静力学习题课
静力学习题课

3-6:对空间任意两个力,一定能找到一根轴,使这两个力在该轴上
的投影分别为零,对否?
正确
精品资料
静力学习题课
3-7:空间任意(rènyì)力系向两个不同的点简化,试问下述情况是 否可能。
(1)主矢相等(xiāngděng) 可能 (,2主)矩主相矢等不(相xiā等n,g主dě矩n相g)等。。 不可能
力2-2偶:吗平?面力偶系向作用面内任一点简化的结果可能是什么?
一个力偶或平衡
2-3:平面任意力系向作用面内任一点简化的结果可能是什么?
一个力、一个力偶、一个力和一个力偶、平衡
2-4:平面平行力系向作用面内任一点简化的结果可能是什么?
一个力、一个力偶、一个力和一个力偶、平衡 2-5:平面任意力系向作用面内任一点简化,一般情况下,主矢和 主矩是否与简化中心的选择有关?
下述三种情况下,物块B、C将发生怎样的运动
?
A.F1<F<F2
B. F2<F<F1 C. F<F2<F1
B和C一起运动 C运动、B不动
B、C均不运动
精品资料
mg θ
F
C
B
A
D.对于任意平面平行力系,一定存在某平面汇交力系与之等效。 错 E.对于任意平面汇交力系,一定存在某平面平行力系与之等效。 对
F.对于任意平面汇交力系,一定存在某平面力偶系与之等效。 错
2-10:图示平面结构,AB//CD,各构件自重不计
F
,在刚体上作用一力偶,试判断下述说法的正误:
M
E
A.这是平面力偶系问题,因为平面力偶系只
的关C系为_______。
M
A θ
P θB
A.FNA=FNB
静力学1-2章习题课

1.压立体的绘制是求解曲面上液体总压力的关键。压力体的绘 制方法与方向的判断原则。
1.压力体的绘制是求解曲面上液体总压力的关键。压力体的绘 制方法与方向的判断原则。
2.绘压力体图
p0 A B
pa
1、图算法 2、重力场中流体静压强
的分布规律 3、压力体的绘制
2.答案:
p0 A
B
pa
1、图算法 2、重力场中流体静压强
v 1.075m s
0.4cm
D=12cm L=14cm
牛顿内摩擦定律
第一、第二章 (流体静力学) 习题课
一、流体的主要物理性质 二、重力场中流体静压强的分布规律
z p c
p p0 gh
三、液体的相对平衡 四、液体作用在平面上的总压力 五、液体作用在曲面上的总压力
第一、第二章 (流体静力学) 习题课
8.压立体的绘制是求解曲面上液体总压力的关键。压力体的绘 制方法与方向的判断原则。
习题: 1.液体的粘滞性只有在流动时才表现出来。( ) 2.在相对静止的同种、连通、均质液体中,等压面就是水平面。 () 3.某点的真空度为65000Pa,当地大气压为0.1MPa,该点的 绝对压强为( )
(a)65000Pa (b)55000Pa (c) 35000Pa (d)165000Pa
5.
1、等压面 2、重力场中流体静压强的分布规律
5.
1、等压面 2、重力场中流体静压强的分布规律
3.计算举例
1.
静止流体中应力的特性
静止流体中应力的特性
2.如图:
已知h1=20mm,
h2=240mm,
h3
h3=220mm, 求水深H。
水银
《理论力学》静力学典型习题+答案

