B 处遥控无人机,无人机在A 处距离地面的飞行高度是41.6m ,此时从无人机测得广场C 处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE =1.6m ,EA =50m (点A,E,B,C 在同一平面内).(1)求仰角α的正弦值;(2)求B,C 两点之间的距离(结果精确到1m ).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96, sin27°≈0.45, cos27°≈0.89,tan27°≈0.51)。
2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
2023年中考九年级数学高频考点专题训练--解直角三角形的应用

2023年中考九年级数学高频考点专题训练--解直角三角形的应用一、综合题1.如图,在△ABC中,AB=AC=10,tanB=34,D是BC边上的一个动点(不与点B、C重合),以点D为顶点作∠ADE=∠B,射线DE交AC于点E,过点A作AF⊥AD交射线DE于F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)当FC=FD时,直接写出BD的长.2.如图,已知:在Rt△ABC中,斜边AB=10,sinA= 45,点P为边AB上一动点(不与A,B重合),PQ平分△CPB交边BC于点Q,QM△AB于M,QN△CP于N.(1)当AP=CP时,求QP;(2)若四边形PMQN为菱形,求CQ;(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?3.如图①,△ABC中,△ABC=45°,AH△BC于点H,点D在AH上,且DH=CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.△)如图②,当点F落在AC上时(F不与C重合),若BC=4,tanC=3,求AE的长;△)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由。
4.在△ABC中,AB=AC,∠BAC=45°,将△ABC绕点A顺时针旋转得到△ADE,连接BD、CE,直线BD、CE相交于点F.(1)求证BD=CE.(2)求∠BFC的度数.(3)若AB=AC=2,当四边形ADFC是菱形时,求BF的长.5.如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论;(2)连接DF,若BC=√3,求DF的长.6.已知:如图,△ABC为等边三角形,AB=4√3,AH△BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作△P,设AP=x.(1)当x=3时,求△P的半径长;(2)如图1,如果△P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).7.如图(1)问题提出:如图1,在四边形ABCD中,AB= BC,AD= CD=3,△BAD=△BCD = 90°,△ADC= 60°,则四边形ABCD的面积为.(2)问题探究:如图2,在四边形ABCD中,△BAD=△BCD= 90°,△ABC=135°,AB= 2√2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;8.如图,在平面直角坐标系xOy中,已知点A(﹣3,1),点B(0,5),过点A作直线l△AB,过点B作BD△l,交x轴于点D,再以点B为圆心,BD长为半径作弧,交直线l于点C(点C位于第四象限),连结BC,CD.(1)求线段AB的长.(2)点M是线段BC上一点,且BM=CA,求DM的长.(3)点M是线段BC上的动点.①若点N是线段AC上的动点,且BM=CN,求DM+DN的最小值.②若点N是射线AC上的动点,且BM=CN,求DM+DN的最小值(直接写出答案).9.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在的水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?10.小强洗漱时的侧面示意图如图所示,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时身体前倾,下半身与地面的夹角∠FGK=80°,上半身与下半身所成夹角∠EFG=125°,脚与洗漱台距离GC=15cm,点D,C,G,K在同一直线上.(1)求此时小强腰部点F到墙AD的距离.(2)此时小强头部点E是否恰好在洗漱盆AB的中点O的正上方?若是,请说明理由;若不是,则他应向前还是向后移动多少厘米,使头部点E恰好在洗漱盆AB的中点O的正上方?(计算过程及结果的长度均精确到1cm.参考数据;sin80°≈0.98,cos80°≈0.17,√2≈1.41)11.如图,在梯形ABCD中,AD // BC,AB = CD,AD = 5,BC = 15,cos∠ABC=513.E为射线CD上任意一点,过点A作AF // BE,与射线CD相交于点F.联结BF,与直线AD相交于点G.设CE = x,AGDG=y.(1)求AB的长;(2)当点G在线段AD上时,求y关于x的函数解析式,并写出函数的定义域;(3)如果S四边形ABEFS四边形ABCD=23,求线段CE的长.12.如图.Rt△ABC中,△C=90º,AC=BC=4.P是BC上一点(不与B,C重合),连接AP.将AP 绕点A逆时针旋转90º得到AQ.连接BQ.分别交AC,AP于点D,E.作QF△AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan△ADQ的值;(3)若△AEQ的内心在QF上,直接写出BP的长13.如图,△ABC内接于△O,AB=BC,A为CD中点,CD与AB相交于点E,过B作BF∥AC,交CD延长线于F.(1)求证:ΔACE∽ΔABC;(2)求证:BF=FE;(3)延长FB交AO延长线于M.若tanF=34,CD=8√3,求BM的长.14.如图,一艘轮船位于灯塔B的正西方向上的A处,且灯塔B到A处的距离为40海里,轮船沿东北方向匀速航行,速度为20海里/时.(1)多长时间后,轮船行驶到达位于灯塔B的西北方向上的C处?(结果保留根号)(2)若轮船不改变方向行驶,当轮船行驶到达位于灯塔B的北偏东15°方向上的D处时,求灯塔B到D处的距离.(结果保留根号)15.如图,已知抛物线y= 12x2+mx+n与x轴相交于点A、B两点,过点B的直线y=−x+b交抛物线于另一点C(-5,6),点D是线段BC上的一个动点(点D与点B、C不重合),作DE△AC,交该抛物线于点E.(1)求m,n,b的值;(2)求tan△ACB;(3)探究在点D运动过程中,是否存在△DEA=45°,若存在,则求此时线段AE的长;若不存在,请说明理由.16.如图,AB是△O的直径,PB与△O相切于点B,连接PA交△O于点C,连接BC.(1)求证:△BAC=△CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin△PAB的值.答案解析部分1.