电磁感应的能量问题

合集下载

原创3:专题十 电磁感应中的动力学和能量问题

原创3:专题十 电磁感应中的动力学和能量问题

(2)撤去外力时导体棒的速度为 v,在导体棒匀加速过程 中,由运动学公式得 v2=2ax⑤
撤去外力后,克服安培力做的功为 W,由动能定理得 W=12mv2-0⑥ 撤去外力后回路中产生的焦耳热 Q2=W 联立以上各式解得 Q2=1.8 J.
(3)由题意可知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2 =2∶1,可得Q1=3.6 J, 棒在运动的整个过程中,由功能关系得
杆受到的安培力 F 安=BIl=7.5-3.75x 由平衡条件得 F=F 安+mgsinθ F=12.5-3.75x(0≤x≤2). 画出的 F-x 图象如图所示
(3)外力 F 做的功 Wf 等于 F-x 图线下所围的面积,即 Wf =5+212.5×2 J=17.5 J
而杆的重力势能增加量 ΔEp=mg OP sinθ 故全过程产生的焦耳热 Q=Wf-ΔEp=7.5 J.
A.P=2mgvsinθ B.P=3mgvsinθ C.当导体棒速度达到v2时加速度大小为g2sinθ D.在速度达到2v以后匀速运动的过程中,R上产生的 焦耳热等于拉力所做的功
解析:对导体棒受力分析如图.当导体棒以 v 匀速运动 时(如图甲),应有:mgsinθ=F 安=BIL=B2RL2v;当加力 F 后 以 2v 匀速运动时(如图乙),F+mgsinθ=2BR2L2v,两式联立得 F=mgsinθ,则 P=F·2v=2mgvsinθ,A 正确、B 错误;
WF=Q1+Q2=5.4 J. 【答案】 (1)4.5 C (2)1.8 J (3)5.4 J
变式训练2 在如图所示的倾角为θ的光滑斜面上,存在着两个 磁感应强度大小为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向 上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个 质量为m、电阻为R、边长也为L的正方形导线框,由静止开始 沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1 做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又 恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间 位置的过程中,线框的动能变化量为ΔEk,重力对线框做功大小 为W1,安培力对线框做功大小为W2,下列说法中正确的有( )

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题

(2)设 MN 最大速度为 v1m,M′N′最大速度为 v2m,此时 两导体棒均受力平衡,对 M′N′有 2mg-BIl=0 Bl v1m+v2m I= R v1m 又 =2 v2m ① ② ③
由①②③联立解得 4mgR v1m= 2 2 3B l 2mgR v2m= 2 2 3B l
4mgR [答案] (1)2 (2) 2 2 3B l
初速不为零,不受其他水平外力作用 光滑平行导轨 光滑不等距导轨
示 意 图 质量m1=m2,电阻r1= 质量m1=m2,电阻r1 r2,长度L1=L2 =r2,长度L1=2L2
初速不为零,不受其他水平外力作用
光滑平行导轨
规 律 杆MN做减速运动,杆PQ做 分 变加速运动,稳定时,两杆 析 的加速度为零,以相等的速 度匀速运动
导轨电阻可忽略,重力加速度为 g. 在 t = 0 时刻将细线烧
断,保持F不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度.
[解析] (1)设 MN 任意时刻速度为 v1,M′N′任意时刻 速度为 v2,据动量守恒定律有 mv1-2mv2=0 v1 解得 =2. v2
他形式能和电能之间的转化. 3.热量的计算:电流做功产生的热量用焦耳定律计算, 公式为Q= I2Rt .
1.力学对象 和电学
对象的
相互关系
2.动态分析的基本思路
E=Blv 导体受外力运动 ――→ 感应电动势
F=BIl 感应电流 ――→ 导体受安培
合=ma 力―→合力变化F ――→ 加速度变化―→速度变化―→临界状态.
(2)设导体杆在磁场中运动的时间为 t,产生的感应电动势
的平均值为 E 平均 ,则由法拉第电磁感应定律有 E 平均 = ΔΦ/t = Bld/t 通过电阻R的感应电流的平均值I平均=E平均/(R+r) 通过电阻R的电荷量q=I平均t=0.512 C(或0.51 C).

