嵌入式系统硬件体系结构设计
1.嵌入式系统组成简介

串口4
串口1
串口2
设备
1)嵌入式系统硬件系统
嵌入式系统的硬件是以嵌入式处理器 为核心,配臵必要的外围接口部件。在嵌 入式系统设计中,应尽可能选择适用于系 统功能接口的SoC/SOPC芯片,以最少的外 围部件构成一个应用系统,满足嵌入式系 统的特殊要求。 一般包括有 :嵌入式处理器; 存储器; I/O系统和外设。
硬件抽象层
是硬件功能模块的集合,是对硬设备功能的第一
层抽象,实现基本的IO操作。 所关心的是如何实现硬件功能的软件接口,而不 是设备的管理逻辑。 每个硬件可能有多个端口(设备),对应的硬件 抽象层是对这些端口(设备)操作的基本抽象, 为驱动程序管理这些设备提供接口。上层驱动程 序在不需要了解具体设备硬件信息的情况下,就 可以操作这些设备。
2)板级支持包BSP
BSP主要是为驱动程序提供访问硬件设备寄存器 的函数包,从而实现对操作系统的支持。不同操作 系统有不同的板级支持包。具体完成如下二方面的 功能: ①在系统启动时,完成对硬件的初始化。如对设备 的中断、CPU的寄存器和内存区域的分配等进行操作。 ②为驱动程序提供访问硬件的手段。如系统是统一 编址的,则可以直接在驱动程序中用C语言的函数进 行访问。如是单独编址的,只能用汇编语言编写函 数进行访问。BSP就是为上层的驱动程序提供访问硬 件设备寄存器的函数包。
(3)中间层(驱动层软件)
使用任何外设都需要有驱动程序的支持, 驱动程序不仅要实现设备的基本功能函数, 如初始化、中断响应、发送、接收等,而且 还要提供完备的错误处理函数。中间层为上 层软件提供了设备的操作接口。上层程序只 需调用驱动程序提供的接口,而不用理会设 备具体的内部操作。 驱动层软件(中间层)将系统软件与底 层硬件部分进行了隔离,使得系统的底层设 备驱动程序与硬件无关。具体包括硬件抽象 层HAL和板级支持包BSP。
嵌入式系统中的软硬件协同设计模型与方法

嵌入式系统中的软硬件协同设计模型与方法嵌入式系统已经成为了如今计算机领域的一个重要领域,但同时也带来了许多新的挑战。
因为嵌入式系统所运行的硬件和软件都是高度耦合的,因此设计人员需要协同工作来确保系统能够正常工作。
在这篇文章中,我们将讨论嵌入式系统中的软硬件协同设计模型与方法。
1. 引言嵌入式系统是指嵌入在其他设备中的计算机系统,如手机、汽车、机器人等。
这些系统需要在有限的资源下实现复杂的功能。
因此,在设计嵌入式系统时,必须对软硬件协同设计进行深入的研究。
软硬件协同设计是指将芯片的硬件和软件分开设计的过程,然后在验证过程中将它们综合在一起。
这种设计方法可以使设计人员更加关注系统性能、功率和可靠性等因素,从而提高系统的性能和可靠性。
2. 嵌入式软硬件协同设计过程嵌入式系统的软硬件协同设计过程包含以下四个阶段:(1) 系统门级建模门级建模是指使用比特级转移(RTL)模型将硬件描述语言翻译成电量级的信号,在这个阶段中,实现和仿真的主要目标是降低功耗和提高性能。
(2) 交互式设计和仿真主要目的是验证系统的功能和性能,确定系统所需的处理资源,并确保该系统容易进行工艺制造。
这个阶段的交互式设计和仿真通常使用高级语言(如C / C ++)进行。
(3) 手机级建模在手机级建模阶段,设计人员会将系统结构划分为较小的块,并使用硬件描述语言编写每个块的RTL模型。
这些模型将最终用于系综合和实现。
(4) 系统级综合在系统级综合阶段,设计人员将系统功能和设计映射到给定的芯片结构上。
在这个阶段中,设计人员需要关注功率和面积的优化。
3. 嵌入式软硬件协同设计方法软硬件协同设计需要相应的方法来保证设计的正确性和优化性能。
常见的软硬件协同设计方法包括以下几种:(1) 交互式设计方法交互式设计方法是最早的软硬件协同设计方法之一。
这种方法可以让设计人员交替地设计硬件和软件,从而优化系统性能。
(2) 划分协同设计方法划分协同设计方法是指将整个系统划分为若干部分,在每个部分中采用硬件和软件相结合的方式进行设计。
(完整)一个典型的嵌入式系统设计和实现

关键字:嵌入式系统设计ARM FPGA多功能车辆总线Multifunction Vehicle Bus 在计算机、互联网和通信技术高速发展的同时,嵌入式系统开发技术也取得迅速发展,嵌入式技术应用范围的急剧扩大.本文介绍了一种基于ARM和FPGA,从软件到硬件完全自主开发多功能车辆总线(Multifunction Vehicle Bus)MVB??B嵌入式系统的设计和实现。
系统设计和实现通常来说,一个嵌入式系统的开发过程如下:1.确定嵌入式系统的需求;2.设计系统的体系结构:选择处理器和相关外部设备,操作系统,开发平台以及软硬件的分割和总体系统集成;3.详细的软硬件设计和RTL代码、软件代码开发;4.软硬件的联调和集成;5.系统的测试。
一、步骤1:确定系统的需求:嵌入式系统的典型特征是面向用户、面向产品、面向应用的,市场应用是嵌入式系统开发的导向和前提。