1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
静力学习题课答案

【1】 梁AB 一端为固定端支座,另一端无约束,这样的梁称为悬臂梁。
它承受均布荷载q 和一集中力P 的作用,如图4-9(a )所示。
已知P =10kN , q =2kN/m ,l =4m ,︒=45α,梁的自重不计,求支座A 的反力。
【解】:取梁AB 为研究对象,其受力图如图4-9(b )所示。
支座反力的指向是假定的,梁上所受的荷载和支座反力组成平面一般力系。
在计算中可将线荷载q 用作用其中心的集中力2qlQ =来代替。
选取坐标系,列平衡方程。
)(kN 07.7707.010cos 0cos - 0A A →=⨯====∑ααP X P X X)(kN 07.11707.010242sin 2 0sin 2 0A A ↑=⨯+⨯=+==--=∑ααP ql Y P qlY Y )( m kN 28.404707.0108423sin 83 0sin 422ql 022A A ⋅=⨯⨯+⨯⨯=⋅+==⋅-⎪⎭⎫⎝⎛+-=∑l P ql m l P l l m M A αα力系既然平衡,则力系中各力在任一轴上的投影代数和必然等于零,力系中各力对任一点之矩的代数和也必然为零。
因此,我们可以列出其它的平衡方程,用来校核计算有无错误。
校核028.40407.114424242A A B =+⨯-⨯⨯=+⋅-⨯=∑m l Y l ql M 可见,Y A 和m A 计算无误。
【2】 钢筋混凝土刚架,所受荷载及支承情况如图4-12(a )所示。
已知kN 20 m,kN 2 kN,10 kN/m,4=⋅===Q m P q ,试求支座处的反力。
【解】:取刚架为研究对象,画其受力图如图4-12(b )所示,图中各支座反力指向都是假设的。
本题有一个力偶荷载,由于力偶在任一轴上投影为零,故写投影方程时不必考虑力偶,由于力偶对平面内任一点的矩都等于力偶矩,故写力矩方程时,可直接将力偶矩m 列入。
设坐标系如图4-12(b )所示,列三个平衡方程)(kN 3446106 06 0A A ←-=⨯--=--==++=∑q P X q P X X)(kN 296418220310461834 036346 0B B A ↑=⨯++⨯+⨯=+++==⨯--⨯-⨯-⨯=∑q m Q P Y q m Q P Y M)(kN 92920 00B A B A ↓-=-=-==-+=∑Y Q Y Q Y Y Y校核3462203102)9(6)34(6363266 C=⨯⨯+-⨯+⨯+-⨯--⨯=⨯+-++-=∑qmQPYXMAA说明计算无误。
静力学习题课

工 程 力 学
FCx2
静力学习题课
FCy2
M
F
F
C
( F ) 0,
0,
0,
FBx b FBy a M 0
工 程 力 学
FCx2
x
FBx FCx 2 0
y
FBy FCy 2 0
FCx 2 Pa M 1 qb 2b 2b 4
Pa M 1 FBx qb 2b 2b 4
工 程 力 学
Q 1 q a 2 2
FAx
MA
FBx
把分布力转换成集中力Q´,作用在E´点
1 BE a 3
静力学习题课
再以左半段为研究对象(含铰链B) FBy Q´ E´ FAy
工 程 力 学
FAx
MA
FBx
1 1 M B (F) 0 M A 4 q a 3 a FAy 2a 0
1 FAy FC F q 2a 0 Fy 0 2 1 7 M A (F) 0 M A FC 3a F 2a 2 q 2a 3 a 0
静力学习题课
再以左半段为研究对象(含铰链B)
工 程 力 学
静力学习题课
再以左半段为研究对象(含铰链B) FBy Q´ E´ FAy
解题过程: 起重机
Y A 48.33(kN)
系统整体
梁 CD
x
FAy FBy P 0
FAx FBx qb 0
P M qb 2 FAy 2 2a 4a
P M qb 2 FBy P FAy 2 2a 4a
静力学习题课
2. 再取AC为研究对象,受力分析如图所示。
5静力学习题课

a
a
A
a
a
静定构件
a
20
例5:
一梁由支座A以及BE、CE、DE三杆支撑.
已知:q = 0.5kN/m,a = 2m,梁与支撑杆的重量不计. 求:各杆内力。
寻找二力构件! DE CE BE
整体静定结构
21
1、整体上看,由于DE是二力杆,D的约束反力只
有一个,因此,整体为静定问题。
可求得:
FED
YC 5000 (N)
X 0 XC S FG cos450
整体静定结构
X C 10000 (N)
由m A 0 S DE sin451Q 2 0 S DE 14140 (N)
10
例1 一组合梁ABC 的支承及载荷如图示。已知 F=1 kN,M=0.5 kNm,求固定端A 的约束力。
② 力矩和力偶矩的区别: 力矩:是力对那一点的转矩, 与取矩点有关, 且不能在平面内 任意移动。 力偶矩: 它是在平面内和平行它自身平面内可任意移动,与取矩
点无关。
6
(二) 基本方程
平面
X 0 Y 0
空间
mA 0
X 0,m x ( F ) 0 Y 0,m y ( F ) 0 Z 0,m z ( F ) 0
B
FBy FBx
图(c)
29
整体静定结构
30
1.5m
1.5m
例8 已知 P=1200N,各杆与滑轮 自重不计, 轮的半径为r ; 求 支承A,B处的约束反力及杆 BC的内力
2m
2m
解 整体受力如图,有 XA
X 0, X A T 0 Y 0, YA P YB 0
YA
静力学习题课