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab 边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.反思总结分析电磁感应中动力学问题的基本思路(顺序):即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端连接一个定值电阻R,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经时间t1后速度为v,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率P恒定,棒由静止经时间t2后速度为v,加速度为a2,最终也以速度2v做匀速运动,则( ).A.t2=t1 B.t1>t2C.a2=2a1 D.a2=5a1即学即练2:如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存有匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨道间距为L =2 m,重力加速度g取10 m/s2,轨道充足长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q 的三种方法例2、如图所示,充足长的光滑平行金属导轨MN 、PQ 竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g 取10 m/s2.试求:(1)当t =0.7 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的0.7 s 内,电阻R 上产生的焦耳热;(3)从开始运动到t =0.4 s 的时间内,通过金属棒ab 的电荷量.即时训练3:如图,充足长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( ).A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ即时训练4:某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强时间t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 下滑距离s (m) 0 0.1 0.3 0.7 1.4 2.1 2.8 3.5度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.。

电磁感应现象中的能量问题

电磁感应现象中的能量问题
电磁感应的综合应用
澧县一中
朱锋
三、电磁感应中的能量问题:
(1)思路:从能量转化和守恒着手,运用动 能定理或能量守恒定律。 ①基本思路:受力分析→弄清哪些力做功, 正功还是负功→安培 明确有哪些形式的能量参与 电 转化,哪些增哪些减 → 由动能定理或能量守 力做 流 恒定律列方程求解. 负功 做 ②能量转化特点: 功 内能(焦耳热) 其它能(如: 电能 机械能) 其他形式能
例2: 如图示:质量为m 、边长为a 的正方形金属线框自某一高 度由静止下落,依次经过B1和B2两匀强磁场区域,已知B1 =2B2, 且B2磁场的高度为a,线框在进入B1的过程中做匀速运动,速度大 小为v1 ,在B1中加速一段时间后又匀速进入和穿出B2,进入和穿 出B2时的速度恒为v2,求: ⑴ v1和v2之比 a ⑵在整个下落过程中产生的焦耳热
澧县一中 朱锋
(2)线框由静止开始运动,到cd边刚离开磁场的 过程中,根据能量守恒定律,得: 解之,得线框穿过磁场的过程中,产生的焦耳热 3 2 2 为: mg R Q mg (h 3L) 2 B 4 L4
1 2 mg (h 3L) mv Q 2
电磁感应现象的实质是不同形式的能量转化的过 程,理清能量转化过程,用“能量”观点研究问题, 往往比较简单,同时,导体棒加速时,电流是变 化的,不能直接用Q=I2Rt求解(时间也无法确 定),因而能用能量守恒的知识解决。 澧县一中 朱锋
澧县一中
朱锋
例 4、 例 1、如图所示,两足够长平行光滑的金属导轨 MN、PQ 相距为 L,
导轨平面与水平面夹角α=30°,导轨上端跨接一定值电阻 R,导 轨电阻不计.整个装置处于方向竖直向上的匀强磁场中,长为 L 的 金属棒 cd 垂直于 MN、PQ 放置在导轨上,且与导轨保持电接触良好, 金属棒的质量为 m、电阻为 r,重力加速度为 g,现将金属棒由静止 释放,当金属棒沿导轨下滑距离为 s 时,速度达到最大值 vm.求: (1)金属棒开始运动时的加速度大小; N R (2)匀强磁场的磁感应强度大小; Q c ( 3 )金属棒沿导轨下滑距离为 s 的过 d 程中,电阻 R 上产生的电热.

