齿轮的测量方法
齿轮综合测量方法

齿轮综合测量方法齿轮是机械传动中常用的零部件之一,用于实现两轴之间的转动传递。
齿轮的精度和质量直接影响到机械传动的性能和寿命。
因此,对齿轮进行综合测量是非常重要的。
齿轮的综合测量方法可以分为外观测量和功能测量两个方面。
下面将介绍一些常用的齿轮综合测量方法。
外观测量主要包括齿轮的尺寸测量和形状测量。
尺寸测量可以使用千分尺、游标卡尺等工具进行,主要测量齿轮的外径、齿高、齿顶直径和齿根直径等尺寸。
形状测量可以使用影像测量仪等设备进行,主要测量齿轮的齿形偏差、齿距偏差和齿向偏差等。
功能测量主要包括齿轮的传动误差和摆动测试。
传动误差是指齿轮在传动过程中产生的误差,可以通过齿轮测试台进行测量。
测试台上安装两个相互啮合的齿轮,并通过测量传感器测量齿轮的角度变化,从而得到齿轮的传动误差。
摆动测试是指齿轮在运转时产生的轴向和径向摆动,可以通过轴向和径向摆动测量仪进行测量。
此外,还可以采用光栅尺、振动传感器等设备对齿轮的转速和振动进行测量,以评估齿轮的运转稳定性和动力性能。
对齿轮进行综合测量时,需要注意以下几个方面。
首先,选择合适的测量设备和测量方法,确保测量结果的准确性和可靠性。
其次,要有严格的测量标准和规范,确保测量过程的一致性和可比性。
同时,还需要对测量结果进行分析和评估,及时发现齿轮的缺陷和不良现象,并采取相应的措施进行修复或更换。
综上所述,齿轮的综合测量方法是一项重要的工作,能够全面评估齿轮的质量和性能。
通过合理选择测量设备和方法,严格执行测量标准和规范,以及对测量结果进行分析和评估,能够提高齿轮的精度和可靠性,从而提高机械传动的性能和寿命。
齿轮的测量方法

齿轮的测量方法嘿,朋友们!今天咱来聊聊齿轮的测量方法,这可真是个有趣又重要的事儿呢!你看那齿轮,就像一个个小小的魔法轮子,带动着各种机器转动。
那要怎么测量它们呢?这可得有点小窍门。
咱先说说最简单的,用尺子量量直径呗。
就好像你量自己的腰围一样,把尺子轻轻一搭,嘿,直径就出来啦!但这只是第一步哦,可别小瞧了这小小的齿轮。
然后呢,咱得看看它的齿数。
这就像数星星一样,得一颗一颗仔细数清楚。
要是数错了,那可就闹笑话啦!这齿数可是决定齿轮很多特性的关键呢。
还有啊,齿距也很重要呢!这就好比是齿轮的“步长”,每个齿之间的距离得量准确咯。
你想想,要是步长都不一样,那齿轮还能好好工作吗?肯定不行呀!再来就是齿形啦,这可有点像看人的脸一样,得仔细端详。
看看这齿形是不是标准,有没有啥缺陷。
要是有个“歪瓜裂枣”的齿,那可不行哦。
测量齿轮就像是给它们做一次全面的体检。
咱得认真对待,不能马虎。
就像医生给病人看病一样,稍有疏忽可能就会出大问题呢。
你说,要是齿轮没测量好,装到机器里会咋样?那肯定是“噼里啪啦”乱响,说不定还会出故障呢!那损失可就大啦!所以啊,测量齿轮可真是个精细活儿。
咱得有耐心,还得细心。
就像绣花一样,一针一线都不能马虎。
想象一下,要是咱能把齿轮测量得特别准确,那机器就能顺畅地工作,为我们创造价值。
这多有成就感呀!总之呢,齿轮的测量方法虽然不复杂,但每一步都很关键。
咱可不能掉以轻心。
要把每个齿轮都当成宝贝一样,好好测量,好好对待。
这样,它们才能在自己的岗位上发挥最大的作用呀!这就是我对齿轮测量方法的看法,你们觉得呢?。
齿轮测量方法

齿轮测量⽅法齿轮测量齿轮齿单个齿距偏差与齿距累积总偏差得测量⼀、⽬得熟悉测量齿轮单个齿距偏差与齿距累积总偏差得⽅法。
加深理解单个齿距偏差与齿距累积总偏差得定义。
⼆、内容1、⽤周节仪或万能测齿仪测量圆柱齿轮齿距相对偏差。
2、⽤列表计算法或作图法求解齿距累积总偏差。