【答案】(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△ABD∽△DCE(2)解:如图中,过点A作AM⊥BC于M,∵在Rt△ABM中,tanB=AMBM=34,∴AM=34BM,∴AB=√AM2+BM2=54BM,∵AB=10,∴BM=8,∵AB=AC,AM△BC,∴BC=2BM=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴ABCB=BDAB即1016=BD10,∴BD=25 4,∵DE∥AB,∴BDCB=AEAC,∴25416=AE 10, ∴AE =12532(3)解:过点F 作FH△BC 于点H ,过点A 作AM△BC 于点M ,AN△FH 于点N ,则△NHA =△AMH =△ANH =90°, ∴四边形AMHN 为矩形. ∴△MAN =90°,MH =AN ,由(2)得BM =CM =12BC =8,AM =34BM =6,∵AN△FH ,AM△BC , ∴△ANF =90°=△AMD . ∵△DAF =90°=△MAN ,∴△MAD+△NAD=△NAF+△NAD ,即△NAF =△MAD , ∴△AFN△△ADM , ∴AN AM =AF AD,∵tan∠ADF =tanB =AF AD =34,∴AN AM =AF AD =34, ∴AN =34AM =92,∴CH =CM -MH =CM -AN =72.又∵FH△DC ,FD=FC , ∴CD =2CH =7,∴BD =BC -CD =16-7=9.2.【答案】(1)解:∵AB=10,sinA= 45, ∴BC=8,则AC= √AB 2−BC 2 =6,∵PA=PC.∴△PAC=△PCA,∵PQ平分△CPB,∴△BPC=2△BPQ=2△A,∴△BPQ=△A,∴PQ△AC,∴PQ△BC,又PQ平分△CPB,∴△PCQ=△PBQ,∴PB=PC,∴P是AB的中点,∴PQ= 12AC=3(2)解:∵四边形PMQN为菱形,∴MQ△PC,∴△APC=90°,∴12×AB×CP=12×AC×BC,则PC=4.8,由勾股定理得,PB=6.4,∵MQ△PC,∴PBPC=BMMQ=BMMP=BQQC,即6.44.8=8−CQCQ,解得,CQ= 24 7(3)解:∵PQ平分△CPB,QM△AB,QN△CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴△B=△BPQ,∴△B=△CPQ,∴△CPQ△△CBP,∴CP BC = CQ CP = PQ BP , ∴CP BC = BQ 2BM, ∴CP=4× BQ BM =4× 54 =5,∴CQ= 258, ∴BQ=8﹣ 258= 398 ,∴BM= 45 × 398 = 3910,∴AP=AB ﹣PB=AB ﹣2BM=1153.【答案】(1)证明:在Rt△AHB 中,△ABC=45°,∴AH=BH ,在△BHD 和△AHC 中,AH=BH ,△BHD=△AHC=90°,DH=CH , ∴△BHD△△AHC , ∴BD=AC(2)解:△)如图,在Rt△AHC 中,∵tanC=3,∴AH CH =3,设CH=x ,∴BH=AH=3x , ∵BC=4,∴3x+x=4,∴x=1, ∴AH=3,CH=1,由旋转知,△EHF=△BHD=△AHC=90°,EH=AH=3,CH=DH=FH , ∴△EHA=△FHC , EH AH =FH HC =1 ,∴△EHA△△FHC , ∴△EAH=△C , ∴tan△EAH=tanC=3, 过点H 作HP△AE , ∴HP=3AP ,AE=2AP ,在Rt△AHP 中,AP 2+HP 2=AH 2,∴AP2+(3AP)2=9,∴AP= 3√1010,∴AE= 3√105△)由①有,△AEH和△FHC都为等腰三角形,∴△GAH=△HCG=90°,∴△AGQ△△CHQ,∴AQCQ=GQHQ,∴AQCQ=CQHQ,∵△AQC=△GQE,∴△AQC△△GQH,∴EFHG=ACGH=AQGQ=sin30°=124.【答案】(1)证明:∵将△ABC绕点A顺时针旋转得到△ADE,∴∠CAE=∠BAD,AC=AE,AB=AD,∠BAC=∠DAE=45°,∵AB=AC,∴AC=AE=AB=AD,∴△AEC≌△ADB(SAS)∴BD=CE(2)解:过点A作AM⊥BD于M,AN⊥CE于N,当∠CAE=∠BAD<45°时,如图,∵AC=AE=AB=AD,∴∠1=∠2=∠3=∠4,∵∠AMB=∠ANF=90°,在四边形ANFN中,∠BFC+∠MAN=180°,∠MAN=∠3+∠BAE+∠1=∠1+∠2+∠BAE=∠BAC=45°∴∠BFC=180°−45°=135°;当∠CAE=∠BAD>45°时,如图,∵∠BAC=∠DAE=45°∴∠BAC+∠BAE=∠DAE+∠BAE,∴∠DAB=∠CAE,∵AC=AE=AB=AD,∴∠1=∠EAN=12∠CAE,∠2=∠BAM=12∠DAB,∴∠1=∠EAN=∠2=∠BAM∴∠MAN=∠BAN+∠BAM=∠1+∠BAN=∠BAC=45°∵∠AMF=∠ANF=90°,∴∠MFN=180°−∠MAN=135°,∴∠BFC=180°−∠MFN=45°,故∠BFC=45°或135°(3)解:如图,AB与EC交于G,∵四边形 ADFC 是菱形, ∴AC △ BD ,∴∠FBA =∠BAC =45° , ∵∠BFC =45° ,∴∠FGB =∠AGC =90° , 在Rt△AGC 中,AC=2,∴AG =AC ⋅cos45°=2×√22=√2 ,∴GB =AB −AG =2−√2 ,∴BF =BG sin45°=√2√22=2√2−25.【答案】(1)解:四边形CEDG 是菱形,证明:∵四边形ABCD 为矩形,G 是对角线BD 的中点,∴GB=GC=GD , ∵CF=GC ,∴GB=GC=GD=CF ,∵四边形DCFE 是菱形,∴CD=CF=DE ,DE△CG , ∴DE=GC ,∴四边形CEDG 是平行四边形, ∵GD=GC ,∴四边形CEDG 是菱形(2)解:方法一:设DF 交CE 于点N ,如图所示:∵CD=CF,GB=GD=GC=CF,∴△CDG是等边三角形,∴△GCD=△GDC =△CGD =60°,∴△DCF=180°﹣△GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴△BCD=90°.在Rt△BCD中,tan60°== BCCD,∴CD=√3tan60∘=√3√3=1,∵四边形DCFE是菱形,∴DN=FN,CN△DF,△DCE=△FCE= 12△DCF=12×120°=60°,在Rt△CND中,DN=CD•sin△DCE=1×sin60°=1× √32= √32,∴DF=2DN=2× √32= √3.方法二:证明△FDG△△BCD,得DF=BC= √3.6.【答案】(1)解:∵△ABC为等边三角形,∴AB=AC=4√3,△B=60°.又∵AB=4√3,AH△BC,∴AH=AB⋅sin∠B=4√3×√32=6.即得PH=AH﹣AP=6﹣x=3.在Rt△PHD中,HD=2,利用勾股定理,得PD=√PH2+DH2=√32+22=√13.∴当x=3时,△P的半径长为√13.(2)解:过点P作PM△EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理,得PD=√PH2+DH2=√(6−x)2+4.∵△ABC为等边三角形,AH△BC,∴△BAH=30°.即得PM=12AP=12x.在△P中,PE=PD.∵PM△EF,P为圆心,∴EM=12EF=12y.于是,在Rt△PEM中,由勾股定理得PM2+EM2=PE2.即得14x2+14y2=(6−x)2+4.∴所求函数的解析式为y=√3x2−48x+160,定义域为103⩽x<24−4√63.(3)x=6−2√3,x=6−2√33,x=6+2√33,x=6+2√3.7.【答案】(1)3√3(2)解:作点B关于AD的对称点G,作点B关于CD的对称点M,连接MG交AD于点E,交CD于点F,连接BE,BF,过点G作GN△BC于点N交CB的延长线于点N,∴BF=MF,BE=EG,BG=2BA=4√2,BM=2BC=6∴△BEF的周长为BE+EF+BF=EG+EF+MF=MG。
