量子力学练习题题库(可编辑)

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

【试题】量子力学期末考试题库含答案22套

【试题】量子力学期末考试题库含答案22套

【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。

(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。

三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。

五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。

性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。

3、全同费米子的波函数是反对称波函数。

两个费米子组成的全同粒子体系的波函数为:。

4、=,因为是厄密算符,所以是厄密算符。

5、设和的对易关系,是一个算符或普通的数。

以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。

坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学模拟试题及答案

量子力学模拟试题及答案

量子力学模拟试题及答案一、选择题1. 根据量子力学,以下哪个选项描述了波函数的物理意义?A. 粒子的位置B. 粒子的动量C. 粒子在空间中某点出现的概率密度D. 粒子的质量答案:C2. 海森堡不确定性原理表明,粒子的什么两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 质量与速度D. 动量与能量答案:A二、填空题1. 量子力学中的波函数通常用符号________表示。

答案:Ψ2. 薛定谔方程是量子力学的基本方程,它描述了波函数随时间的________。

答案:演化三、简答题1. 简述量子力学中的叠加原理。

答案:量子力学中的叠加原理表明,如果一个量子系统可以处于多个可能状态中的任何一个,那么它实际上可以处于这些状态的任意线性组合,即叠加态。

这意味着,除非进行测量,否则系统的行为不能被归结为单一确定的状态。

四、计算题1. 假设一个粒子在一维无限深势阱中,其势阱宽度为L。

求该粒子的基态能量。

答案:基态能量可以通过以下公式计算:E0 = (h^2 / (8mL^2)),其中h是普朗克常数,m是粒子质量,L是势阱宽度。

五、论述题1. 论述量子纠缠现象及其在量子信息科学中的应用。

答案:量子纠缠是量子力学中的一种非经典现象,其中两个或多个量子系统处于一种特殊的关联状态,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。

在量子信息科学中,量子纠缠是实现量子通信、量子计算和量子密钥分发等技术的关键资源。

例如,在量子密钥分发中,纠缠粒子可以用来生成和共享密钥,确保通信的安全性。

六、实验题1. 设计一个实验来验证海森堡不确定性原理。

答案:一个简单的实验设计是使用双缝干涉实验。

通过测量通过双缝的粒子的位置和动量,可以观察到当一个物理量被更精确地测量时,另一个物理量的不确定性会增加,从而验证海森堡不确定性原理。

实验中,可以使用光电探测器来测量粒子通过特定缝隙的位置,然后通过测量粒子在屏幕上的分布来估算其动量的不确定性。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。

答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。

答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。

答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。

答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。

答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。

求该粒子在基态时的能量和波函数。

答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。

2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。

求该粒子的能级和相应的波函数。

答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学练习题题库量子力学练习题本练习题共352道,其中(一)单项选择题 145题,(二)填空题100题,(三) 判断题50题,(四) 名词解释32题,(五)证明题25题,(六)计算题40题。

