圆的认识ppt课件
合集下载
圆的认识免费ppt课件

对于任意两个相交的圆, 它们的交点满足两圆的方 程,因此可以用两圆的方 程解出交点坐标。
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
圆的认识PPT课件

理解圆的基本概念和性质
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用
圆的认识ppt课件

很多交通工具如轮胎、轮毂和车盖等都采用 圆形设计,因为这种形状可以减少摩擦和风 阻,提高行驶效率。
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
小学圆的认识ppt课件

圆在日常生活中的运用
总结词
圆在日常生活中的运用非常广泛,如轮胎、餐具、体育器材 等。
详细描述
轮胎的外形是圆形,因为圆形可以保证车辆在行驶过程中平 稳,减少摩擦阻力。此外,许多餐具和体育器材也是圆形设 计,如碗、盘子、篮球等。这些设计都是基于圆的性质和特 点,能够满足人们的生活需求。
02
圆的构成要素
用直尺和圆规画圆
总结词
结合直尺的精确性
详细描述
使用直尺确定半径的长度,然后用圆规在直尺上确定圆心位置。接着,将圆规的尖端固定在圆心位置,另一端在 纸上旋转一圈即可。这种方法结合了直尺的精确性和圆规的简便性,能够快速准确地画出所需的圆。
05
圆的性质与定理
圆内角和定理
总结词
圆内角和定理描述了圆内角的度 数总和。
圆与圆锥的关系
圆锥的侧面展开图是圆
将圆锥的侧面展开,可以得到一个圆 ,这个圆的半径等于圆锥的母线长。
圆锥的底面是圆
圆锥的底面是一个圆,其半径等于圆 锥的底面半径。
圆与其他曲线的结合
圆与椭圆的结合
将椭圆的长轴和短轴分别作为圆的直 径,可以得到两个圆,这两个圆与椭 圆相切。
圆与抛物线的结合
将抛物线的准线作为圆的直径,可以 得到一个圆,这个圆与抛物线相切于 焦点。
小学圆的认识ppt课件
目
CONTENCT
录
• 圆的定义与基本性质 • 圆的构成要素 • 圆的度量 • 圆的画法 • 圆的性质与定理 • 圆的拓展知识
01
圆的定义与基本性质
什么是圆
总结词
圆的定义是平面内到定点距离等 于定长的所有点的集合。
详细描述
圆是一种常见的几何图形,它由 平面内满足特定条件的所有点组 成。这个定点被称为圆心,而定 长被称为半径。
圆的认识ppt课件

4 .在一个圆中可以画出( )条直径和半径。在同圆(或等圆)中,所有直径都( )所有半径都( ),直径等于半径的( )倍。
练习总结:一、填空
圆心
o
半径
r
直径
d
无数
相等
相等
2
两端都在圆上的 线段叫做直径。 ( ) 圆的直径都是一条直线,半径是一条射线。( ) 所有的直径都相等,所有的半径都相等。( ) 画圆时圆规两脚间的距离是圆的半径。( )
走进圆的王国
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
简约风年终工作总结
CLICK HERE TO ADD A TITLE
说说生活中,哪些地方还能看到圆?
演讲人姓名
十五的月亮圆又圆
这些平面图形是由线段围成的。
01
圆是由 围成的平面图形。
02
曲线
03
车轮为什么要做成圆的?你想知道其中的奥秘吗?
章节一
你会画圆吗?
CHAPTER ONE
圆的画法:
1、把圆规的两脚分开,定好两脚间的距离(即半径3厘米)。
2、把有针尖的一只脚固定在一点(即圆心)上。
3、把装有铅笔尖的一只脚旋转一周,就画出一个圆。
01.
O
01.
圆心
01.
半径 r
01.
直径 d
01.
01.
01.
A
01.
01.
B
01.
C
01.
o
C
D
G
H
M
N
B
F
E
图中哪些是半径?哪些是直径? 哪些不是,为什么?
o
练习总结:一、填空
圆心
o
半径
r
直径
d
无数
相等
相等
2
两端都在圆上的 线段叫做直径。 ( ) 圆的直径都是一条直线,半径是一条射线。( ) 所有的直径都相等,所有的半径都相等。( ) 画圆时圆规两脚间的距离是圆的半径。( )
走进圆的王国
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
简约风年终工作总结
CLICK HERE TO ADD A TITLE
说说生活中,哪些地方还能看到圆?
演讲人姓名
十五的月亮圆又圆
这些平面图形是由线段围成的。
01
圆是由 围成的平面图形。
02
曲线
03
车轮为什么要做成圆的?你想知道其中的奥秘吗?
章节一
你会画圆吗?
CHAPTER ONE
圆的画法:
1、把圆规的两脚分开,定好两脚间的距离(即半径3厘米)。
2、把有针尖的一只脚固定在一点(即圆心)上。
3、把装有铅笔尖的一只脚旋转一周,就画出一个圆。
01.
O
01.
圆心
01.
半径 r
01.
直径 d
01.
01.
01.
A
01.
01.
B
01.
C
01.
o
C
D
G
H
M
N
B
F
E
图中哪些是半径?哪些是直径? 哪些不是,为什么?
o
圆的认识(全单元)PPT课件