一个嵌入式系统的设计取决于系统的需求。
1、MVB总线简介列车通信网(Train Communication Network,简称TCN)是一个集整列列车内部测控任务和信息处理任务于一体的列车数据通讯的IEC国际标准(IEC-61375-1), 它包括两种总线类型绞线式列车总线(WTB)和多功能车厢总线(MVB)。
TCN在列车控制系统中的地位相当与CAN总线在汽车电子中的地位。
多功能车辆总线MVB是用于在列车上设备之间传送和交换数据的标准通信介质。
附加在总线上的设备可能在功能、大小、性能上互不相同,但是它们都和 MVB总线相连,通过MVB总线来交换信息,形成一个完整的通信网络.在MVB系统中,根据IEC-61375-1列车通信网标准, MVB总线有如下的一些特点:拓扑结构:MVB总线的结构遵循OSI模式,吸取了ISO的标准。
支持最多4095个设备,由一个中心总线管理器控制。
简单的传感器和智能站共存于同一总线上。
数据类型:MVB总线支持三种数据类型:a.过程数据:过程变量表示列车的状态,如速度、电机电流、操作员的命令。
嵌入式系统体系结构

嵌入式系统体系结构嵌入式系统体系结构所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是由单个程序实现整个控制逻辑。
下面是店铺整理的关于嵌入式系统体系结构,欢迎大家参考!嵌入式系统体系结构:嵌入式系统的组成包含了硬件层、中间层、系统软件层和应用软件层。
1、硬件层:嵌入式微处理器、存储器、通用设备接口和I/O接口。
嵌入式核心模块=微处理器+电源电路+时钟电路+存储器Cache:位于主存和嵌入式微处理器内核之间,存放的是最近一段时间微处理器使用最多的程序代码和数据。
它的主要目标是减小存储器给微处理器内核造成的存储器访问瓶颈,使处理速度更快。
2、中间层(也称为硬件抽象层HAL或者板级支持包BSP).它将系统上层软件和底层硬件分离开来,使系统上层软件开发人员无需关系底层硬件的具体情况,根据BSP层提供的接口开发即可。
BSP有两个特点:硬件相关性和操作系统相关性。
设计一个完整的BSP需要完成两部分工作:A、嵌入式系统的硬件初始化和BSP功能。
片级初始化:纯硬件的初始化过程,把嵌入式微处理器从上电的默认状态逐步设置成系统所要求的工作状态。
板级初始化:包含软硬件两部分在内的初始化过程,为随后的系统初始化和应用程序建立硬件和软件的运行环境。
系统级初始化:以软件为主的初始化过程,进行操作系统的初始化。
B、设计硬件相关的设备驱动。
3、系统软件层:由RTOS、文件系统、GUI、网络系统及通用组件模块组成。
RTOS是嵌入式应用软件的基础和开发平台。
4、应用软件:由基于实时系统开发的应用程序组成。
嵌入式芯片体系结构介绍1.嵌入式微处理器(Micro Processor Unit,MPU)嵌入式微处理器是由通用计算机中的CPU演变而来的。
它的特征是具有32位以上的处理器,具有较高的性能,当然其价格也相应较高。
但与计算机处理器不同的是,在实际嵌入式应用中,只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,这样就以最低的功耗和资源实现嵌入式应用的特殊要求。
嵌入式操作系统的通用硬件抽象层设计

嵌入式操作系统的通用硬件抽象层设计摘要:基于嵌入式操作系统硬件抽象层理论,设计一种用于嵌入式操作系统内核开发的通用硬件抽象层平台。
通用硬件抽象层能够为嵌入式操作系统内核的设计开发屏蔽硬件平台的特性,提供统一的硬件相关的服务接口,可以使嵌入式操作系统内核的设计开发不依赖于特定的硬件平台,同时开发的嵌入式操作系统内核具有更强的可移植性。
关键词:嵌入式操作系统通用硬件抽象层(HAL)BSP V开发模式引言为了便于操作系统在不同硬件结构上进行移植,美国微软公司首先提出了将底层与硬件相关的部分单独设计成硬件抽象层美国微软公司提出了将操作系统底层与硬件相关的部分单独设计成硬件抽象层HAL(Hardware Abstraction Layer)的思想。
硬件抽象层的引入大大推动了嵌入式操作系统的通用程度,为嵌入式操作系统的广泛应用提供了可能。
然而,目前BSP形式的硬件抽象层仅仅能够解决有限的几种操作系统在同样有限的BSP所支持的硬件平台上的移植,而对绝大多数需要根据不同嵌入式应用而专门定制的嵌入式操作系统来说能起的作用则非常有限。
1 硬件抽象层原理1.1 硬件抽象层概念嵌入式系统是一类特殊的计算机系统。
它自底向上包括3个主要部分:硬件环境、嵌入式操作系统和嵌入式应用程序。
硬件环境是整个嵌入式操作系统和应用程序运行的硬件平台,不同的应用通常有不同的硬件环境;因此如何有效地使嵌入式操作应用于各种不同的应用环境,是嵌入式操作系统发展中所必须解决的关键问题。
硬件抽象层通过硬件抽象层接口向操作系统以及应用程序提供对硬件进行抽象后的服务。