做题时应注意的几个问题:1.强调对量子力学概念、知识体系的整体理解。

2.注重量子力学基本原理的理解及其简单的应用,如:无限深势阱、谐振子和氢原子等重要问题的求解及其结论,并与其对应的经典理论进行比较,力争把量子力学理论融汇贯通。

3.数学手段上,应多看示例,尽量避免陷入过多的、繁难的数学计算中。

4.通过完成练习题,使自己加深对理论内容的理解,通过把实际物理过程用数学模型求解,培养自己独立解决实际问题的能力。

(一) 单项选择题 (共145题)1.能量为100ev的自由电子的De Broglie 波长是A. 1.2B. 1.5C.2.1D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是 A.1.3 B.0.9C. 0.5D. 1.8.D. 2.0.4.温度T1k时,具有动能为Boltzeman常数的氦原子的De Broglie 波长是A.8B. 5.6C. 10D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()AB C D6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2B. 7.1C. 8.4D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为C. 0.25JD. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为ABC D9pton 效应证实了A.电子具有波动性B. 光具有波动性.C.光具有粒子性D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了电子具有波动性. B. 光具有波动性. C. 光具有粒子性 D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A BC D12. 设,在范围内找到粒子的几率为A B C D13. 设粒子的波函数为 ,在范围内找到粒子的几率为ABCD14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为 A B. + C. + D. +.A.单值、正交、连续B.归一、正交、完全性C.连续、有限、完全性D.单值、连续、有限.A.波动性是由于大量的微粒分布于空间而形成的疏密波B.微粒被看成在三维空间连续分布的某种波包C.单个微观粒子具有波动性和粒子性D. A, B, C.17.已知波函数, ,,其中定态波函数是A B.和C D.和.18.若波函数归一化,则19.波函数、为任意常数,A.与描写粒子的状态不同 B.与所描写的粒子在空间各点出现的几率的比是1: C.与所描写的粒子在空间各点出现的几率的比是 D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A BC D21.量子力学运动方程的建立,需满足一定的条件:1方程中仅含有波函数关于时间的一阶导数. 2方程中仅含有波函数关于时间的二阶以下的导数.3方程中关于波函数对空间坐标的导数应为线性的. 4 方程中关于波函数对时间坐标的导数应为线性的.5 方程中不能含有决定体系状态的具体参量. 6 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. 1、3和6B. 2、3、4和5. C. 1、3、4和5. D.2、3、4、5和6.22.两个粒子的薛定谔方程是A B C D.23.几率流密度矢量的表达式为 A B CD24.质量流密度矢量的表达式为A B C D25. 电流密度矢量的表达式为AB CD26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化 B.几率流密度矢量不随时间变化 C.任何力学量的平均值都不随时间变化 D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B.,C., D28. 在一维无限深势阱中运动的质量为的粒子的能级为 A., B., C., D29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是 A., B.,C.,D31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是A., B., C., D32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的 B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.AB C D34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为ABCD35.线性谐振子的 A.能量是量子化的,而动量是连续变化的B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是AB C D37.氢原子的能级为A..B..CD38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为AB C D39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A B C D40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A B C D41. 和是厄密算符,则A.必为厄密算符.B.必为厄密算符C.必为厄密算符D. 必为厄密算符42.已知算符和,则A.和都是厄密算符B.必是厄密算符C.必是厄密算符D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1B. 2C. 3D. 4.A B C D.45.角动量Z分量的归一化本征函数为A BC D是的本征函数,不是的本征函数 B.不是的本征函数,是的本征函数.C 是、的共同本征函数. D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n3的简并度为 A. 3 B. 6 C.9 D. 12.48.氢原子能级的特点是 A.相邻两能级间距随量子数的增大而增大 B.能级的绝对值随量子数的增大而增大 C.能级随量子数的增大而减小 D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是库仑场特有的B.中心力场特有的. C.奏力场特有的 D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A B C D51.设体系处于状态,则该体系的能量取值及取值几率分别为 A BC D52.接51题,该体系的角动量的取值及相应几率分别为 A B C D53. 接51题,该体系的角动量Z分量的取值及相应几率分别为 A BC D54. 接51题,该体系的角动量Z分量的平均值为A B C D55. 接51题,该体系的能量的平均值为A..B..CD56.体系处于状态,则体系的动量取值为A B C D57.接上题,体系的动量取值几率分别为 A. 1,0. B. 1/2,1/2C. 1/4,3/4/ D. 1/3,2/3.58.接56题, 体系的动量平均值为A B C D59.一振子处于态中,则该振子能量取值分别为A BC D60.接上题,该振子的能量取值的几率分别为A B. ,. C.,D61.接59题,该振子的能量平均值为 B C D62.对易关系等于为的任意函数 A..B..CD63. 