第19讲中考数学总复习(练习题) 解直角三角形的应用

在Rt△ABD中,∵∠ADB=60°,
∴BD=
3
AB=10
3
3 m,
∴CD=BC-BD=(30-10 3)m.
导航
6.(2021·南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距
离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位
于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离
为 25 6 海里(结果保留根号).
导航
解析:过P作PC⊥AB于C,如图所示:
由题意得:∠APC=30°,∠BPC=45°,PA=50海里,
PC
在 Rt△APC 中,cos∠APC=PA,
3
∴PC=PA·cos∠APC=50× =25
2
PC
在 Rt△PCB 中,cos∠BPC= ,
PB
PC
25 3
( D )
(参考数据:sin 50°≈0.77;
cos 50°≈0.64;tan 50°≈1.19)
A.69.2米
B.73.1米
C.80.0米
D.85.7米
导航
解析:∵斜坡CD的坡度(或坡比)为i=1:2.4,
∴DE∶CE=5∶12,
∵DE=50米,∴CE=120米,
∵BC=150米,
∴BE=150-120=30(米),
尝试利用所学知识测量河对岸大
树AB的高度,他在点C处测得大树
顶端A的仰角为45°,再从C点出发
沿斜坡走2 米到达斜坡上D点,在点D处测得树顶端A的仰
角为30°,若斜坡CF的坡比为i=1∶3(点E、C、B在同一水平
线上).
(1)求王刚同学从点C到点D的过程中上升的高度;
【浙教版】2022年九年级(上)期末复习培优提分专项训练:解直角三角形的应用(方位角问题)(原卷)

【浙教版】2022年九年级(上)期末复习培优提分专项训练解直角三角形的应用(方位角问题)1.(2022·浙江宁波·一模)如图,某渔船沿正东方向以10海里/小时的速度航行,在A处测得岛C在北偏东60°方向,1小时后渔船航行到B处,测得岛C在北偏东30°方向,已知该岛周围9海里内有暗礁.参考数据:√3≈1.732,sin75°≈0.966,cos75°≈0.259.(1)B处离岛C有多远?如果渔船继续向东航行,有无触礁危险?(2)如果渔船在B处改为向东偏南15°方向航行,有无触礁危险?2.(2022·浙江宁波·九年级专题练习)我国海域辽阔,渔业资源丰富,如图,现有渔船以18√2km/ℎ的速度在海面上沿正东方向航行,当行至A处时,发现它的东南方向有一灯塔B,船续向东航行30min后达到C处,发现灯塔B在它的南偏东15°方向.(1)求此时渔船与灯塔B的距离.(2)若渔船继续向东行驶,还要行驶多少千米与B的距离达到最小值.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)3.(2022·浙江宁波·一模)如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向.(1)直接写出∠ACB的度数是;(2)测量发现∠BAC=20°,A岛与C岛之间的距离AC=20海里,求A岛与B岛之间的距离.(结果精确到0.1海里)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)4.(2021·浙江丽水·一模)如图,某海岸边有B,C两个码头,C码头位于B码头的正东方向,距离B码头60海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距离B码头45海里的E 处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)5.(2022·浙江·一模)小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D 点,测得C点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参数数据√3≈1.732)6.(2022·浙江金华·一模)某海域有A,B两个岛屿,B岛在A岛北偏西30°方向上,距A岛120海里.有一艘船从A岛出发,沿东北方向行驶一段距离后,到达位于B岛南偏东75°方向的C处.(1)求∠BCA的度数.(2)求BC的长.7.(2022·浙江宁波·九年级期末)如图,某渔船向正东方向以14海里/时的速度航行,在A处测得小岛C在北偏东70∘方向,2小时后渔船到达B处,测得小岛C在北偏东45∘方向,已知该岛周围20海里范围内有暗礁.(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75,√2≈1.41)(1)求B处距离小岛C的距离(精确到0.1海里);(2)为安全起见,渔船在B处向东偏南转了25∘继续航行,通过计算说明船是否安全?8.(2021·浙江·杭州外国语学校九年级阶段练习)阅读下列材料,并解决问题.如图(1),在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c,过点A作AD∠BC于点D,则sinB=ADc ,sinC=ADb,即AD=c sin B,AD=b sin C.于是c sin B=b sin C,即bsinB=csinC.同理有:csinC =asinA,asinA=bsinB,所以asinA=bsinB=csinC.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)如图(2),一货轮在B处测得灯塔A在货轮的北偏东15°的方向上,随后货轮以80海里/时的速度向正东方向航行,半小时后到达C处,此时又测得灯塔A在货轮的北偏西30°的方向上,求此时货船距灯塔A的距离AC.(2)在(1)的条件下,试求75°的正弦值.(结果保留根号)9.(2020·浙江衢州·九年级期末)某社会实践活动小组实地测量河两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m 到达C点,测得点B在点C的北偏东60°方向,如图.(1)求∠CBA的度数;(2)求这段河的宽度.(结果精确到1m)10.(2022·重庆·四川外国语大学附属外国语学校九年级期中)期中测试临近学生都在紧张的复习中,小甘和小西相约周末去图书馆复习,如图,小甘从家A地沿着正东方向走900m 到小西家B地,经测量图书馆C地在B地的北偏东15°,C地在A地的东北方向.(1)求AC的距离:(2)两人准备从B地出发,实然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了C 地,并沿着C地南偏东22°走了1800m到达D地,根据相关要求,凡是确诊者途径之处800m 区域以内都会划为管控区,问:小西家会被划为管控区吗?请说明理由(参考数据:√3≈1.73,√2≈1.41,√6≈2.45,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).11.(2021·河南·辉县市太行中学九年级期中)如图,一位自行车爱好者沿宿鸭湖湖边正东方向笔直的公路BC骑行,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min 后到达C地,测得建筑物A在北偏西60°方向,如果此自行车爱好者的速度为60km/h,求建筑物A到公路BC的距离.(结果保留根号)【分母有理化:√3+1=√3−1(√3+1))(√3-−1)=√3−12】12.