题目中都告诉了 我们什么?
讨论:
·r=1m
(1)正方形与圆之间部分的面积 是哪一部分?
(2)怎样计算阴影部分的面积?
正方形的面积-圆的面积=正方形与圆之间
部分的面积 正方形与圆之间部分 的面积是阴影部分的 面积。
也就是正方形比 圆多的面积。
.
108
r=1m
观察图形,说说你的想法。
圆的面积-正方形的面积=正方形与圆之间
三角形
长方形
梯形
正方形
平行四边形
由线段围成的平面图形
圆是平面上的一种曲线图形。 圆
圆的 认识
连接圆心和圆上任意一点的线段叫做半径
圆心 O 半径r 直径d
经过圆心并且两端都在圆上的线段叫做直径
.
7
同. 圆. 内. ,半径有无数条,长度都相等。
.
8
直径 d
同. 圆. 内. ,直径有无数条,长度都相等。
圆环,内圆
半径是2cm,
6cm
外圆半径是
6cm。圆圆环环面积= 外圆面积-内圆面积 的面积是多
少?
.
91
方法一
方法二
3.14×62 3=.134.1×42×236 3=.1141×3.404 –
3.14×(62 – 22) = 3.14×(36 – 4) = 3.14×32
1=21.5060.48 (cm2)
长是多少呢? 高是1m 。
.
上一页 下一页 43主页
圆的面积推导(转化思想)
.
44
.
45
.
46
.
47
.
48
.
49
.
50
.
51
圆的认识-PPT课件

围成的平面图形。
不以规矩,不成方圆。
——孟子
·
d
·O
·
通过圆心并且两端都在圆 上的线段是直径。通常用字母 d表示。
折一折,画一画, 量一量,观察直径有 什么特征。
连接圆心和圆上任意一 点的线段是半径。通常用字 母r表示。
折一折,画一画, 量一量,观察半径有 什么特征。
·
r
O·
想一想,直径与半径之间可能存在什么关系?
r•
r
do
想一想,直径与半径之间可能存在什么关系?
r r
•r do
想一想,直径与半径之间可能存在什么关系?
r
• do
r r
想一想:
你会画一个直径是4厘 米的圆吗?你准备怎么画?
r
•
d=r+r
do
d=2r
r=d÷2
r
半径 5厘米 15米 7厘米 3.5厘米 2.5分米 直径 10厘米 30米 14分米 7厘米 5分米
15米
10厘米
28厘米
如果要给圆形花坛安装一个喷水器,你 觉得装在哪里好?为什么?
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
不以规矩,不成方圆。
——孟子
·
d
·O
·
通过圆心并且两端都在圆 上的线段是直径。通常用字母 d表示。
折一折,画一画, 量一量,观察直径有 什么特征。
连接圆心和圆上任意一 点的线段是半径。通常用字 母r表示。
折一折,画一画, 量一量,观察半径有 什么特征。
·
r
O·
想一想,直径与半径之间可能存在什么关系?
r•
r
do
想一想,直径与半径之间可能存在什么关系?
r r
•r do
想一想,直径与半径之间可能存在什么关系?
r
• do
r r
想一想:
你会画一个直径是4厘 米的圆吗?你准备怎么画?
r
•
d=r+r
do
d=2r
r=d÷2
r
半径 5厘米 15米 7厘米 3.5厘米 2.5分米 直径 10厘米 30米 14分米 7厘米 5分米
15米
10厘米
28厘米
如果要给圆形花坛安装一个喷水器,你 觉得装在哪里好?为什么?
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
《圆的认识》ppt课件