解: 在图a和图b中总压力P的大小是相同的,仅作用 方向相反而已。 由于AB是个圆弧面,所以面上各点的静水压 强都沿半径方向通过圆心点,因而总压力P也必 通过圆心。
(1)先求总压力P的水平分力。
铅垂投影面的面积 Ax bh 1 2 2m2 投影面形心点淹没深度 hc h / 2 1m
2
2
(3)闸门上的合力作用中心(对闸门下端之矩)
lc P
b 2
gh1h1
/
s in
1 3
h1
/
s in
b 2
gh2 h2
/
s in
1 3
h2
/ sin
lc
1 P
b 6
g
/ sin 2 (h13
h23 )
lc
1 34.65
1 1 9.8 / sin 2 (45) (33 6
BD
lD
lc
d 2
0.514 m
重力作用线距转动轴B点的距离
l1
d 2
cos60
0.25m
启门力T到B点的距离 l2 2l1 0.5m
由力矩平衡方程 T l2 P BD G l1 解得 T 32.124KN
l1 P
D l2
lC lD
5.平面闸门AB倾斜放置,已知α =45°,门宽b=1m,
1P
y2 h1 h2 e
3
2.45m 0.72m 21.73m 2.45m
1P 3
3 2.11m
1.73m 2.45m 1 P
3
同理, y3 2.72m
静力学习题课