当操作系统或应用程序使用硬件抽象层API进行设计时,只要硬件抽象层API能够在下层硬件平台上实现,那么操作系统和应用程序的代码就可以移植。
这样,原先嵌入式系统的3层结构逐步演化为一种4层结构。
图1显示了引入硬件抽象层后的嵌入式系统的结构。
在整个嵌入式系统设计过程中,硬件抽象层同样发挥着不可替代的作用。
嵌入式系统硬件开发流程

嵌入式系统硬件开发流程1.需求分析:首先需要与客户或项目团队明确嵌入式系统的需求和功能。
根据需求,确定系统的输入输出接口、处理器类型、存储器需求和其他关键硬件组件。
2.系统设计:根据需求分析的结果,开始进行系统设计。
设计包括了整体体系结构的设计、硬件模块的设计以及各模块之间的接口设计。
在这个阶段,还需要确定系统的电源需求、尺寸和外壳设计等。
3.选择硬件平台:根据系统的需求和设计,选择合适的硬件平台。
硬件平台可以是单片机、FPGA、ARM等。
选择硬件平台时需要考虑功耗、性能、成本和开发工具的可用性等方面。
4.硬件原理图设计:根据系统的需求和设计,进行硬件原理图设计。
硬件原理图设计主要包括选择和连接各种硬件模块、设计电源电路和时钟电路等。
在设计过程中,需考虑信号完整性、电磁兼容性和热管理等问题。
5.PCB设计:将硬件原理图转化为PCB设计。
PCB设计包括在PCB上放置元件、连线布局和绘制电源层和地层等。
在设计过程中,还需考虑电磁兼容性和阻抗匹配等问题。
6.PCB制造:将PCB设计文件传输给PCB制造厂商,制造出实际的PCB板。
制造过程包括PCB板材的选择、蚀刻、钻孔、贴片、焊接和检查等。
7.原型测试:制造完成的PCB板与其他硬件模块进行组装,形成嵌入式系统原型。
通过连接电源,测试系统的各个功能和性能是否满足需求。
如发现问题,需要返工或重新设计。
8.硬件调试和优化:对原型进行硬件调试,包括调试电路连接的正确性、性能和稳定性等。
通过对系统的不断调试和优化,确保系统的稳定运行。
9.硬件验证和认证:对已调试和优化的嵌入式系统进行验证和认证。
验证过程包括功能验证、稳定性测试、可靠性测试等。
认证过程可能涉及到特定行业的标准和要求,如电磁兼容性认证等。
10.批量生产:通过验证和认证后,嵌入式系统可以进行批量生产。
在批量生产之前,需确保原材料的供应链和生产工艺的稳定性。
同时,还需考虑生产成本和交货时间等因素。
11.维护和升级:一旦嵌入式系统投入使用,可能会出现问题或有新需求。
嵌入式系统设计师核心讲义概要

嵌入式系统基础知识1.1嵌入式系统的定义和组成一、嵌入式系统的定义1.IEEE定义2.国内定义二、嵌入式系统的发展概述1.嵌入式系统的发展历史2.嵌入式系统的发展趋势3.知识产权核三、嵌入式系统的组成1.概述2.硬件层3.中间层4.系统软件层5.应用软件层四、实时系统1.实时系统定义2.实时系统特点3.实时系统调度4.实时系统分类5.实时任务分类1.2 嵌入式微处理器体系结构一、冯诺依曼与哈佛结构1.冯诺依曼结构2.哈佛结构二、CISC与RISC1.复杂指令集计算机(CISC)2.精简指令集计算机(RISC)三、流水线技术1.流水线的基本概念2.流水线技术的特点3.流水线结构的分类4.流水线处理机的主要指标四、信息存储的字节顺序1.大端和小端存储法2.可移植性问题3.通信中的存储顺序问题4.数据格式的存储顺序1.3 嵌入式系统的硬件基础一、组合逻辑电路基础1.组合逻辑电路概述2.真值表3.布尔代数4.门电路5.译码器6.数据选择器和数据分配器二、时序逻辑电路1.时钟信号2.触发器3.寄存器与移位器4.计数器三、总线电路及信号驱动1.总线2.三态门3.总线的负载能力4.单向和双向总线驱动器5.总线复用6.总线通信协议7.总线仲裁四、电平转换电路1.数字集成电路的分类2.常用数字集成电路逻辑电平接口技术五、可编程逻辑器件基础1.可编程逻辑器件(PLD)概述2.PLD的电路表示法3.可编程阵列逻辑器件PAL和可编程逻辑阵列PLA4.可编程通用阵列逻辑器件GAL5.门阵列GA6.可编程程序门阵列PGA1.4嵌入式系统中信息表示和运算基础一、进位计数制与转换1.二进制2.十六进制3.数制表示4.数制转换二、计算机中数的表示1.基本概念2.数的定点和浮点表示三、非数值数据编码1.非数值数据定义2.字符和字符串的表示方法3.汉字的表示方法4.统一代码5.语音编码四、差错控制编码1.引入2.基本原理3.差错控制码分类4.常用的差错控制编码1.5嵌入式系统的性能评价一、质量项目1.性能指标2.可靠性与安全性3.可维护性4.可用性5.功耗6.环境适应性7.通用性8.安全性9.保密性10.可扩展性11.其他指标二、评价方法1.测量法2.模型法三、评估嵌入式系统处理器的主要指标1.MIPS测试基准2.Dhrystone3.EEMBC嵌入式微处理器与接口知识2.1嵌入式微处理器的结构和类型一、嵌入式微处理器1.定义2.组成3.