三、测量原理及计量器具说明单个齿距偏差pt f 就是指在分度圆上,实际齿距与公称齿距之差(⽤相对法测量时,公称齿距就是指所有实际齿距得平均值)。
齿距累积总偏差F p 就是指在分度圆上,任意两个同侧齿⾯间得实际弧长与公称弧长之差得最⼤绝对值,即最⼤齿距累积偏差(m ax p F )与最⼩齿距累积偏差(m in p F )之代数差。
在实际测量中,通常采⽤某⼀齿距作为基准齿距,测量其余得齿距对基准齿距得偏差。
然后,通过数据处理来求解单个齿距偏差pt f 与齿距累积总偏差P F ,测量应在齿⾼中部同⼀圆周上进⾏,这就要求保证测量基准得精度。
⽽齿轮得测量基准可选⽤齿轮得内孔、齿顶圆与齿根圆。
为了使测量基准与装配基准⼀致,以内孔定位最好。
⽤齿顶圆定位时,必须控制齿顶圆对内孔得轴线得径向跳动。
在⽣产中,根据所⽤量具得结构来确定测量基准。
⽤相对法测量齿距相对偏差得仪器有周节仪与万能测齿仪。
1、⽤⼿持式周节仪测量图1为⼿持式周节仪得外形图,它以齿顶圆作为测量基准,指⽰表得分度值为0、005mm ,测量范围为模数3—15 mm 。
周节仪有4、5与8三个定位脚,⽤以⽀承仪器。
测量时,调整定位脚得相对位置,使测量头2与3在分度圆附近与齿⾯接触。
固定测量头2按被测齿轮模数来调整位置,活动测量头3则与指⽰表7相连。
测量前,将两个定位脚4、5前端得定位⽖紧靠齿轮端⾯,并使它们与齿顶圆接触,再⽤螺钉6紧固。
然后将辅助定位脚8也与齿顶圆接触,同样⽤螺钉固紧。
以被测齿轮得任⼀齿距作为基准齿距,调整指⽰表7得零位,并且把指针压缩1—2圈。
然后,逐齿测量其余得齿距,指⽰表读数即为这些齿距与基准齿距之差,将测得得数据记⼊表中。
齿轮测绘的步骤和技巧_张力

取
*" + . , ** + , 当 ! 3 *$9 时, 公式 1 2 3 ’ [ *+ /,* "1" . ( * 4 $+ , )5
由公式! 1 2 3 ’’()! [! ( * 4 $+ , )5 ,678! 5 * /’)67!] 。 $+ $". $$, , , 5 $+ 0#. $.$ 1 /] 代入得 1 2" 3 . [ *+ /,* "1" . ( . 4 $+ , )5 $+ $". $$, , : *0 5 $+ 0#. $.$ 1 : $+ , ]3 ..+ ",. ( ;;) 1 2* 3 ,,+ 1*1;; ( ;;) ..+ ",. 4 ..+ "$ 3 $+ $,. 还需减去公差即与测量尺寸一致。 ( . ) 最终确定参数 ! ’ 3 . , ," 3 *0 , ,* 3 1/ , ! 3 *$9 ,2 % 0 3 " , 3 0 3 $+ *, , #< 3 "1*;;, /" 3 $+ , , /* 3 ; 4" 3 "$.;;, $ ;精度 等 级 - 4 =2 ( >?"$$/, —"/## ) 4* 3 ",0;;, 4 %" 3 ""0;;, 4 %* 3 "0.;;, 4 @" 3 /#;;, 4 @* 3 ".0;;,*" 3 . ,** 3 , ;按齿厚极限偏差 5、* 查公 差表并计算求得主动齿轮,公法线长度上偏差 6 A;) 3 $+ "*0;;,下偏差 6 A;6 3 4 $+ "-.;;;故 1 2;%B 3 ..+ ",. , 1 2;67 3 ..+ ",. 4 $+ "-. 3 4 $+ "*0 3 ..+ $*# ( ;; ) .1+ /# ( ;;) 。 同样 可 得 从 动 齿 轮: 6 A;) 3 $+ "-*;;, 6 A;6 3 $+ *.#;;,1 2;%B 3 ,,+ 1*1 4 $+ "-* 3 ,,+ "," ( ;; ) , 1 2;67 3 ,,+ 1*1 4 $+ *.