概率论与数理统计-随机变量及其分布

合集下载

概率论与数理统计教案第2章 随机变量及其分布

概率论与数理统计教案第2章  随机变量及其分布

概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

概率论与数理统计第二章 随机变量及其分布

概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)

i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~

概率论与数理统计课件:随机变量及其分布

概率论与数理统计课件:随机变量及其分布

随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律

k
P X k p(
1 p)1k k 0,1
(0 p 1)

概率论与数理统计随机变量及其分布

概率论与数理统计随机变量及其分布
随机事件是从静态的观点来研究随机现象, 而随机变量则是一种动态的观点。
问题三 随机变量的一些例子
在随机试验中,试验结果很多本身就由数量表示 每天进入教室的人数X 某个时间段吃饭排队的人数X 电灯泡使用的寿命T 而在另一些随机试验中,比如检查一个产品是否合格,此时样本空间
S={合格品,不合格品},若用1对应合格品,-1对应不合格品,这 样就都有唯一确定的实数与之对应。
P { 而a 且 Xx i所 成b } 的 任P 何{ a 事 x i 件 b { 的X 概 率x 都i} 能} 够a 求 x i出 b 来p i,
2.2 离散型随机变量及其概率
分P {X 布 I} P {Xxi} p i
xi I
xi I
2.2 离散型随机变量及其概率分布
3 常用离散分布 两点分布(0-1分布):若一个随机变量X只有两个可能
1.随机变量的引入
从上面的例子可以看出随机试验的结果都可用一个实数 来表示,这个数随着试验的结果不同而变化,它是样本
点的函数,这个函数就是我们要引入的随机变量。
2 随机变量的定义
随机变量:设随机试验的样本空间为S,称定义在样本空间S 上的实值函数X=X( )为随机变量。
随机变量的表示: 常用大写字母X,Y,Z或希腊字母
时,
b(k,n, pn)=
lim
讲课本n 例6,例7
l i m k
n
Cnkpnk(1pn)nk
e k!
2.3 随机变量的分布函数
随 机 变( 量 的 分布x函数)
定义1 设X是一个随机变量,称F(x)=P{X≤x} 为X的分布函数。有时记作X~F(x) 这个概率具有什么特点呢? 具有累积性 这个概率与x有关,不同的x此累积概率的值也不同。 注:①X是数轴上随机点的坐标,则分布函数F(x)的值就表示X落在区间

海南大学《概率论与数理统计》课件 第四章 随机变量及其分布

海南大学《概率论与数理统计》课件 第四章 随机变量及其分布
例如:X 0 取出的n个产品中没有次品;
X 3 取出的n个产品中至多有3个次品;
X 3 取出的n个产品中有超过3个的次品.
8
关于随机变量的补充说明
• 引入随机变量之后, 可以更方便地表示事件。 • 随机变量的确定不仅与样本空间有关, 也与试验
的研究目的有关。 • 随机变量满足函数的单值对应关系。 • 随机变量不仅有取值的不同, 取到这些值的概率
②正则性: p( xi ) 1 . i 1
这两条性质也是随机变量分布列的充要条件。
由概率的意义和随机变量的完备性容易证明。
25
二、离散型随机变量的分布函数
由分布列可以写出其分布函数 F ( x) P( xi ) xi x
它的图形是有限(或无穷)级数的阶梯函数〔右连续 〕
F(x)
1
0
x
26
27
X的分布列为
X1 2 3 P 0.6 0.3 0.1
X的分布函数为
0, x 1; 0.6, 1 x 2; F ( x) 0.9, 2 x 3; 1 , x 3.
注意:由分布列求分布函数是概率累加的过程.
并且,总有: 当x xmin时,F ( x) 0; 当x xmax时,F ( x) 1.
解 (1) 根据分布函数的性质可知
F() 1, F() 0
依题意可得
18
F() A π B 1 2
F() A π B 0 2
联立上面两个方程可以解得 A 1,B 1 2π
(2) 随机变量 X 落在(-1,1)内的概率可以表示为
P{1 X 1} F (1 0) F (1)
P{a X b} F(b 0) F(a 0);
P{a X b} F(b 0) F(a).