(2022·上海市民办新复兴初级中学九年级期中)如图,一艘海岸巡逻快艇在基地A的正东方向,且距A地13海里的B处巡逻.突然接到基地A命令,要该快艇前往C岛,接送一名病人到基地A的医院救治.已知C岛在基地A的南偏东α的方向,且在B处南偏东β的方向,巡逻快艇从B处出发,平均每小时行驶30海里,需要多少时间才能把病人送到基地A的医院?(参考数据:tanα=158,sinβ=45)13.(2022·山东青岛·九年级期中)九年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了220米,到达菜园B处锄草,再从B处沿正西方向走了200米,到达果园C处采摘水果,再向南偏东37°方向走了200米,到达手工坊D处进行手工制作,最后从D处回到门口A处.(1)求从手工坊D处回到门口A处的距离.(2)求从手工坊D处回到门口A处的方位角.[参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75]14.(2022·重庆一中九年级阶段练习)公园大门A的正东方向原本有一条通往湖心小岛B的景观步道AB,但为了让市民朋友多角度欣赏公园景色,市政府决定新修一条景观步道通往湖心小岛B,新步道从A出发通向C地,C位于A的北偏西45°方向,AC=800米,再从C 地到达湖心小岛B,其中C位于B的北偏西60°方向,甲工程队以每天60米的速度进行单独施工,2天后,为了加快工程进度,乙工程队以每天90米的速度加入项目建设,直到两队起完成景观步道的修建.(参考数据:√2≈1.4)(1)求A、B两地的距离(结果保留根号);(2)新的景观步道能否在15天内完成?请说明理由.15.(2022·山东·济南市大学城实验学校九年级阶段练习)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:√2≈1.4,√3≈1.7)16.(2022·上海·九年级专题练习)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,√3≈1.732.)(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.17.(2022·上海·九年级专题练习)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(参考数据:√3≈1.73,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).18.(2022·重庆八中九年级阶段练习)如图,在竖直的海岸线上有长为68米的码头AB,现有一艘货船在点P处,从码头A处测得货船在A的东南方向,若沿海岸线向南走30米后到达点C,在C处测得货船在C的南偏东75°方向.(参考数据:√2≈1.41,√3≈1.73,√6≈2.45)(1)求货船到A的距离(结果精确到1米);(2)若货船从点P出发,沿着南偏西60°的方向行驶,请问该货船能否行驶到码头所在的线段AB上?请说明理由.19.(2022·四川·仁寿县黑龙滩镇光相九年制学校九年级期末)小明周未与父母一起到眉山湿地公园进行数学实践活动,在A处看到B,C处各有一棵被湖水隔开的银杏树.他在A处测得B在西北方向,C在北偏东30°方向.他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离.(结果保留根号)20.(2022·广东·广州市越秀区育才实验学校二模)如图,我国一艘海监执法船在南海海域进行常态化巡航,在A处测得北偏东30°方向距离为40海里的B处有一艘可疑船只正在向正东方向航行,我海监执法船便迅速沿北偏东75°方向前往监视巡查,经过一段时间在C处成功拦截可疑船只.求我海监执法船前往监视巡查的过程中行驶的路程(即AC长)?(结果精确到0.1海里,√3≈1.732,√2≈1.414,√6≈2.449)21.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)22.(2022·湖南湘潭·八年级期末)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群,在A处测得小岛C在船的北偏东60°方向;40min后,渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?23.(2022·黑龙江·哈尔滨市风华中学校九年级阶段练习)如图,海中有一个小岛A,它周围8n mile 内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60∘方向上,航行12n mile 到达D点,这时测得小岛A在北偏东30∘方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?24.(2022·黑龙江·大庆市祥阁学校九年级期中)为了维护我国海域安全,某巡逻艇从码头A 出发向东航行40海里后到达B处,再从B处沿北偏东30°方向行驶40海里到达C处,然后沿北偏西60°方向航行到D处,发现码头A在正南方向.求此时巡逻艇与码头A的距离.(结果保留根号)25.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100√3米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)26.(2022·重庆市江津中学校八年级阶段练习)某海域有一小岛P,在以P为圆心,半径r 为10(3+√3)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20√5海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A、P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.27.(2022·重庆市第三十七中学校九年级阶段练习)海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为60√2海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:√3≈1.73)28.(2021·河南·油田十中九年级阶段练习)如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB,BC,CA跑步(小路的宽度不计),观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B 在点C的北偏西75°方向上,AC间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1米,参考数据:√2≈1.4,√3≈1.7)29.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G移动通信技术日趋完善.某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.30.(2022·辽宁丹东·中考真题)如图,我国某海域有A ,B ,C 三个港口,B 港口在C 港口正西方向33.2nmile (nmile 是单位“海里”的符号)处,A 港口在B 港口北偏西50°方向且距离B 港口40nmile 处,在A 港口北偏东53°方向且位于C 港口正北方向的点D 处有一艘货船,求货船与A 港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)。