对易关系等于 A BC D64.对易关系等于A B CD65. 对易关系等于A B C D66. 对易关系等于A B C D67. 对易关系等于A B CD68. 对易关系等于A B CD69. 对易关系等于A B C D70. 对易关系等于A B C D71. 对易关系等于A B C D72. 对易关系等于A B C D73. 对易关系等于A B C D74. 对易关系等于A B C D75. 对易关系等于A B C D76. 对易关系等于A B C DA B C D78. 对易式等于m,n为任意正整数A B C DA B C D80对易式等于c为任意常数A B C D81.算符和的对易关系为,则、的测不准关系是A BC D82.已知,则和的测不准关系是A B C D83. 算符和的对易关系为,则、的测不准关系是A B CD84.电子在库仑场中运动的能量本征方程是A BC D85.类氢原子体系的能量是量子化的,其能量表达式为A B C D86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B,C., D87.接上题,能量可测值、出现的几率分别为 A.1/4,3/4B. 3/4,1/4C.1/2, 1/2D. 0,1.88.接86题,能量的平均值为A., B., C., D89.若一算符的逆算符存在,则等于A. 1B. 0C. -1D. 2.90.如果力学量算符和满足对易关系, 则A. 和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值B. 和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. 和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. 和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.可取一切实数值 B.只能取不为负的一切实数 C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式等于A BCD93.定义算符, 则等于A B C D94.接上题, 则等于AB C D95. 接93题, 则等于AB C D96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数 C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数 D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数 B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数 D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A B C D99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是ABCD100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是AB C D101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D102.线性谐振子的能量本征函数在能量表象中的表示是 A B CD103. 线性谐振子的能量本征函数在能量表象中的表示是 A B C D104.在的共同表象中,波函数,在该态中的平均值为AB CD. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是以本征值为对角元素的对角方阵B一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是 ABCD108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A B CD109.在表象中,其本征值是 AB0 C D110.接上题, 的归一化本征态分别为 A BC D111.幺正矩阵的定义式为 ABCD112.幺正变换 A.不改变算符的本征值,但可改变其本征矢. B.不改变算符的本征值,也不改变其本征矢 C.改变算符的本征值,但不改变其本征矢D.即改变算符的本征值,也改变其本征矢.113.算符,则对易关系式等于 ABC D114.非简并定态微扰理论中第个能级的表达式是考虑二级近似ABC D115. 非简并定态微扰理论中第个能级的一级修正项为 A BC D116. 非简并定态微扰理论中第个能级的二级修正项为 A B C D 117. 非简并定态微扰理论中第个波函数一级修正项为 ABC D118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为 A BCD119.非简并定态微扰理论的适用条件是A B C D 120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A B C D121.非简并定态微扰理论中,波函数的一级近似公式为A B C D122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为五个子能级 B. 四个子能级C. 三个子能级 D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A BC D写出体系的哈密顿 B选取合理的尝试波函数.C 计算体系的哈密顿的平均值 D体系哈密顿的平均值对变分参数求变分.电子具有波动性B.光具有波动性. C. 原子的能级是分立的. D. 电子具有自旋.126.为自旋角动量算符,则等于A BC .D127. 为Pauli算符,则等于A B CD128.单电子的自旋角动量平方算符的本征值为A B C D129.单电子的Pauli算符平方的本征值为A0 B1 C. 2D. 3.130.Pauli算符的三个分量之积等于A. 0 B1CD131.电子自旋角动量的分量算符在表象中矩阵表示为A B C D 132. 电子自旋角动量的y分量算符在表象中矩阵表示为A B C D 133. 电子自旋角动量的z分量算符在表象中矩阵表示为A B C D 134.是角动量算符,,则等于A BC. 1 D. 0135.接上题, 等于A B C D. 0.136.接134题, 等于A B C D. 0.137.一电子处于自旋态中,则的可测值分别为A B .C D138.接上题,测得为的几率分别是A B CD139.接137题, 的平均值为0 B C D140.在表象中,,则在该态中的可测值分别为 ABC D141.接上题,测量的值为的几率分别为A B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4.142.接140题,的平均值为A B C D143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系 B.氢原子中的电子、质子、中子组成的体系是全同粒子体系 C.光子和电子组成的体系是全同粒子体系 D.粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的 B.是反对称的 C.具有确定的对称性. D.不具有对称性.145.分别处于态和态的两个电子,它们的总角动量的量子数的取值是0,1,2,3,4B.1,2,3,4. C. 0,1,2,3 D.1,2,3.(二) 填空题(共100题)1pton效应证实了。

相关文档
最新文档