# 3 ,,+ $-, ( ;;) 。 ( , ) 测绘技巧! 齿轮测绘的关键是判定模数、压力 角和齿轮种类,一般按下列步骤进行: " 由测出的公法 线长度计算基节。#由基节判定模数和压力角。 $ 由测 出的齿顶圆直径、齿根圆直径判定齿顶高系数 2 % 0 、顶 隙系数 3 0 和齿高 2,同时可按 2 核对 ’。 % 由公法线长 度判定齿轮种类,即齿轮是否变位、是何种变位。 & 由 测出的齿顶圆直径与计算标准齿轮齿顶圆直径比较,也 可判定齿轮种类,如本例测出 4 %" 3 ""0;;,而标准齿轮 为 4 %" 3 ’ ( , 5 * 2 % 0 ) 3 ""* ( ;; ) , 因 ""0;; C ""*;;,所以是变位齿轮。 ’ 由测出的中心距与计算非
齿轮测量基本方法原理

5、铣键槽----铣床。
6、滚齿-----滚齿机。
7、齿面淬火---高频淬火机床。
8、磨---外圆磨床。
锥齿轮用铣床可以加工
第一步当然是下料,锯切
第二步,车,外形
第三步,铣,齿形
如果需要可以磨削和淬火或调质
细长轴的齿轮轴加工工艺(以45号钢为例):
一、毛坯下料
二、调质处理(提高齿轮轴的韧性和轴的刚度)
加工的最后阶段是齿形的精加工阶段。这个阶段的目的,在于修正齿轮经过淬火后所引起的齿形变形,进一步提高齿形精度和降低表面粗糙度,使之达到最终的精度要求。在这个阶段中首先应对定位基准面(孔和端面)进行修整,因淬火以后齿轮的内孔和端面均会产生变形,如果在淬火后直接采用这样的孔和端面作为基准进行齿形精加工,是很难达到齿轮精度的要求的。以修整过的基准面定位进行齿形精加工,可以使定位准确可靠,余量分布也比较均匀,以便达到精加工的目的。
(一)工艺过程分析
图9-17所示为一双联齿轮,材料为40Cr,精度为7-6-6级,其加工工艺过程见表9-6。
从表中可见,齿轮加工工艺过程大致要经过如下几个阶段:毛坯热处理、齿坯加工、齿形加工、齿端加工、齿面热处理、精基准修正及齿形精加工等。
齿号
Ⅰ
Ⅱ
齿号
Ⅰ
Ⅱ
模数
2
2
基节偏差
±0.016
±0.016
齿数
20世纪70年代初,开始利用长光栅(或激光)、圆光栅等组成的测量系统、电子计算机自动控制系统和数据处理系统等组成的自动测量系统,在同一台齿轮量仪上测量齿向误差,齿形误差和周节偏差等。直齿圆柱齿轮的齿向误差也常在具有精密直线导轨的齿圈径向跳动仪上测量。
齿圈径向跳动测量以被测齿轮轴心线定位,利用带有球形测头或锥角等于2倍齿形角的圆锥形测头的测微仪,使测头位于齿高中部与齿廓双面接触。测头相对于齿轮轴心线的最大变动量即齿圈径向跳动。测量齿圈径向跳动的仪器是齿圈径向跳动仪。
齿轮测量基本方法原理

齿轮测量基本方法原理(转)长度计量技术中对齿轮参数的测量。
测量圆柱齿轮和圆锥齿轮误差的方法有单项测量和综合测量两种。
单项测量主要是测量齿形误差、周节累积误差、周节偏差、齿向误差和齿圈径向跳动等。
齿形测量图1为齿轮齿形测量的原理。
常用的测量方法有展成法和坐标法。
①展成法:基圆盘的直径等于被测渐开线理论基圆直径。
当直尺带动与它紧密相切的基圆盘和与基圆盘同轴安装的被测齿轮转动时,与直尺工作面处于同一平面上的测量杠杆的刀口相对于被测齿轮回转运动的轨迹是一理论渐开线。
以它与被测渐开线齿形比较,即可由测微仪(见比较仪)指示出齿形误差。
利用此法测量齿形误差的工具有单盘渐开线测量仪和万能渐开线测量仪 (见渐开线测量仪)。
②坐标法:按齿形形成原理列出齿廓上任一点的坐标方程式,然后计算出齿廓上若干点的理论坐标值,以此与实际测得的被测齿形上相应点的坐标值比较,即可得到被测齿形误差。
有直角坐标法和法线展开角坐标法两种。