九年级中考数学复习解直角三角形专项练习(含答案)
1. 在������������ △ ������������������中,∠������=90 ∘ ,cos������ = 35,则sin������的值为( )
5
4
5
3
A.4
B.5
C.3
D.5
2. 如图,在 △ ������������������中,∠������ = 90,sin������ = 35,则cos������等于( )
31. 如图,港口������在观测站������的正西方向,������������ = 4������������,某船从港口������出发,沿北偏西15 ∘ 方向航行一段距离后到达������处,此时从观测站������ 处测得该船位于北偏西60 ∘ 的方向,则该船航行的距离(即������������的长)为多少?(结果保留根号)
14.
计算:������������������60 ⋅ ������������������30 ‒ ������������������45 = ________. 15. 若 2cos������ ‒ 1 = 0,则������ = ________.
16. 计算:| 2 ‒ 2| + ( 2 ‒ 1)0 + 2sin45 ∘ .
28. 如图,两座建筑物的水平距离������������为60������,从������点测得������点的仰角������为53 ∘ ,从������点测得������点的俯角������为37 ∘ ,求两座建筑物的高度(参 考数据:sin37 ∘ ≈ 35,cos37 ∘ ≈ 45,tan37 ∘ ≈ 34,sin53 ∘ ≈ 45,cos53 ∘ ≈ 35,tan53 ∘ ≈ 43).
《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练
专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。
2022年九年级数学中考专题训练——解直角三角形的应用附详细解析
中考专题训练——解直角三角形的应用附解析1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠PAB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB =115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=°,OM=;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=°,EF与AB的位置关系;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC =53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)16.如图1是十五中行政楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2.(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)(1)求开门过程中B与C走过的路径之和;(2)此时B与C之间的距离为多少?(结果保留一位小数)17.为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心点在最高位置与最低位置时的高度差.(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?18.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)19.“荡秋千”一直以来都是人们喜闻乐见的休闲方式之一,某天,小鹏和小运两人玩荡秋千.左图为实际图,右图为侧面几何图.静止时秋千位于铅垂线AB上,转轴A到地面的距离AB为3m,荡秋千的起始位置为C,终点为D,点C距离地面为1.16米,安全链AC为2.3m.需要解决问题如下:(1)秋千位于起始位置点C时,安全链AC与铅垂线AB夹角(即∠CAB)的度数;(2)如果我们把荡秋千的最高点与起始点的铅直高度之差记作H,起始点至最高点的路径长记作L,H与L的比值记作P(愉悦度),据科学研究表明,当0.20<P<0.22时,C推出后可达到最高点D处,此时∠CAD=100°.请问这个过程能否实现愉悦感最强?说明理由.(结果精确到0.01,参考数据:sin37°=0.6,cos37°=0.8,sin27°=0.452,π=3)20.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).【分析】过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在△GAB中先求出GB、GA,再在△FAB中求出CF,最后利用线段的和差关系求出AD.【解答】解:如图,过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在Rt△ABG中,∠BAG=∠a=30°,AB=20cm,∴GB=AB=10cm,.在Rt△BCF中,∠FBC=180°﹣60°﹣80°=40°,BF=DE﹣BG=40(cm),∴CF=BF•tan∠FBC=40tan40°≈33.6(cm),∴AD=CE+CF﹣AG=150+33.6﹣17.3≈166(cm).答:安装师傅应将支架固定在离地面166cm的位置.2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠PAB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)【分析】设PC=x米,根据等腰直角三角形的性质用x表示出AC,根据正切的定义列出方程,解方程求出x,得到CD的长,结合图形计算,得到答案.【解答】解:设PC=x米,在Rt△ACP中,∠PAC=45°,∴AC=PC=x,∴BC=200﹣x,在Rt△BCP中,∠PBA=30∴tan∠PBA=,∴=,解得x=100﹣100≈100×1.732﹣100=73.2,即PC=73.2米,答:风筝的高度PC约是73.2米.3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.【分析】(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,利用锐角三角函数的定义求出CF的长,即可解答;(2)在Rt△DCB中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,∠CDE=60°,CD=40mm,∴CF=CD•sin60°=40×=60(mm),∴点C到直线DE的距离为60mm;(2)在Rt△DCB中,CD=40mm,CB=40mm,∴tan∠CDB===,∴∠CDB=30°,∴此时∠CDB的度数为30°.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)【分析】(1)过点A作AG⊥CF,垂足为F.先在Rt△AGC中求出CG,再利用直角三角形的边角间关系求出CF;(2)先计算当AC长20m、∠CAE=150°时救援的高度,再判断该消防车能否实施有效救援.【解答】解:(1)过点A作AG⊥CF,垂足为F.由题意知:四边形AEFG是矩形.∴FG=AE=3.5m,∠EAG=∠AGC=∠AGF=90°.∵∠CAE=120°,∴∠CAG=∠CAE﹣∠EAG=在Rt△AGC中,∵sin∠CAG=,∴CG=AC×sin30°=12×=6(m).