电磁感应中的能量问题

电磁感应中的能量问题
C B N F
如图所示,a、b是两相距L=0.5m的平行、光滑 的水平金属导轨,在其上垂直放置两根金属杆1 和2,其质量分别为m 1=0.1kg,m2=0.2kg,电 阻分别为R1=1Ω, R2=0.25Ω,B=1.2T的匀强 磁场竖直向下,a、b两导轨电阻忽略不计.现对 2棒施以水平向右的极短时间的打击力作用,使 其获得大小为lN· s的冲量.求此后: ① 1棒运动的最大加速度和最大速度. ② 2棒上所产生的内能.
93年高考29.
两金属杆ab和cd长均为l,电阻均为R,质量分别为M和 m, M>m.用两根质量和电阻均可忽略的不可伸长的柔 软导线将它们连成闭合回路, 并悬挂在水平、光滑、 不导电的圆棒两侧. 两金属杆都处在水平位置, 如图 所示. 整个装置处在一与回路平面相垂直的匀强磁场 中, 磁感应强度为B. 若金属杆ab正好匀速向下运动, 求运动的速度.
R
竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所 示,磁感强度B=0.5T,导体ab及cd长均为0.2m,电阻均 为0.1Ω,重均为0.1N,现用力向上推动导体ab,使之匀速 上升(与导轨接触良好),此时,c d 恰好静止不动,那 么ab上升时,下列说法正确的是 A B C A.ab受到的推力大小为0.2N B.ab 向上的速度为2m/s F C.在2s内,推力做功转化的电能是0.4J D.在2s内,推力做功为0.6J a b 解: cd 静止,受力如图: F1 =mg=0.1N mg F1 ab匀速上升,受力如图:F= F1 +mg=0.2N F1 =BIL=B2 L2 v/2R=0.1N ∴v=2m/s F1 d S=vt=4m 拉力做功 WF =FS=0.8J c 安培力做功 WF1 =F1 S=0.4J
如图所示,电动机牵引一根原来静止的、长l为 1m,质量m为0.1kg的导体棒MN,其电阻R为1Ω, 导体棒架在处于磁感应强度B为1T、竖直放置的框架 上.当导体棒上升h为3.8m时获得稳定的速度,导 体产生的热量为2J,电动机牵引棒时,伏特表、安 培表的读数分别恒为7V、1A.电动机内阻r为1Ω, 不计框架电阻及一切摩擦,g取10m/s2.求: (1)棒能达到的稳定速度. (2)棒从静止达到稳定速度所需的时间

电磁感应中的能量问题

电磁感应中的能量问题

h 电磁感应中的能量问题【知识要点】1、理解功与能的关系合力做功=动能的改变(动能定理)重力做功=重力势能的改变。

重力做正功,重力势能减少;重力做负功,重力势能增加。

弹力做功=弹性势能的改变。

弹力做正功,弹性势能减少;弹力做负功,弹性势能增加。

电场力做功=电势能的改变。

电场力做正功,电势能减少;电势能做负功,电势能增加。

安培力做功=电能的改变。

安培力做正功,电能转化为其他形式的能;安培力做负功(即克服安培力做功),其他形式的能转化为电能。

2、电磁感应中的能量转化和守恒产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。

对切割磁感线产生的电磁感应现象,导体在达到稳定状态之前,外力移动导体所做的功,一部分消耗于克服安培力做功,转化为产生感应电流的电能或最后在转化为焦耳热,另一部分用于增加导体的动能,即当导体达到稳定状态(作匀速运动时),外力所做的功,完全消耗于克服安培力做功,并转化为感应电流的电能或最后在转化为焦耳热在较复杂的电磁感应现象中,经常涉及求解耳热的问题。

尤其是变化的安培力,不能直接由Q=I 2 Rt 解,用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解,而用能量的转化与守恒观点,只需从全过程考虑,不涉及电流的产生过程,计算简便。

这样用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。

【典型例题】例1、如图所示,质量为m ,高度为h 的矩形导体线框在竖直面内由静止开始自由下落.它的上下两边始终保持水平,途中恰好匀速通过一个有理想边界的匀强磁场区域,则线框在此过程中产生的热量为( )A.mghB.2mghC.大于mgh ,小于2mghD.大于2mgh例2、长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。

将线圈以向右的速度v 匀速拉出磁场的过程中,求⑴拉力F 大小; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。