分类二、典型8位微处理器结构和特点1.8位微处理器2.8051微处理器三、典型16位微处理器结构和特点1.16位微处理器2.16位微处理器MC68HC912DG128A四、典型32位微处理器结构和特点1.ARM处理器2.MIPS系列3.PowerPC五、DSP处理器结构和特点1.数字信号处理器的特点2.典型的数字信号处理器3.DSP的发展方向六、多核处理器的结构和特点1.多核处理器概述2.典型多核处理器介绍2.2嵌入式系统的存储体系一、存储器系统概述1.存储器系统的层次结构2.高速缓存(cache)3.存储管理单元MMU二、嵌入式系统存储设备分类1.嵌入式系统的存储器2.存储器部件的分类3.存储器的组织和结构的描述三、ROM的种类和选型1.常见ROM的种类2.PROM、EPROM、E2PROM型ROM的各自典型特征和不同点四、Flash Memory的种类和选型1.Flash Memory的种类(NOR和NAND型)2.NOR和NAND型Flash Memory各自的典型特征和不同点五、RAM的种类和选型1.常见RAM的种类(SRAM、DRAM、DDRAM)2.SRAM、DRAM、DDRAM各自的典型特征和不同点六、外部存储器的种类和选型1.外存概述2.硬盘存储器的基本结构与分类3.光盘存储器4.标准存储卡(CF卡)5.安全数据卡(SD卡)2.3嵌入式系统输入输出设备一、嵌入式系统常用输入输出设备1.概述2.键盘、鼠标3.触摸屏4.显示器5.打印机6.图形图像摄影输入设备二、GPIO原理与结构1.原理2.结构三、AD接口的基本原理和结构1.概述2.AD转换方法3.AD转换的重要指标四、DA接口的基本原理和结构1.DA转换的工作原理2.DA转换的主要指标五、键盘接口基本原理与结构1.键盘的分类2.用ARM芯片实现键盘接口六、显示接口的基本原理与结构1.液晶显示器LCD显示接口原理与结构2.电致发光3.LCD种类4.LCD的设计方法5.其他显示接口原理与结构七、显示接口的基本原理与结构1.触摸屏原理2.电阻触摸屏的有关技术3.触摸屏的控制4.触摸屏与显示屏的配合八、音频接口基本原理与结构1.音频数据类型2.IIS音频接口总线2.4嵌入式系统总线接口一、串行接口基本原理与结构1.串行通信的概念2.串行数据传送模式3.RS232串行接口4.RS422串行接口5.RS485串行总线接口二、并行接口基本原理与结构1.并行接口的分类2.并行总线三、PCI总线1.概述2.特点3.32位PCI系统的引脚分类4.PCI总线进行读操作四、USB通用串行总线1.概念2.主要性能特点B系统描述4.物理接口B电压规范6.总线协议7.健壮性B接口工作原理五、SPI串行外围设备接口1.概念2.使用信号3.同外设进行连接以及原理4.工作模式六、IIC总线1.概念2.特点3.操作模式4.通用传输过程及格式5.工作原理七、PCMCIA接口1.内存卡的种类2.16位PCMCIA接口的规范与结构2.5嵌入式系统网络接口一、以太网接口基本原理与结构1.以太网基础知识2.嵌入式以太网接口的实现方法3.在嵌入式系统中主要处理的以太网协议4.网络编程接口二、CAN总线1.概念2.特点3.位时间的组成4.CAN总线的帧数据格式5.在嵌入式处理器上扩展CAN总线接口三、XDSL接口的基本原理和结构1.概念2.XDSL技术的分析3.各类XDSL的特点四、无线以太网基本原理与结构1.概念2.标准3.网络结构4.接口设计和调试五、蓝牙接口基本原理与结构1.蓝牙技术2.蓝牙技术的特点3.蓝牙接口的组成4.链路管理与控制5.蓝牙接口的主要应用六、1394接口基本原理与结构1.发展过程2.应用领域3.IEEE 1394的特点4.IEEE 1394的协议结构2.6嵌入式系统电源一、电源接口技术1.AC电源2.电池3.稳压器二、电源管理技术1.电源管理技术2.降低功耗的设计技术2.7电子电路设计基础一、电路设计1.电路设计原理2.电路设计方法(有效步骤)二、PCB电路设计1.PCB设计原理2.PCB设计方法(有效步骤)3.多层PCB设计的注意事项(布线的原则)4.PCB螯合剂中的可靠性知识三、电子设计1.电子设计原理四、电子电路测试1.电子电路测试原理与方法2.硬件抗干扰测试嵌入式系统软件及操作系统知识3.1嵌入式软件基础一、嵌入式软件概述1.嵌入式软件的定义2.嵌入式软件的特点二、嵌入式软件分类1.系统软件2.应用软件3.支撑软件三、嵌入式软件的体系结构1.无操作系统的情形2.有操作系统的情形四、设备驱动层1.板级支持包2.引导加载程序3.设备驱动程序五、嵌入式中间件1.定义2.基本思想3.分类3.2嵌入式操作系统概述一、嵌入式操作系统的概念1.概述2.功能3.特点4.组件二、嵌入式操作系统的分类1.按系统的类型分类2.按响应时间分类3.按软件结构分类三、常见的嵌入式操作系统1.Vxworks2.嵌入式linux3.Windows CE4.Uc/os-II5.Palm OS3.3任务管理一、单道程序技术和多道程序技术1.