∴CF=CG+GF=3.5+6=9.5(m).答:云梯消防车最高点C距离地面的高度CF为9.5m.(2)过点C作CH⊥AE,交EA的延长线于点H.当AC=20m,∠CAE=150°时,∠HAC=30°.在Rt△AHC中,∵cos∠HAC=,∴AH=cos∠HAC×AC=cos30°×20=×20=10≈1.732×10=17.32(m).∴HE=AH+AE=3.5+17.32=20.82(m).由题意知,四边形HEFC是矩形,∴CF=HE=20.82m.∵20.82<180,∴该消防车不能实施有效救援.5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB=115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=45°,OM= 5.5cm;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)【分析】(1)延长MO交AC于点D,则∠ADO=90°,先利用平角定义求出∠AOD=20°,然后利用直角三角形的两个锐角互余可得∠DAO=70°,再利用角的和差关系可求出∠BAC,最后根据题意利用支点O到水平桌面的距离减去台灯底座高度即可求出OM 的长;(2)先在Rt△ABC中,利用锐角三角函数的定义求出BC,AB的长,从而求出AO的长,然后在Rt△ADO OD的长,进行计算即可解答.【解答】解:(1)延长MO交AC于点D,则∠ADO=90°,∵∠AOM=160°,∴∠AOD=180°﹣∠AOM=20°,∴∠DAO=90°﹣∠AOD=70°,∵∠OAB=115°,∴∠BAC=∠OAB﹣∠DAO=45°,由题意得:OM=7.5﹣2=5.5(cm),故答案为:45;5.5cm;(2)在Rt△ABC中,∠BAC=45°,AC=10cm,∴BC=AC•tan45°=10(cm),AB=AC=10≈14.14(cm),由题意得:AO=31.64﹣AB﹣OM=12(cm),在Rt△ADO中,∠AOD=20°,∴OD=AO•cos20°≈12×0.94=11.28(cm),∴BC+OD+7.5=28.78(cm),∴此时点B到桌面的距离约为28.78cm.6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)【分析】(1)以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO 与⊙O交于点Q,根据题意可得PD=145m,DQ=55m,从而求出PQ的长,进而可得OA=OP=PQ,进行计算即可解答;(2)过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,从而得∠DOF=90°,EF=OD,进而求出∠BOF=44.4°,然后在Rt△BOF中求出BF,进行计算即可解答.【解答】解:如图,以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO与⊙O交于点Q,由题意得:PD=145m,DQ=55m,∴PQ=PD﹣DQ=145﹣55=90(m),∴OA=OP=PQ=45(m),∴风轮叶片OA的长度为45m;(2)如图,过点B作BE⊥MN E,过点O作OF⊥BE,垂足为F,则四边形ODEF是矩形,∴∠DOF=90°,EF=OD,由题意得:∠AOB=120°,AOD=14.4°,∴∠BOF=∠AOB+∠AOD﹣∠DOF=44.4°,∴BF=OB sin44.4°≈45×0.70=31.5(m),∵OD=PD﹣OP=145﹣45=100(m),∴EF=OD=100m,∴BE=BF+EF=131.5(m),∴此时风叶OB的端点B距地面的高度为131.5m.7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=147°,EF与AB的位置关系垂直;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)【分析】(1)①根据平行四边形的判定定理可知四边形GHMN是平行四边形,可得∠M =∠HGN=147°;由AH⊥AB,EF∥AH,可知EF⊥AB;②过G作GP⊥EF,可求FP =GF•sin57°≈50×0.84=42.0cm,由四边形GDEP为平行四边形可得GD=PE,即可求解;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P,由cos∠GNP===0.55,可求∠GNP≈57°,可得∠NGP≈33°,∠NGD≈123°,即可求得∠PGD的值.【解答】解:(1)①∵GH=MN,MH=NG,∴四边形GHMN是平行四边形,∵∠NGD=33°,∴∠M=∠HGN=147°,∵AH⊥AB,EF∥AH,∴EF⊥AB,故答案为:147,垂直;②过G作GP⊥EF,垂足为P,∵∠NGD=33°,∴∠FGP=57°,∴FP=GF•sin57°≈50×0.84=42.0cm,∵GP⊥EF,EF⊥AB,∴GP∥AB,又∵DE∥AB,∴GP∥DE,∵EF∥AH,∴四边形GDEP为平行四边形,∴GD=PE,∴EF=DG+PF=50+50+42≈142.0cm;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P.∴NP=305﹣50﹣50﹣150=55cm,∵NG=GD=100cm,∴cos∠GNP===0.55,∴∠GNP≈57°,∴∠NGP≈33°,∴∠NGD≈123°,∴∠PGD≈123°﹣33°=90°,故NF绕着G点顺时针旋转了90°.8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)【分析】(1)根据勾股定理求出AB的长度即可;(2)作辅助线,分别求出C点到AB的距离,F点到直线DO的距离,求和即可.【解答】解:(1)∵支架AC与BC之间的夹角(∠ACB)为90°,∴AB===100(cm),即两轮轮轴A,B之间的距离为100cm;(2)过C点作CH⊥AB于H,过F点作FG⊥DO延长线与G,则扶手F到AB所在直线的距离为FG+CH,∵OF的长度为60cm,∠FOD=120°,∴∠FOG=180°﹣120°=60°,∵∠G=90°,∴∠F=30°,∴OG=OF=30,∴FG=30,由(1)知AB=100,AC=80,BC=60,=AC•BC=AB•,∴S△ABC即×100×CH=×60×80,解得CH=48,∴FG+CH=48+30≈48+30×1.732≈100.0cm,即扶手F到AB所在直线的距离为100.0cm.9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【分析】(1)由平行线的性质可求得∠D'BE=72°,从而可求得∠DBD'=36°,利用弧长公式即可求解;(2)过点D作DG⊥BD'于点G,过E作EH⊥BD'于点H,可求得DG=4.72cm,HE=5.7cm,利用平行线的性质可求解.【解答】解:(1)∵BD′∥EF,∠DBE=∠BEF=108°,∴∠D'BE=180°﹣∠BEF=72°,∴∠DBD'=∠DBE﹣∠D'BE=36°,∵BD=8cm,∴点D转动到点D′的路径长为:(cm);(2)过点D作DG⊥BD'于点E作EH⊥BD'于点H,如图,Rt△BDG中,DG=BD•sin36°≈8×0.59=4.72(cm),Rt△BEH中,HE=BE•sin72°=6×0.95=5.7(cm),∴DG+HE=10.42cm,∵BD'∥EF,∴点D到直线EF的距离约为10.42cm.10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)【分析】(1)连接CD,延长AB交CD于点E,则AE⊥CD,利用等腰三角形的三线合一性质可得∠CBE=37°,CD=2CE,然后在Rt△BCE中,利用锐角三角函数的定义求出BE的长,最后进行计算即可解答;(2)在Rt△BCE中,利用锐角三角函数的定义求出CE的长,从而求出CD的长,进而求出正六边形的边长,然后进行计算即可解答.