概率论与数理统计教案随机变量及其分布

概率论与数理统计教案随机变量及其分布

概率论与数理统计教案-随机变量及其分布教案章节一:随机变量的概念1.1 教学目标了解随机变量的定义与分类理解随机变量分布函数的概念掌握随机变量期望的计算方法1.2 教学内容随机变量的定义随机变量的分类:离散型与连续型随机变量分布函数的定义与性质随机变量期望的计算方法1.3 教学方法采用讲授法,讲解随机变量的概念及其分类通过例题,讲解随机变量期望的计算方法开展小组讨论,巩固随机变量分布函数的理解教案章节二:离散型随机变量的概率分布2.1 教学目标掌握离散型随机变量的概率分布的定义与性质学会计算离散型随机变量的概率分布理解离散型随机变量期望与方差的计算方法2.2 教学内容离散型随机变量的概率分布的定义与性质几种常见的离散型随机变量概率分布:伯努利分布、二项分布、几何分布、泊松分布离散型随机变量期望与方差的计算方法2.3 教学方法采用讲授法,讲解离散型随机变量的概率分布的定义与性质通过例题,讲解几种常见的离散型随机变量概率分布的计算方法开展小组讨论,巩固离散型随机变量期望与方差的计算方法教案章节三:连续型随机变量的概率密度3.1 教学目标理解连续型随机变量的概念掌握连续型随机变量的概率密度的定义与性质学会计算连续型随机变量的概率密度3.2 教学内容连续型随机变量的概念连续型随机变量的概率密度的定义与性质几种常见的连续型随机变量概率密度:均匀分布、正态分布、指数分布3.3 教学方法采用讲授法,讲解连续型随机变量的概念及其概率密度的定义与性质通过例题,讲解几种常见的连续型随机变量概率密度的计算方法开展小组讨论,巩固连续型随机变量概率密度的理解教案章节四:随机变量的期望与方差4.1 教学目标理解随机变量期望与方差的概念与性质掌握计算随机变量期望与方差的方法学会运用期望与方差描述随机变量的特征4.2 教学内容随机变量期望与方差的概念与性质计算随机变量期望与方差的方法期望与方差在描述随机变量特征中的应用4.3 教学方法采用讲授法,讲解随机变量期望与方差的概念与性质通过例题,讲解计算随机变量期望与方差的方法开展小组讨论,巩固期望与方差在描述随机变量特征中的应用教案章节五:随机变量及其分布的综合应用5.1 教学目标掌握随机变量及其分布的基本知识学会运用随机变量及其分布解决实际问题培养运用概率论与数理统计思维分析问题的能力5.2 教学内容随机变量及其分布的综合应用实例实际问题中随机变量及其分布的建模方法运用概率论与数理统计思维分析问题的方法5.3 教学方法采用案例教学法,讲解随机变量及其分布的综合应用实例通过实际问题,讲解随机变量及其分布的建模方法开展小组讨论,培养运用概率论与数理统计思维分析问题的能力教案章节六:大数定律与中心极限定理6.1 教学目标理解大数定律的含义及其在实际中的应用掌握中心极限定理的条件及其意义学会运用大数定律和中心极限定理分析随机变量序列的性质6.2 教学内容大数定律的定义及其表述中心极限定理的定义及其表述大数定律和中心极限定理在实际中的应用6.3 教学方法采用讲授法,讲解大数定律和中心极限定理的定义及其表述通过例题,讲解大数定律和中心极限定理在实际中的应用开展小组讨论,巩固大数定律和中心极限定理的理解教案章节七:随机样本及抽样分布7.1 教学目标理解随机样本的概念掌握抽样分布的定义及其性质学会计算样本统计量的分布7.2 教学内容随机样本的概念抽样分布的定义及其性质样本统计量的分布的计算7.3 教学方法采用讲授法,讲解随机样本的概念和抽样分布的定义及其性质通过例题,讲解计算样本统计量的分布的方法开展小组讨论,巩固抽样分布的理解教案章节八:假设检验与置信区间8.1 教学目标理解假设检验的基本原理掌握构造检验统计量的方法学会判断假设检验的结果8.2 教学内容假设检验的基本原理构造检验统计量的方法假设检验的结果的判断8.3 教学方法采用讲授法,讲解假设检验的基本原理和构造检验统计量的方法通过例题,讲解判断假设检验结果的方法开展小组讨论,巩固假设检验的理解教案章节九:回归分析与相关分析9.1 教学目标理解回归分析的概念及其应用掌握线性回归模型的建立与估计学会利用回归分析解决实际问题9.2 教学内容回归分析的概念及其应用线性回归模型的建立与估计利用回归分析解决实际问题9.3 教学方法采用讲授法,讲解回归分析的概念及其应用和线性回归模型的建立与估计通过例题,讲解利用回归分析解决实际问题的方法开展小组讨论,巩固回归分析的理解教案章节十:总结与展望10.1 教学目标总结本门课程的主要内容和知识点了解概率论与数理统计在实际中的应用激发学生继续学习概率论与数理统计的兴趣10.2 教学内容本门课程的主要内容和知识点的总结概率论与数理统计在实际中的应用对未来学习的展望10.3 教学方法采用讲授法,总结本门课程的主要内容和知识点通过案例分析,讲解概率论与数理统计在实际中的应用鼓励学生发表对概率论与数理统计学习的看法和展望重点和难点解析:1. 随机变量的概念与分类:理解随机变量的定义以及离散型和连续型随机变量的区别是本章节的核心。