b:一定不 c:不一定
2013-8-15
23
BUAA
习题、例题、思考题
13、如图所示,刚性杆AB的A端用球铰链固定,B端用球铰链
和刚性杆BC连接,考虑杆的粗细。该系统的自由度为
a:2 b:3
。
c:4
d:5
e:6
2013-8-15
24
BUAA
并支撑在铅垂面内,则图
mg
FB
B
2mg mg
2013-8-15
O
tan
3L OC 4 sin 3 sin OB L cos 4 cos
3 f tan f min 4
17
BUAA
题8: 求桁架中杆1、3的内力。
FH
F1
FE
F
x
0
F3 FA
FD
F1 F
问题:若F力铅垂作用于 H点,哪些杆为零力杆?
M M
x
i
y z
( Fi ) 0 ( Fi ) 0
c:不一定是
MO x Fx
i
j y Fy
k z 0 Fz
M Ox yFz zFy 0 M Oy zFx xFz 0 M xF yF 0 y x Oz
26
2013-8-15
BUAA
2013-8-15
。
独立的平衡方程。 D:6个
9
B:4个;
C:5个;
BUAA
能列出几个独立的平衡方程?
B
FBC
FBN
W A
2013-8-15
10
BUAA
习题、例题、思考题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G3 A
1.8 m
G2
G
G1
2.0 m
B
2.5 m 3.0 m
FA
FB
1
解:
6
R
Ⅱ r
Ⅲ
M
解: 1. 取Ⅱ,Ⅲ轮及重物为研究对象,
r Ⅰ A
受力分析如图所示。 列平衡方程
B
G2
F F
x
0, 0,
B
FBx Fr 0 FBy G F G2 0 Gr FR 0
G1
FBy
y
C
B
Fr
FBx
K
M F 0,
tan Fr , F
1 3 1 ( pa M qb2 ) 2a 2 2
10
G
a a/2
a /2
M
y
FCy
C
2. 再取AC为研究对象, 受力分析如图所示。
C
b
FCx
列平衡方程
q A
B
b MC (F ) 0, FAx b qb 2 FAy a 0
qb
x FAx A FAy
F 0,
G
20
G2 C G Fn
F
解方程得
F Gr 10G1 , R Fr F tan 3.64G1 FBy G G2 F 32G1
7
FBx Fr 3.64G1 ,
R B
Ⅱ
M
r
Ⅲ
r Ⅰ A
2. 再取Ⅰ轮为研究对象,受力 分析如图所示。 列平衡方程
G2
G1
O
FOy
c
r
R O1
F1
C B
O
FOx
A b a
FN
Ff
A
F1
B
G
14
列平衡方程
M F 0,
O
b 0 F1a Ffc FN
(c)
O
FOy FOx
补充方程 解方程可得
Ff≤ fs FN
(d)
b F1a Ffc ≤ fs FN c FN
FN
F
x
FAx FCx qb 0
y
0,
解方程得
FAy FCy 0
1 1 1 1 3 FAx ( FAy a qb 2 ) ( M pa qb 2 ) b 2 2b 2 2 1 1 1 FCx FAx qb ( M pa qb2 ) 2b 2 2
或 得
b fsc ≤ F1a FN
≤ FN F1a b f sc f s F1a b f sc
Ff
A
F1
B
由于 所以
r r Ff F G R R
rG R
≤
代入式(d)得
Ff ≤
F1a , b f Sc
F1 ≥
rG b f sc f s Ra
15
G
FAy FAx FE FBx FBy
F
x
0,
A
FAx FBx FE 0
M F 0,
2r FBx 2r FBy rFE 0
FBx 1.5G, FBy 2G
5
联立求解可得
R r B
Ⅱ
M Ⅲ
r Ⅰ A
G2
G1
C G
齿轮传动机构如图所示。齿 轮Ⅰ的半径为 r ,自重 G1 。 齿轮Ⅱ 的半径为 R=2r ,其上固定一半径 为 r 的塔轮Ⅲ,轮Ⅱ与Ⅲ共重为 G2 = 2G1。齿轮压力角为α=20° 被提 升的物体 C 重为 G = 20G1 。求: ( 1 )保持物 C 匀速上升时,作用 于轮上力偶的矩M; (2)光滑轴承A,B的约束力。
2
3.联立求解。
1 2G1 2.5G2 5.5G FA 3.8
A
G1
1.8 m 2.0 m
G3
G2 G
3.0 m
B
2.5 m
4.不翻倒的条件是:FA≥0,
所以由上式可得
FA
FB
1 2G1 2.5G2 7.5 kN G≤ 5.5
故最大起吊重量为
Gmax= 7.5 kN
1.取汽车及起重机为研究 对象,受力分析如图。
G3 G2 G
3.0 m
2.列平衡方程。
A
1.8 m
G1
2.0 m
B
2.5 m
F 0,
M F 0,
B
FA
FB
FA FB G G1 G2 G3 0
G(2.5 m 3 m) G2 2.5 m G1 2 m FA (1.8 m 2 m) 0
qb
a b M G FAy 2a qb 0 2 2
0,
0,
A
FAy FAx FBx
B x FBy
F
y
FAy FBy G 0
F
x
FAx FBx qb 0
解方程得
FAy
1 1 1 ( M pa qb2 ), 2a 2 2
FBy G FAy
F F
x
0, 0,
A
FAx Fr 0 FAy G F G1 0 M F r 0
y
C
G
F
FAy
M
M F 0,
解方程得
FAx
Fr K
A
G1
FAx Fr 3.64G1 FAy G1 F 9G1 M F r 10G1r
3
A,B,C,D处均为光滑铰链,物块重为G,通过 绳子绕过滑轮水平地连接于杆AB的E点,各构件自重不 计,试求B处的约束力。
4
FAy
解: 1.取整体为研究对象。
FAx
2.受力分析如图。 3.列平衡方程。
FCx
FCy
5r G 2r FAx 0
解得 FAx 2.5G 4.取杆AB为研究对象,受力分析如图。 列平衡方程
轮转动所必需的力F1。
G
12
解:
O
1. 取鼓轮为研究对象,受力
分析如图。 列平衡方程
c
r
R
O1
F1
C B
M F 0,
O1
Fr Ff R 0
(a)
A
b a
FO1y FO1x
O1
解方程得
Ff
r r F G R R
(b)
C
Ff
G
F
FN
13
2. 取杠杆为研究对象,受力分析如图。
1 1 2 1 ( qb M pa ) 2a 2 2 1 1 1 FBx FAx qb ( M pa qb 2 ) 2b 2 2 11 FCy FAy
制动器的构造和主
O
要尺寸如图所示。制动
cLeabharlann rR O1F1
C
B
块与鼓轮表面间的摩擦
A b a
因数为 fs ,试求 制动鼓
8
G
a a /2 a /2
M
刚架结构如图所示, 其中 A, B和 C都是铰链。 结构的尺寸和载荷如图
C
b
q A
所示。试求 A, B , C三
铰链处的约束力。
B
9
G
a a /2 a /2
解:
M y C
b
G M
1. 取整体为研究 对象,受力如图所示。 列平衡方程
C
M (F ) 0,
B
q A B