定义2.实例二、进程、线程和任务1.进程2.线程3.任务三、任务的实现1.任务的层次结构2.任务的创建与终止3.任务的状态4.任务控制块TCB5.任务切换6.任务队列四、任务调度1.任务调度概述2.先来先服务算法3.短作业优先算法4.时间片轮转算法5.优先级算法五、实时系统调度1.任务模型2.RMS算法(单调速率调度算法)3.EDF算法(最早期限优先调度算法)六、任务间的同步与互斥1.任务之间的关系2.任务互斥3.任务互斥的解决方案4.信号量5.任务同步6.死锁7.信号七、任务间通信1.概念2.分类3.共享内存4.消息传递5.管道3.4存储管理一、存储管理概述1.存储管理方式2.内存保护3.实时性要求二、存储管理方案的种类1.实模式方案2.保护模式方案三、分区存储管理1.概念2.固定分区存储管理3.可变分区存储管理4.分区存储管理实例四、地址映射1.地址映射概述2.静态地址映射3.动态地址映射五、页式存储管理1.基本原理2.数据结构3.内存的分配与回收4.地址映射5.页式存储管理方案的特点六、虚拟存储管理1.程序局部性原理2.虚拟页式存储管理3.页面置换算法4.工作集模型3.5设备管理一、设备管理基础1.概述2.访问硬件寄存器的方法二、IO控制方式1.程序循环检测方式2.中断驱动方式3.直接内存访问方式(DMA)三、IO软件1.中断处理程序2.设备驱动程序3.设备独立的IO软件4.用户空间的IO软件3.6文件系统一、嵌入式文件系统概述1.基本概念2.嵌入式文件系统同桌面文件系统的区别3.常见的嵌入式文件系统二、文件和目录1.文件的基本概念2.文件的使用3.目录三、文件系统的实现1.数据块2.文件的实现3.目录的实现4.空闲空间管理嵌入式软件程序设计4.1嵌入式软件开发概述一、嵌入式应用开发过程1.步骤2.与桌面系统开发的区别3.示例二、嵌入式软件开发的特点1.需要交叉编译工具2.通过仿真手段调试3.开发板是中间目标机4.可利用的资源有限5.需要与硬件打交道三、嵌入式软件开发的挑战1.软硬件协同设计2.嵌入式操作系统3.代码优化4.有限的IO功能4.2嵌入式程序设计语言一、概述二、程序设计语言概述1.低级语言与高级语言2.汇编程序、编译程序、解释程序3.程序设计语言的定义4.程序语言的发展概述5.嵌入式程序设计语言三、汇编语言1.基本原理2.ARM汇编语言四、面向过程的语言1.基本概念2.数据成分3.运算成分程序语言的运算成分4.控制成分五、面向对象的语言1.面向对象的基本概念2.面向对象的程序设计语言六、汇编、编译与解释程序的基本原理1.汇编程序基本原理2.编译程序基本原理3.解释程序基本原理4.3嵌入式软件开发环境一、要求二、宿主机、目标机1.宿主机2.目标机3.宿主机与目标机的连接三、嵌入式软件开发工具1.软件开发阶段2.编辑器3.编译器4.调试及调试工具5.软件工程工具四、集成开发环境1.IDE的发展2.Tornado3.WindowsCE应用程序开发工具4.Linux环境下的集成开发环境4.4嵌入式软件开发一、嵌入式平台选型1.嵌入式系统设计的阶段2.软硬件平台的选择二、软件设计1.软件设计的任务2.模块结构设计3.结构化软件设计方法4.面向对象软件设计方法三、嵌入式程序设计1.BootLoader设计2.设备驱动程序设计3.网络应用程序设计四、编码1.编码过程2.编码准则3.编码技术五、测试1.软件测试2.测试的任务3.测试的方法和分类4.嵌入式软件测试的步骤5.覆盖测试六、下载和运行1.TFTP2.编程器的固化4.5嵌入式软件移植一、概述1.嵌入式软件的特点2.可移植性和可重用性的考虑3.嵌入式应用软件的开发4.嵌入式软件的移植二、无操作系统的软件移植1.概述2.基于层次化的嵌入式应用软件的设计三、有操作系统的软件移植1.概述2.示例四、应用软件的移植1.应用软件实现涉及的两方面2.移植应用软件是需考虑的因素3.软件开发时需遵守的原则嵌入式系统开发与维护知识5.1系统开发过程及其项目管理一、概述二、系统开发生命周期各阶段的目标和任务的划分方法1.常用开发模型1.1边做边修改模型1.2瀑布模型1.3快速原型模型1.4增量模型1.5螺旋模型1.6演化模型2.需求分析3.设计3.1系统架构设计3.2硬件子系统设计3.3软件子系统设计4.系统集成与测试三、系统开发项目管理基础知识及常用的管理工具1.项目管理概述2.项目范围管理3.项目成本管理4.项目时间管理5.软件配置管理6.软件配置管理的解决方案四、系统开发工具与环境知识1.建模工具2.编程工具3.测试工具5.2系统分析基础知识一、系统分析的目的和任务1.需求工程的概念2.相关术语二、用户需求1.概念2.关于Ada编程环境的需求示例3.编辑软件设计模型的CASE需求文档的示例4.特别的用户需求示例三、系统需求1.概念2.替代自然语言描述的系统分析方法四、系统规格说明书的编写方法1.系统规格说明书2.书写用户需求应遵循的简单原则3.