用圆规画圆
① 定长(半径) ② 定点(圆心) ③ 旋转(一只 脚旋转一周)
把装有铅笔尖的一只脚旋转一周,就画出一个圆。
你喜欢用哪种方法画圆?为什么?
圆规可以画任意大小的圆。
认识圆的圆心、半径和直径
· ·O 直径d 圆心
连接圆心和圆上任意一点的 线段叫作半径。
通过圆心并且两端都在圆 上的线段叫作直径。
2在同圆或等圆中,直径的长度是半径的2倍,半径 的长度是直径的一半。
3圆是轴对称图形,它有无数条对称轴。
跨学科学习
1
圆,一中同长也! r
墨
圆心 半径
O
子
像
2
古代学著作《周髀算经》中 记载了这样一句话“圆出于方, 方出于矩”中“圆出于方”,是 通过将正方形不断切割而来的。
课后作业
1.教材58页练习十三第1、4题; 2.从课时练中选取。
折一折
折一折
量一量
同一个圆内所有的半径都相等。 同一个圆内所有的直径都相等。
dd O
r
=2
r
=
1 2
d
同一个圆内直径长度是半径的2倍。
半径长度是直径的一半。
用圆设计美丽的图案
1.先画出一个圆。
2.然后在圆上画两条经过圆心并且互相垂直的直线。
3.在直线与圆的四个交点中,连接相邻的两个交点 构造线段。
4.以交点构造的线段为直径,画一个过大圆圆心的 半圆。
5.以交点构造的四条线段为直径,依次作出半圆。
请你试着用圆规和直尺画一画下面的图形。
课堂练习
1 对于上页中用茶杯盖、三角尺画出的圆,如何找 到圆心?
方法一
1 对于上页中用茶杯盖、三角尺画出的圆,如何找 到圆心?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
(米)
2
1.4
5
d
(米)
0.8
6
圆的画法:
定半径
定圆心
旋转一周
1、把圆规的两脚分开,定好两脚间的距离
(即半径)。 2、把有针尖的一只脚固定在一点(即圆心)上 3、把装有铅笔尖的一只脚旋转一周,
就画出一个圆。
1、用圆规画出半径是2厘米的一个圆,并用字母 O、r、d分别标出它的圆心、半径、和直径。 2、画出直径是4厘米的一个圆。
G
E C M o F B D N H
一起动手:
1.请同学们在圆纸片上画出半径,10秒钟,看 能画出多少条?直径呢? 2.请同学们用直尺量一量画出的半径有多少 厘米?你发现了什么?直径呢? 3. 在同一个圆里,半径和直径之间有什么关系?
r d o
•
r
r
r
d•
o
r
r= 2
在同一个圆里,直径是半径的2倍,半径是直径的一半.
讨论: 车轮为什么做成圆形的,车轴应安装 在哪里?
圆
小组合作探究要求:
把圆形纸片反复对折若干次,展开,看看有什么发现?
圆心
O
。
圆心
连接圆心和圆上任意一点的线段叫做半径。
直径 d
通过圆心并且两端都在圆上的线段叫做直径。
( 1) ( 2) ( 3)
图中哪些是半径?哪些是直径?哪些不是,为什么?
1 、判断:
(1)在同一个圆内只可以画100条直径。 ( × ) (2)所有的圆的直径都相等。 (
× )
(3)两端都在圆上的线段叫做直径。 ( × ) (4)等圆的半径都相等。 (
√
)
2、 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度
B.直径长度
(2)从圆心到( C )任意一点的线段,叫半径。 A.圆心 B.圆外 C.圆上 (3)通过圆心并且两端都在圆上的( B )叫直径。 A.直径 B.线段 C.射线
讨论: 车轮为什么做成圆形的,车轴应安装 在哪里?