概率论与数理统计-随机变量及其分布-随机变量与分布函数

概率论与数理统计-随机变量及其分布-随机变量与分布函数

7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


直接对上式求导有
二、连续型随机变量函数的分布
81
例 18

二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2

三、离散型随机变量及其分布律
18

四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
一、离散型随机变量函数的分布
74
概率




则Y=g(X)的分布律为
概率
0


四、连续型随机变量及其密度函数
23
连续型随机变量的性质
1
2
四、连续型随机变量及其密度函数
24
连续型随机变量的性质
四、连续型随机变量及其密度函数
25
例3
求 解
四、连续型随机变量及其密度函数
26
解 (2)
27
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
二、随机变量的分布函数
10
例1 设一盒子中装有10个球,其中5个球上标有 数字1,3个球上标有数字2,2个球上标有数字3。
二、随机变量的分布函数
11

二、随机变量的分布函数
12
二、随机变量的分布函数
13
二、随机变量的分布函数
14
分布函数的性质
02 分布函数单调不减;
三、离散型随机变量及其分布律
二、泊松分布
37

二、泊松分布
38
定理(泊松定理)
泊松定理告诉我们: 二项概率可以用泊松分布 的概率值来近似.
二、泊松分布
39
例 7 设某保险公司的某人寿保险险种有1000人投 保,每个投保人在一年内死亡的概率为0.005 ,且每个人在一年内是否死亡是相互独立的, 试求在未来一年中这1000个投保人中死亡人 数不超过10人的概率.
1 2
二、泊松分布
33
二、泊松分布
34
泊松分布也是一种常用的离散型分布,它常常 与计数过程相联系,例如
01 某一时段内某网站的点击量;
OPTION
02 早高峰时间段内驶入高架道路的车辆数;
OPTION
03 一本书上的印刷错误数。
OPTION
二、泊松分布
35
例5

二、泊松分布
36
例 6 已知一购物网站每周销售的某款手表的数量X 服从参数为6的泊松分布.问周初至少预备多 少货源才能保证该周不脱销的概率不小于0.9. 假定上周没有库存,且本周不再进货.
61
正态分布概率密度函数的曲线特征:
4
三、正态分布
62
标准正态分布密度函数图形
三、正态分布
63
关于标准正态分布有以下结果:
1
2
3
三、正态分布
64
例 11