【解答】解:(1)连接CD AB交CD于点E,则AE⊥CD,∵BC=BD=56mm,∴∠CBE=∠CBD=37°,CD=2CE,在Rt△BCE中,BE=BC•cos37°≈56×0.8=44.8(mm),∵AB=8mm,∴AE=AB+BE=8+44.8=52.8(mm),∴A离纸面CD的距离约为52.8mm;(2)在Rt△BCE中,∠CBE=37°,BC=56mm,∴CE=BC•sin37°≈56×0.6=33.6(mm),∴CD=2CE=67.2(mm),∴正六边形的边长为67.2mm,∴正六边形的周长=6×67.2=403.2(mm),∴正六边形的周长约为403.2mm.11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?【分析】(1)根据直角三角形的边角关系进行计算即可;(2)根据直角三角形的边角关系计算出AN即可.【解答】解:(1)如图1,由题意可知,AB=CD=16.8m,∠ADB=35°∵tan∠ADB=,∴≈0.7,∴BD≈24.0米,答:两楼间的距离应为24.0m;(2)如图2,过点M作MN∥BD,在Rt△AMN中,BD=20m=MN,∠AMN=35°,∴AN=tan35°×MN≈14.0(m),∴MD=AB﹣AN=16.8﹣14.0=2.8(m),答:这时南楼的影子会影响北楼一楼的采光,且影子在CD的高度为2.8m.12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC =53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)在Rt△PDQ中,由∠PDQ=30°得出DQ=2,进而求出FP即可;(2)当∠ADC=53°,PE=3.2米时,求出PF,与2.1米比较即可得出答案.【解答】解:(1)如图,过点D作DQ⊥PE,垂足为Q,由题意可知,∠ADC=60°,PE=2.4米,QE=0.4米,在Rt△PDQ中,∠PDQ=30°,PQ=2.4﹣0.4=2(米),∴tan30°=,∴DQ==2(米),∴PF=AB﹣DQ=(6﹣2)(米),(2)当∠ADC=53°,PE=3.2米时,则∠DPQ=53°,PQ=3.2﹣0.4=2.8(米),∴DQ=PQ•tan53°≈2.8×1.33 3.724(米),∴PF=6﹣3.724≈2.276(米),∵2.276>2.1,∴能通过.13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)【分析】(1)根据题意可得:∠BCA=90°,然后在Rt△ABC中,利用锐角三角函数的定义求出BC的长,即可解答;(2)过点B作BD⊥AC,垂足为D,根据题意可得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,从而利用三角形内角和定理求出∠ACD=45°,然后在RtABD中,利用锐角三角函数定义求出AD的长,再在Rt△BCD中,利用锐角三角函数的定义求出CD的长,进行计算即可解答.【解答】解:(1)如图:由题意得:∠BCA=90°,在Rt△ABC中,∠MAB=45°,AB=4米,∴BC=AB•sin45°=4×=2(米),∴伸展臂BC的长为2米;(2)过点B作BD⊥AC,垂足为D,由题意得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,∴∠ACB=180°﹣∠ABC﹣∠MAB=45°,在RtABD中,AB=4米,∴AD=AB•cos30°=4×=2(米),在Rt△BCD中,BC=2米,CD=BC•cos45°=2×=2(米),∴AC=AD+CD=(2+2)米,∴该挖掘机最远能挖掘到距A水平正前方(2+2)米的土石.14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)【分析】(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,利用平行线的性质可得∠BMH=66.4°,然后在Rt△BMH中,利用锐角三角函数的定义求出MH的长,从而求出HP的长,即可解答;(2)延长QM交FG于点K,则KQ=50cm,∠NKM=90°,利用平角定义先求出∠NMK 的度数,再在Rt△NMK中,利用锐角三角函数的定义求出KM的长,从而求出PQ的长,进行比较即可解答.【解答】解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣17.6=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,。
最新九年级数学上册4.4解直角三角形的应用小专题构造基本图形解直角三角形的实际问题专题训练新版湘教版
构造基本图形解直角三角形的理论成绩类型一构造单不断角三角形解决理论成绩【例1】如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一条直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取3≈1.73,结果保留整数)【方法总结】经过构造单一的直角三角形,只需知道其中的一条边长和一个锐角,就可以利用解直角三角形的知识求出其余各边的长.变式练习1 如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,俯视旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,3≈1.732)类型二构造单一非直角三角形解决理论成绩【例2】为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需建筑隧道AB,如图,在山外一点C 测得BC距离为200 m,∠CAB=54°,∠CBA=30°,求隧道AB的长(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位).【方法总结】经过构造一个非直角三角形,已知其中的两角和一边,可过第三个角的顶点作高,将三角形转化为两个直角三角形,再利用解直角三角形的知识求出其余各边长.变式练习2 如图,某天上午9时,朝阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时分分观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处地位B与城市P的距离.(参考数据:sin36.9°≈3/5,tan36.9°≈3/4,sin67.5°≈12/13,tan67.5°≈12/5)类型三 构造双直角三角形解决理论成绩【例3】(张家界中考)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A 点观测到我渔船C 在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B 点,观测我渔船C 在东北方向上.问:渔政310船再按原航向航行多长工夫,离渔船C 的距离比来?