需求文档的可能用户以及使用文档的方式4.Heninger(1980)对软件需求文档提出的要求5.IEEE标准为需求文档提出的结构6.编写系统规格说明书应重点注意的内容5.3系统设计知识一、传统的设计方法1.瀑布模型的组成部分2.瀑布模型法的优缺点3.传统的嵌入式系统的设计4.软硬件协同设计二、实时系统分析与设计1.实时系统分析阶段的主要任务2.实时系统的开发方法三、软硬件协同设计方法1.软硬件协同设计在实际应用中的表现2.软硬件协同设计的流程3.软硬件协同设计的优点4.系统涉及到组成部分5.4系统实施基础一、系统架构设计1.系统架构设计在软件生命周期中的作用2.系统架构设计原则和概念二、系统详细设计1.系统详细设计在软件生命周期中的作用2.系统详细设计阶段用到的设计方法概述三、系统测试1.系统测试在软件生命周期中的作用2.系统测试类型3.系统测试的策略5.5系统维护知识一、系统运行管理1.运行管理制度2.日常运行管理内容3.系统软件及文档管理二、系统维护知识1.系统可维护性概念2.系统维护的内容及类型3.系统维护的管理和步骤三、系统评价知识1.系统评价的目的和任务2.系统评价的指标嵌入式系统设计6.1嵌入式系统设计的特点一、嵌入式系统设计的主要任务二、嵌入式系统的设计方法三、嵌入式系统的特点1.软硬件协调并行开发2.嵌入式系统通常是面向特定应用的系统3.实时嵌入式操作系统的多样性RTOS4.与台式机相比,可利用资源很少5.嵌入式系统设计需要交叉开发环境6.嵌入式系统的程序需要固化7.嵌入式系统的软件开发难度较大8.嵌入式应用软件的开发需要强大的开发工具和操作系统的支持9.其他方面6.2嵌入式系统的设计流程一、概述1.嵌入式系统的设计和开发要求2.嵌入式系统的设计和开发流程的阶段二、产品定义1.产品功能与产品性能2.产品定义三、嵌入式系统的软硬件划分1.性能原则2.性价比原则3.资源利用率原则四、嵌入式系统硬件设计1.概述2.嵌入式系统硬件的选择3.硬件功能模块划分4.硬件的可靠性五、嵌入式系统的软件设计1.嵌入式开发过程中的角色2.进行嵌入式系统软件设计时需要考虑的方面六、系统集成和测试1.系统集成过程中,可以分阶段运行测试程序2.嵌入式系统集成过程中的调试工具3.嵌入式系统的软件测试的方法6.3设计示例:嵌入式数控系统一、嵌入式系统采用的设计方法1.传统设计方法2.软硬件协同设计方法二、数控系统简介1.概述C系统构成三、需求分析1.功能要求2.非功能要求四、系统体系结构设计1.系统软硬件划分2.硬件系统划分3.系统软件功能划分五、硬件设计1.板级设计2.芯片级硬件设计六、软件设计1.软件接口设计2.系统软件模块划分七、系统集成与测试1.功能干涉测试2.压力测试3.容量测试4.性能测试5.安全测试6.容错测试。
嵌入式系统设计教程(第2版)简答题答案.pdf

第一章嵌入式系统概论1.嵌入式系统的定义是什么?答:以应用为中心,以计算机技术为基础,硬件、软件可裁剪,功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。
2.简述嵌入式系统的主要特点。
答:(1)功耗低、体积小、具有专用性(2)实时性强、系统内核小(3)创新性和高可靠性(4)高效率的设计(5)需要开发环境和调试工具3. 嵌入式系统一般可以应用到那些领域?答:嵌入式系统可以应用在工业控制、交通管理、信息家电、家庭智能管理系统、网络及电子商务、环境监测和机器人等方面。
4. 简述嵌入式系统的发展趋势答:(1)嵌入式应用的开发需要强大的开发工具和操作系统的支持(2)连网成为必然趋势(3)精简系统内核、算法,设备实现小尺寸、微功耗和低成本(4)提供精巧的多媒体人机界面(5)嵌入式软件开发走向标准化5.嵌入式系统基本架构主要包括那几部分?答:嵌入式系统的组织架构是由嵌入式处理器、存储器等硬件、嵌入式系统软件和嵌入式应用软件组成。
嵌入式系统一般由硬件系统和软件系统两大部分组成,其中,硬件系统包括嵌入式处理器、存储器、I/O系统和配置必要的外围接口部件;软件系统包括操作系统和应用软件。
6.嵌入式操作系统按实时性分为几种类型,各自特点是什么?答:(1)具有强实时特点的嵌入式操作系统。
(2)具有弱实时特点的嵌入式操作系统。
(3)没有实时特点的嵌入式操作系统。
第二章嵌入式系统的基础知识1.嵌入式系统体系结构有哪两种基本形式?各自特点是什么?答:冯诺依曼体系和哈佛体系。
冯诺依曼体系结构的特点之一是系统内部的数据与指令都存储在同一存储器中,其二是典型指令的执行周期包含取指令TF,指令译码TD,执行指令TE,存储TS四部分,目前应用的低端嵌入式处理器。
哈佛体系结构的特点是程序存储器与数据存储器分开,提供了较大的数据存储器带宽,适用于数据信号处理及高速数据处理的计算机。