前者的测量原理是被测齿廓上各点的坐标值(x、y)分别由X和Y方向的光栅测量系统(见光栅测长技术)测出,经电子计算机计算后得出齿形误差。
此法适用于测量大型齿轮的齿形。
法线展开角坐标法用于测量渐开线齿形。
当与被测齿轮同轴安装的圆光栅转动一个展开角φ时,由长光栅测量系统测出被测渐开线基圆的展开弧长ρ,由电子计算机按计算式ρ=r0φ(式中r0为基圆半径)计算出被测弧长与理论弧长之差值。
按需要在齿廓上测量若干点,由记录仪记录出齿形误差曲线图。
周节测量图2为齿轮周节测量的原理。
周节测量有绝对测量法和相对测量法。
①绝对测量法:被测齿轮与圆光栅长度传感器同轴安装。
测量时,被测齿轮缓慢回转,当电感式长度传感器的测头与齿面达到预定接触位置时,电感式长度传感器发出计数开始信号,利用电子计算机计算由圆光栅长度传感器发出的经过处理后得到的电脉冲数,直至测头与下一齿面达到预定接触位置为止。
如此逐齿进行,测出相当于各实际周节的电脉冲数,经电子计算机处理后即可得出周节偏差和周节累积误差。
齿轮间接触精度检测方法

齿轮间接触精度检测方法
齿轮是一种常见的机械元件,广泛应用于各种机械传动系统中。
齿轮的间接触精度是指齿轮与齿轮之间的接触面的精度,它直接影响到齿轮传动的性能和使用寿命。
因此,对齿轮间接触精度进行准确检测是非常重要的。
常用的齿轮间接触精度检测方法主要有以下几种:
1. 接触模型法:这种方法基于齿轮的理论接触模型,通过测量齿轮的几何参数,如齿高、齿距等,计算出齿轮的理论接触区域。
然后,利用接触模型与实际测量的齿轮接触区域进行比较,从而得出齿轮间接触精度的评估结果。
2. 光学检测法:这种方法利用光学原理,通过测量齿轮表面的形貌特征来评估齿轮的间接触精度。
常用的光学检测方法包括摄像测量法、激光扫描法等。
这些方法可以对齿轮表面进行非接触式的测量,具有高精度和高效率的优点。
3. 声学检测法:这种方法利用声学原理,通过测量齿轮传动过程中产生的声音信号来评估齿轮的间接触精度。
根据声音信号的频谱特征,可以判断齿轮的接触状况以及存在的问题,如齿面磨损、齿距误差等。
4. 振动检测法:这种方法利用振动传感器对齿轮传动系统的振动信号进行监测和分析,以评估齿轮的间接触精度。
通过分析振动信号
的频谱特征和振动模态,可以判断齿轮的接触状况以及存在的问题,如齿面磨损、齿距误差等。
以上是常用的齿轮间接触精度检测方法,每种方法都有其优缺点和适用范围。
在实际应用中,可以根据具体情况选择合适的方法进行检测。
总结起来,齿轮间接触精度的检测是保证齿轮传动系统正常运行的重要环节。
通过合理选择和应用检测方法,可以及时发现齿轮的问题,并采取相应的措施进行修复和调整,从而保证齿轮传动系统的性能和寿命。
齿轮测绘方法范文

齿轮测绘方法范文1.齿轮几何参数的测量:齿轮测绘的起点是测量齿轮的几何参数,即齿廓曲线、法向厚度和齿数等。
测量方法主要有导规测量、曲线测量和测量仪测量等。
其中,导规测量是最常用的方法之一,通过将导规沿着齿廓曲线滑动测量齿廓曲线的几何形状。
曲线测量主要是利用光学测量原理来测量齿轮的几何形状,包括投影仪测量、光栅测量和激光干涉测量等。
2.齿轮面形状的测量:齿轮表面的形状是指齿顶高、齿底高、齿顶圆直径和齿底圆直径等参数,这些参数对于齿轮的传动效果和使用寿命有重要影响。
测量方法主要有触针法测量和光学测量。
触针法测量是将一根触针放在齿轮表面,并沿着齿轮的横截面移动,以便测量表面形状的凹凸起伏。
光学测量方法则是利用光学影像原理来测量齿轮表面形状的凹凸变化。
3.齿轮运动特性的分析:齿轮的运动特性主要包括齿轮的分度误差、轴向跑位误差和齿隙等参数。
这些参数对于齿轮的传动精度和品质有重要影响。