电磁感应中能量问题

电磁感应中能量问题

B
θ
θ
F
使光滑导轨平面与水平面成 θ ,匀强磁场 与导轨平面垂直,给质量为m的金属棒 的金属棒ab沿 与导轨平面垂直,给质量为 的金属棒 沿 导轨向上初速度v 导轨向上初速度 0的同时加沿斜面向上外力 F,在F作用下棒沿轨道向上运动 时速度达 作用下棒沿轨道向上运动x时速度达 作用下棒沿轨道向上运动 稳定,问此过程中电路产生的焦耳热? 稳定,问此过程中电路产生的焦耳热?
V0
a r R
B
b 有什么办法可以使金属棒不停下来? 有什么办法可以使金属棒不停下来?
V0
a
F
R
r
b
B
棒一水平向右初速度V 给ab棒一水平向右初速度 0的 棒一水平向右初速度 同时在ab棒上加水平向右的恒 同时在 棒上加水平向右的恒 棒将做什么运动? 力F,问ab棒将做什么运动? , 棒将做什么运动
如图,让闭合矩形线圈 如图,让闭合矩形线圈abcd从高处自由 从高处自由 下落一段距离后进人匀强磁场, 下落一段距离后进人匀强磁场,从bc边 边 开始进入磁场到ad边刚进入磁场的这一 开始进入磁场到 边刚进入磁场的这一 段时间里,如图所示的四个v—t图象中, 图象中, 段时间里,如图所示的四个 图象中 肯定不能表示线圈运动情况的是: 肯定不能表示线圈运动情况的是:
B
θ θ
F
导轨不光滑, 导轨不光滑,动摩擦因数为 µ ,其它 条件不变,问怎样求焦耳热? 条件不变,问怎样求焦耳热?
B
R
F
06上海 如图所示, 平行金属导轨与水平面成θ 上海) ( 06 上海 ) 如图所示 , 平行金属导轨与水平面成 θ 角 , 导轨与固定电阻R 相连, 导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平 有一导体棒ab 质量为m ab, 面.有一导体棒ab,质量为m,导体棒的电阻与固定电 的阻值均相等,与导轨之间的动摩擦因数为μ 阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ, 导体棒ab沿导轨向上滑动,当上滑的速度为V ab沿导轨向上滑动 导体棒ab沿导轨向上滑动,当上滑的速度为V时,受到 安培力的大小为F 安培力的大小为F.此时 电阻R 消耗的热功率为Fv Fv/ (A)电阻R1消耗的热功率为Fv/3. Fv/ (B)电阻 R。消耗的热功率为 Fv/6. 整个装置因摩擦而消耗的热功率为μmgvcosθ μmgvcosθ. (C)整个装置因摩擦而消耗的热功率为μmgvcosθ. 整个装置消耗的机械功率为( μmgcosθ) (D)整个装置消耗的机械功率为(F+μmgcosθ)v·
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应的能量问题
电磁感应中的动力学问题
1.安培力的大小
⎭⎪

⎪⎫
感应电动势:E=Blv
感应电流:I=
E
R+r
安培力公式:F=BIl
⇒F=
B2l2v
R+r
2.安培力的方向
(1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。

(2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。

1.电磁感应中动力学问题的动态分析
联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是:
导体受力运动――→
E=BLv感应电动势错误!感应电流错误!通电导体受安培力→合外力变化――→
F合=ma加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。

2.解题步骤
(1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。

(2)应用闭合电路欧姆定律求出电路中的感应电流的大小。

(3)分析研究导体受力情况,特别要注意安培力方向的确定。

(4)列出动力学方程或平衡方程求解。

3.两种状态处理
(1)导体处于平衡态——静止或匀速直线运动状态。

处理方法:根据平衡条件——合外力等于零,列式分析。

(2)导体处于非平衡态——加速度不为零。

处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。

4.电磁感应中的动力学临界问题
(1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。

(2)基本思路是:
电磁感应中的能量问题
1.能量的转化
闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。

外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。

2.实质
电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。

1.能量转化分析
(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。

(2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。

在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。

即:其他形式的能如:机械能
――――――→安培力做负功 电能――――→电流做功 其他形式的能如:内能
(3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线
运动而产生感应电流,进而受到安培力作用,这时安培力成为导体运动的动力,此即电磁驱动。

在这种情况下,安培力做正功,电能转化为导体的机械能。

综上所述,安培力做功是电能和其他形式的能之间相互转化的桥梁,表示如下:
其他形式的能。

电能W安>0
W安<0
2.求解焦耳热Q的三种方法
(1)直接法:Q=I2Rt
(2)功能关系法:Q=W克服安培力
(3)能量转化法:Q=ΔE其他能的减少量
———————————————————
1电磁感应动力学问题中,要抓好受力情况、运动情况的动态分析。

导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,最终加速度为零,导体达到匀速运动的稳定状态。

2这类问题要抓住“速度变化引起安培力变化”这个关系,并从分析物体的受力情况与运动情况入手解决问题,这是解题的关键。

——————————————————————————————————————
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档