2.在嵌入式系统中采用了哪些先进技术?答:(1)流水线技术(2)超标量执行(3)总线和总线桥3.简述基于ARM架构的总线形式答:ARM架构总线具有支持32位数据传输和32位寻址的能力,通过先进微控制器总线架构AMBA支持将CPU、存储器和外围都制作在同一个系统板中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、嵌入式计算机系统体系结构体系主要组成包括:1. 硬件层硬件层中包含嵌入式微处理器、存储器(SDRAM 、ROM 、Flash 等)、通用设备接口和I/O 接口(A/D 、D/A 、I/O等)。
在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。
其中操作系统和应用程序都可以固化在ROM 中。
2. 中间层硬件层与软件层之间为中间层,也称为硬件抽象层(Hardware Abstract Layer ,HAL )或板级支持包(Board Support Package ,BSP ),它将系统上层软件与底层硬件分离开来,使系统的底层驱动程序与硬件无关,上层软件开发人员无需关心底层硬件的具体情况,根据BSP 层提供的接口即可进行开发。
该层一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置功能。
软件层功能层3. 系统软件层系统软件层由实时多任务操作系统(Real-time Operation System,RTOS)、文件系统、图形用户接口(Graphic User Interface,GUI)、网络系统及通用组件模块组成。
RTOS是嵌入式应用软件的基础和开发平台。
4. 功能层功能层主要由实现某种或某几项任务而被开发运行于操作系统上的程序组成。
一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,而嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。
执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。
硬件的设计本网关硬件环境以单片机S3C2440芯片和DM9000以太网控制芯片为主,实现RJ45接口和RS232接口的数据传输。
内容包括硬件环境的初始化,数据的收发控制,封包解包设计,操作系统的移植等。
硬件框图硬件框图是简单的将每个功能模块列出,也是一个基本的模块组合,可以简洁的每个模块的功能体现出来。
其中包括了电源模块,处理模块,串口模块以及网口模块。
电源模块主要的用途是负责给整块开发板进行供电,保证每个模块都可以正常工作。
处理模块主要的用途是负责协议的转换,数据的处理等,以保障通信的畅通。
串口模块以及网口模块主要的用途是负责各网络相关数据信息的收发。
硬件功能框图时下嵌入式和以太网的结合正是一个热点关注问题,而嵌入式以太网技术的主要应用领域便是工业控制网络,即工业以太网,具有以太网接口的各种智能化仪器仪表正逐步取代传统的测控设备。
元件介绍1、嵌入式处理器芯片S3C2440Samsung 公司推出的16/32 位RISC 处理器S3C2440 为手持设备和一般类型应用提供了高性价比和高性能的微控制器解决方案。
为了降低成本,S3C2440 提供了丰富的内置部件,包括:16KB 指令cache和16KB 数据cache,外部存储控制器SDRAM,LCD 控制器(最大支持4K色STN 和256K色TFT),提供1通道LCD专用DMA,带4通道DMA并带有外部请求引脚,3通道UART(IrDA1.0,64字节Tx FIFO,和64字节Rx FIFO),2通道SPI,1通道IIC-BUS接口(多主支持)。
1.2V内核供电,1.8V/2.5V/3.3V 存储器供电,3.3V外部I/O供电,具备16K的I-Cache和16KDCache/MMU 微处理器。
ARM920T系统结构图S3C2440采用了ARM920T 内核,拥有强大的指令集,0.13um 工艺的CMOS 标准宏单元和存储编译器以及一种新的总线结构它采用了新的总线架构,Advanced Micro controller Bus Architecture(AMBA)。
它的低功耗精简和出色的全静态设计特别适用于对成本和功耗敏感的应用。
S3C2440的杰出特性是它的CPU核,是由ARM公司设计的16/32位ARM920T RISC处理器(400MHZ)。
它通过提供全面的、通用的片上外设,大大减少了系统电路中除处理器以外的元器件配置,从而最小化系统的成本。
ARM920T 是ARM920TDMI系列中一款通用性的微处理器,由内核、高速缓存和内存管理单元(MMU)组成。
支持字节(8位)、半字(16位)、字(32位)3种数据类型,其中,字需要4字节对齐,半字需要2字节对齐。
工作于ARM状态时,处理器执行32位的,字对齐ARM指令。
ARM920T体系结构将存储器看做是从零地址开始的字节的线性组合。