分度误差是指齿轮的实际齿数与理论齿数之间的差异,常用测量方法有拉伸计测量和雷射一维测量。
轴向跑位误差是指齿轮中心线在轴向方向的偏移量,常用测量方法有测量座测量和精密测量仪测量。
齿隙是指齿轮齿顶与齿底之间的间隙,主要对轴向间隙进行测量。
4.数据处理和分析:在测绘过程中,需要对测得的数据进行处理和分析,得到齿轮的几何参数和运动特性。
常用的数据处理方法有数据滤波、数据平滑和数据拟合等。
数据分析主要是基于测量的数据进行统计分析和显微观察,以确保测得的数据的准确性和可靠性。
在齿轮测绘过程中,还需要注意以下几个方面:1.测量精度的控制:齿轮测绘需要使用高精度的测量设备和仪器,因此测量精度的控制非常重要。
在测量过程中,应确保测量设备的准确性和稳定性,并进行常规的校准和周期性的检查。
2.测量方法的选择:齿轮的几何形状复杂,因此选择合适的测量方法对于测绘的质量和准确性至关重要。
在选择测量方法时,应考虑齿轮的几何形状、尺寸和表面质量等因素,并选择与之匹配的测量仪器和设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮的测量方法
齿轮是在机械、汽车、飞机、仪器仪表等中都有重要的应用,他的精度对传递运动的精度、平稳性、效率等有重要的影响,需要检验的参数有齿形(汗压力角)、周节、齿向、径向跳动等。
齿轮的测量方法直接决定齿轮测量出来的结果的精度,下面是几种常见的测量方法:一、CNC测量
这类仪器实质上是含有一个回转角坐标的四坐标测量机,主要用于齿轮单项几何精度的检测,也可用于(静态)齿轮整体误差的测量。
工作方式是通过接口或网络的信息集成,将测量机、锥齿轮设计及锥齿轮加工机床连接一起,构建成锥齿轮闭环制造系统,还能用于反求工程对工件参数进行测定。
缺点:价格昂贵。
另,CNC测量方法只能用于量测齿轮。
二、齿轮单面啮合滚动点扫描测量仪
这类仪器通常采用高精度圆光栅作为角度传感器,测量基本单元是齿轮上特制的测量棱线,分别为齿廓测量棱线和齿向(螺旋线)测量棱线。
测量重复性可达1至2μm,可测量锥齿轮的齿形、齿向、齿距偏差,齿面形貌偏差,切向综合偏差以及接触区。
缺点:这类仪器市场价格相对较高。
另,仪器对环境要求太高,稍有变化,精度就受影响。
三、齿轮在线测量分选机
这类仪器主要应用于批量生产汽车轿车齿轮质量的最终检测,适用于车间现场,能满足批量生产汽车齿轮在线检测和自动分选的要求。
测量时可使用不同工装夹具,可分别对内、外齿轮,盘、轴齿轮进行测量。
配有数据处理系统和SPC统计分析软件,能对齿轮加工过程和工艺状况进行监测和预报。
缺点:这类仪器重复精度相对稍差,在选用上要特别注意。
四、激光齿轮测量仪
这类仪器通常采用高精度气浮主轴,气浮导轨,还采用激光测长系统进行齿面精度检测。
这类仪器的测量精度和重复精度一般标称是0.2至0.3μm。
由于采用激光非接触测量方式,仪器可以测量齿面上非渐开线齿根部分几何形状,一般配置的软件可以模拟求得被测齿轮与其配对齿轮啮合时的传动误差并进行分析,所测数据和分析数据还可通过LAN共享。
缺点:价格昂贵、适用范围太窄。
五、三坐标测量机
多数三坐标测量机都有齿轮测量软件,特别是圆柱齿轮测量软件。
测量齿轮时,主要的输出参数包括齿轮的灵性、齿数、法向模数、法向压力角、螺旋角与玄向、齿轮宽度、变位系数、内外齿轮数等。
顶隙系数一般为0.25。
当顶隙系数不为0.25时,还需输入顶隙系数。
齿形一般为渐开形齿形,对于其他齿形的齿轮需有专门的软件。
在不少测量机上,在输入上述参数后,即自动显示分度圆直径、基圆直径、分度圆上的断面压力角等,以供校核,只有在校核无误后方可开始测量。
查看更多三坐标技术知识请到:
//。