(渔船C 捕鱼时挪动距离忽略不计,结果不取近似值)【方法总结】如图,构造两个直角三角形,利用解直角三角形的知识容易知道如下结果:tan β=b h ,tan α=ba h +, ∴a=h/tan α-h/tan β, b=αβαtan tan tan -a ,h=αβαβtan tan tan tan -a . 变式练习3 (益阳中考)“中国·益阳”网上音讯,益阳市为了改善郊区交通形状,计划在康富路的北端建筑通往资江北岸的新大桥.如图,新大桥的两端位于A 、B 两点,小张为了测量A 、B 之间的河宽,在垂直于新大桥AB 的直线型道路l 上测得如下数据:∠B DA=76.1°,∠BCA=68.2°,CD=82米.求AB 的长(精确到0.1米).(参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5)变式练习4 (岳阳中考)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2 m.为保障安全,学校决定对该楼梯进行改造,降低坡度,拟建筑新楼梯AD ,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)在楼梯口B左侧正前方距离舞台底部C点3 m处有一株大树,修新楼梯AD时底端D能否会触到大树?并阐明理由.变式练习5 (常德中考)如图,A,B,C表示建筑在一座山上的三个缆车站的地位,AB,BC表示连接缆车站的钢缆.已知A,B,C所处地位的海拔AA1,BB1,CC1,分别为160米,400米,1 000米,钢缆AB,BC分别与程度线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米)参考答案【例1】在Rt△ACB中,∠CAB=60°,CB=AC·tan60°=323.∴DB=CB-CD=323-16≈39.答:荷塘宽DB的长约为39米.变式练习1 在Rt△ACE中,∠CEA=60°,CE=BD=6,∴tan∠AEC=AC/CE,∴AC=CE·tan∠AEC=6tan60°=63,∴AB=AC+BC=63+1.5≈10.39+1.5=11.89≈11.9(米).答:旗杆AB的高度为11.9米.【例2】过点C作CD⊥AB于D.在Rt△BCD中,∵∠B=30°,BC=200 m.∴CD=1/2BC=100 m,BD=1003 m.在Rt△ACD中,∵tan∠CAB=CD/AD,∴AD=100/tan54°≈72 m,∴AB=AD+BD=245 m.答:隧道AB的长约为245 m.变式练习2 设BC=x海里,由题意,易得AB=21×(14-9)=105(海里),则AC=105-x(海里).在Rt△BCP中,tan36.9°=PC/BC,∴PC=BC·tan36.9°=3/4x.在Rt△ACP中,tan67.5°=PC/AC,∴PC=AC·tan67.5°=12/5(105-x).∴34x=12/5(105-x),解得x=80.∴PC=3/4x=60(海里),∴PB=100(海里).答:此时轮船所处地位B与城市P的距离约为100海里.【例3】作CD⊥AB,交AB的延伸线于D,则当渔政310船航行到D处时,离渔船C的距离比来.设CD=x,在Rt△ACD 中,∵∠ACD=60°,tan∠AC D=AD/CD,∴AD=3x.在Rt△BCD中,∵∠CBD=∠BCD=45°,∴BD=CD=x,∴AB=AD-BD=AD=3x-x=(3-1)x.设渔政船从B航行到D需求t小时,则AB0.5=BDt,∴(3-1)x0.5=xt,(3-1)t=0.5,∴t=413+.答:渔政310船再航行413+小时,离渔船C的距离比来.变式练习3 设AD=x米,则AC=(x+82)米.在Rt△ABC中,tan∠BCA=AB/AC,∴AB=AC·tan∠BCA=2.5(x+82).在Rt △ABD中,tan∠BDA=AB/AD,∴AB=AD·tan∠BDA=4x.∴2.5(x+82)=4x,∴x=410/3.∴AB=4x=410/3×4≈546.7.答:AB的长约为546.7米.变式练习4 (1)在△ABC中,AC⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,斜边AB=2 m,在Rt△ABC中,AC=ABsin45°=2×2/2=2(m).(2)在Rt△ADC中,∠ADC=30°,∴CD=6<3.∴不会触到大树.变式练习5在Rt△ABD中,BD=400-160=240,∠BAD=30°,则AB=BD/sin30°=480 m.在Rt△BCB2中,CB2=1 000-400=600,∠CBB2=45°.则CB=CB2/sin45°=6002m.∴AB+BC=480+6002≈1 329(米).答:钢缆AB和BC的总长度约为1 329米.成都七中实验学校 2015-2016学年(上期)第一学月考试八年级语文考生留意:1.开考之前请考生将本人的考室号、座号等信息精确的填写在指定的地位,一切答案都写在答题卷上,对错误填写的考生成绩以0分计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形的应用专项训练
1.(2016•贵阳模拟)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
2.(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°
(1)求∠CEF的度数;
(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的读数分别为4,13.4,求BC的长(结果保留两位小数).
(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
3.(2015•自贡)如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小
(精英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.确到0.01米,参考数据≈1.414,≈1.732)
4.(2015•张家界)如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求点B到AC的距离;
(2)求线段CD的长度.
5.(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O 的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
6.(2015•达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:
(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角
∠EGH=45°;
(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;
已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)
7.(2015•潜江)热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.
8.(2015•湘西州)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.
(1)问:A市是否会受到此台风的影响,为什么?
(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.。