从0字节到3字节存放第一个存储的字数据,从4字节到7字节存放第二个存储的字数据,依次类推。
作为32位的微处理器,ARM920T体系结构所支持最大的寻址空间是4GB(2332字节),有2种方法存储字数据:大端格式和小端格式。
大端格式中字数据的高字节存储在低地址,字数据的低字节存放在高地址;与大端存储格式相反,小端存储格式中,低地址中存放的是字数据的低地址,高地址存放的是字数据的高字节。
S3C2440内部结构:S3C2440内部结构2、以太网控制器DM9000DM9000是一款完全集成的和符合成本效益的,单芯片快速以太网MAC控制器。
它有一个一般处理接口,一个10/100M自适应的PHY和4KDWORD值的SRAM。
它的目的是在低功耗和高性能进程的3.3V与5V的支持宽容,DM9000还提供了介质无关的接口,来连接所有提供支持介质无关接口功能的家用电话线网络设备或其他收发器。
该DM9000支持8位,16位和32 -位接口访问内部存储器,以支持不同的处理器。
DM9000物理协议层接口完全支持使用10MBps下3类、4类、5类非屏蔽双绞线和100MBps下5类非屏蔽双绞线。
这是完全符合IEEE 802.3u规格。
它的自动协调功能将自动完成配置以最大限度地适合其线路带宽。
还支持IEEE 802.3x全双工流量控制。
这个工作里面DM9000是非常简单的,所以用户可以容易的移植任何系统下的端口驱动程序。
DM9000是一款完全集成的和符合成本效益单芯片快速以太网MAC 控制器与一般处理接口,一个10/100M自适应的PHY和4K DWORD值的SRAM。
它的目的是在低功耗和高性能进程的3.3V与5V的支持宽容。
DM9000内部可分为远程DMA接口、本地DMA接口、MAC(介质访问控制)逻辑、数据编码解码逻辑和其他端口。
远程DMA接口是指单片机对DM9000内部RAM进行读写的总线,即ISA总线的接口部分。
单片机收发数据只需对远程DMA操作。
本地DMA接口是把DM9000与网线的连接通道,完成控制器与网线的数据交换。
MAC(介质访问控制)逻辑完成以下功能:当单片机向网上发送数据时,先将一帧数据通过远程DMA通道送到DM9000中的发送缓存区,然后发出传送命令;当DM9000完成了上帧的发送后,再开始此帧的发送。
DM9000接收到的数据通过MAC比较、CRC校验后,由FIFO存到接收缓冲区;收满一帧后,以中断或寄存器标志的方式通知主处理器。
FIFO逻辑对收发数据作16字节的缓冲,以减少对本地DMA请求的频率。
网络控制器DM9000选用DAVICOM公司的快速以太网控制处理器,合成了MAC,PHY,MMU。
该处理器配备有标准10M /100M 自适应,16K 大容量的FIFO,4 路多功能GPIO,掉电,全双工工作等功能。
物理层支持以太网接口协议。
由于数据有时是以猝发形式收到的,因此,DM9000 还集成有接收缓冲区,以便在接收到数据时能把数据放到这个缓冲区中,然后由数据链路层直接从该缓冲区里取走数据。
链路层通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡,它们一起处理与电缆的物理接口细节数据,它的缓冲区可用来暂时存储要发送或接收的帧。
它完全支持IEEE802.3u 规格,支持IEEE802.3x 全双工的流控制。
网络驱动功能层次如图3.6。
DM9000网络驱动的功能层次DM9000还提供了介质无关的接口,来连接所有提供支持介质无关接口功能的家用电话线网络设备或其他收发器。
该DM9000支持8位,16位和32 -位接口访问内部存储器,以支持不同的处理器。
对DM9000读写操作,首先对DM9000正确寻址。
AEN(地址允许)是输入引脚片选信号。
SA4~SA9是地址总线4~9位,当AEN低且SA9和SA8高,而SA7、SA6、SA5、SA4为低时,则DM9000被选中。
DM9000默认I/0基地址为300H。
CMD引脚用于设置COMMAND模式,CMD为高时,选择数据端口。
CMD 为低时,选地址端口。
数据端口和地址端口的地址码由下式决定: DM9000地址端口=高位片选地址+300H+0H;DM9000数据端口=高位片选地址+300H+4H;DM9000芯片电路引脚见图:DM9000芯片电路引脚图二、系统软件数据流程由现场总线端通过RS232口发送数据到以太网的数据流向,事先约定好HDLC的帧格式和数据传输的波特率。
数据通过串口缓冲区和以太网控制芯片缓冲区发送到网上,经过了HDLC解帧,单片机控制封包,添加以太网传输时所需的信息等处理。
反之则经过以太网芯片处理,单片机控制解包,HDLC封帧等步骤。
最终实现通信可能。
系统软件数据流图如下:软件数据流图按协议内容的独立性和数据的存储传输可将软件设计划分为四个模块:串口发送与接收;HDLC协议的实现;单片机控制实现UDP协议封包与解包;DM9000芯片对数据传输的控制与处理。
软件功能模块图。