三、正态分布
65
三、正态分布
66
例 12
解 查表并计算可得得
三、正态分布
67
例 13

三、正态分布
68
标准正态分布的分位数概念:
右图为分位数的几何意义
二、泊松分布
40

三、超几何分布
41
三、超几何分布
42
四、几何分布与负二项分布
43
四、几何分布与负二项分布
44
几何分布也是一种常用的离散型分布,例如
01
OPTION
02
OPTION
03
OPTION
四、几何分布与负二项分布
45
例8
证明
这个例题说明,几何分布具有无记忆性的性质.
四、几何分布与负二项分布
一、随机变量的定义
4
许多随机试验的结果与实数密切联系, 也有些 随机试验结果从表面上看并不与实数相联系. 下面 我们通过几个例子来引入随机变量的概念.
一、随机变量的定义
5
例 1 抛掷一颗均匀的骰子,出现的点数 X的取值 样本空间={正面朝上, 反面朝上}样本空间不 是一个数集. 但是我们可以人为地把试验结 果和实数对应起来.令




一、离散型随机变量函数的分布
75
例 15
1 2
一、离散型随机变量函数的分布
76பைடு நூலகம்

二、连续型随机变量函数的分布
77
例 16

二、连续型随机变量函数的分布
78
01
OPTION
02
OPTION
03
OPTION
二、连续型随机变量函数的分布
79
1 2
3 4
二、连续型随机变量函数的分布
80
例 17
1
02
随机变量及其分布
《概率论与数理统计》
2
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
3
目录/Contents
2.1 随机变量及其分布
一、随机变量的定义 二、随机变量的分布函数 三、离散型随机变量及其分布律 四、连续型随机变量及其密度函数
28
目录/Contents
2.2 常见离散型随机变量 一、二项分布 二、泊松分布 三、超几何分布 四、几何分布与负二项分布
一、二项分布
29
一、二项分布
30
在概率论中, 二项分布是一个重要的分布. 在 许多独立重复试验中, 都具有二项分布的形式.
一、二项分布
31
一、二项分布
32
例 4 某人向同一目标重复独立射击5次,每次命中 目标的概率为0.8,求(1)此人能命中3次的 概率;(2)此人至少命中2次的概率。
52
例9
一、均匀分布
53

一、均匀分布
54

二、指数分布
55
指数分布的密度函数图形如下:
指数分布的分布函数图形如下:
二、指数分布
56
二、指数分布
57
例 10
证明
三、正态分布
58
三、正态分布
59
正态分布的密度函数曲线图形
三、正态分布
60
正态分布概率密度函数的曲线特征:
1
2
3
ᵆ =ᵰ
三、正态分布
样本点
X的取值
正面朝上 →
1
反面朝上 →
0
一、随机变量的定义
6
定义1
引进随机变量后, 随机事件及其概率可以通过 随机变量来表达.
一、随机变量的定义
7
随机变量
离散型随机变量 连续型随机变量
如果一个随机变量仅可能取有限或
A 可列个值,则称其为离散型随机变
量、
B
如果一个随机变量的取值充满了数 轴上的一个区间(或某几个区间的
并),则称其为连续型随机变量。
一、随机变量的定义
8
随机变量的直观解释
随机变量X是样本点的函数,这个函数的自变 量是样本点,可以是数,也可以不是数,定义域是 样本空间,而因变量必须是实数。这个函数可以让 不同的样本点对应不同的实数,也可以让多个样本 点对应于一个实数。
二、随机变量的分布函数
9
定义2
《概率论与数理统计》
19
定义4
四、连续型随机变量及其密度函数
20
概率密度函数满足下面两个条件:
1 2
四、连续型随机变量及其密度函数
21
1
ᵅ ᵅ≥0
2
这两个条件同样刻划了密度函数的特征性质, 即如果有实值函数具备这两条性质, 那么它必定是 某个连续型随机变量的概率密度函数.
四、连续型随机变量及其密度函数
22
分布函数和概率密度函数的关系在几何上的体现 :
▲ ▲ ▲
ᵆ 0.95
三、正态分布
69
例 14
三、正态分布
70

三、正态分布
71
综述所求,可知,在此次考试中,分数在88.384以上 的,为等级A,分数在73至88.384之间的,为等级B,分数 在57.616至73之间的,为等级C,分数在57.616以下的, 为等级D。
相关文档
最新文档