铸造多晶硅中杂质对少子寿命的影响

合集下载

铸造多晶硅中原生杂质及缺陷的研究

铸造多晶硅中原生杂质及缺陷的研究
关键词:铸造多晶硅、间隙氧、铁、位错、少子寿命
浙江大学硕士学位论文
Ab ta t sr c
C rny a ui sl si n r l d or tl si n h csm l r tle o hs ae m nc sl e o at u t, e r l t ty ai i c n l c a e c o y ai i p n l s c e m ipo vlim tisHg dni o ipri , a ye, o ad a ht oa arl i esy m u tss h o gnc bn n o tc ea . h t f ie u s x c a r n
浙江大学硕士学位论文
起 较大的 应力从而 致了 位错的 热 导 大量 产生 (X m 位错密度大 7 cz 1 0 ) 6 。 体上呈 现
从硅锭底部向硅锭顶部逐渐增加的趋势。 IM 观察到了硅中体缺陷的形态以 S R 及
尺寸大小和密度分布情况。硅锭底部,中部以及顶部处体缺陷平均密度分别为
2 x0 M , x0 m 和1 x0 m . 18 3 8 16 3 . 18 3 8 C . c 5 6 c 左右。
go t d et n G o ar m n bten s u t n epr et dto rwh co . d e et e t i li ad em n l n i i o ge r e w h m ao n x i a a e a oye dsi tn e e alhd T e ye poi w u b a et xgn tb i h b n bi e. o gn fe l e c d ir uo a e s s s t h x r l o d f e
征, 研究表明铁在底部以 及顶部浓度的增加分别与柑祸向硅锭底部进行固相扩散

第七章 铸造多晶硅中的杂质和缺陷

第七章 铸造多晶硅中的杂质和缺陷
与直拉单晶硅一样,铸造多晶硅中的 氧也是以间隙态存在,呈过饱和状态。
过饱和的间隙氧容易在后续的热处理 工艺中形成复合体与沉淀等。 原生铸造多晶硅中很容易生成氧施主 与氧沉淀,而硅锭底部氧浓度最高, 热处理时间最长,氧施主与氧沉淀的 问题应该是硅锭各部分中最严重的。
铸造多晶硅中原生氧沉淀 的透射电镜照片
第7章 铸造多晶硅中的杂 质和缺陷
铸造多晶硅中的晶界
晶界出现大量的悬桂键,形成界面态,严重影响太阳电 池的光电转换效率。
无金属污染的铸造多晶硅晶界的SEM图像 (a)和EBIC图像(b)
铸造多晶硅中的位错
根据晶体生长方式和过程的不同,铸造多晶硅中的位错 密度约在103~109cm-2左右。
含有高密度位错的铸造多晶硅的光学显微镜照片
a.
p-n结中的金属杂质降低结的反向击穿电压;
b.
金属杂质形成深能级带隙极大地增加p-n结的漏导损耗,
甚至直接导致p-n结变窄;
c.
金属杂质降低氧化诱导生成层错和位错的形成势垒
铸造多晶硅中的金属杂质
金属Cu、Fe、Co在铸造多晶 硅中,自晶体上部(0)到 晶体底部(1)的浓度分布
(直线是根据分凝系数计算的浓 度分布,B的优先分凝系数采用 0.65,Fe的有效分凝系数采用 0.05)
促进其随后氧沉淀生成量。
铸造多晶硅中氧沉淀规律
结果讨论:
铸造多晶硅区别于直拉单晶硅在于,铸造多晶硅中存在较
高密度的位错和晶界等缺陷。而位错和晶界一般可以吸收硅中
过饱和的自间隙硅原子,这降低了铸造多晶硅中氧沉淀的临界 形核半径。另外一方面,由于位错或晶界一般不会影响间隙氧 在硅中的扩散速度,所以,铸造多晶硅中的位错和晶界主要是 通过降低氧沉淀的临界形核半径而促进氧沉淀的生成 。至于原 始氧浓度对氧沉淀的影响,则主要是由于高的原始氧浓度导致 小的氧沉淀临界形核半径,所以高氧样品中氧沉淀生成量较大。

多晶硅与少子寿命分布

多晶硅与少子寿命分布

多晶硅与少子寿命分布(河南科技大学材料科学与工程系,洛阳 471000)摘要:铸造多晶硅目前已经成功取代直拉单晶硅而成为最主要的太阳能电池材料。

铸造多晶硅材料中高密度的杂质和结晶学缺陷(如晶界,位错,微缺陷等)是影响其太阳能电池转换效率的重要因素。

本文利用傅立叶红外分光光谱仪(FTIR) ,微波光电导衰减仪,红外扫描仪(SIRM),以及光学显微镜(OpticalMicroscopy)等测试手段,对铸造多晶硅中的原生杂质及缺陷以及少子寿命的分布特征进行了系统的研究。

主要包括以下三个方面:间隙氧在铸造多晶硅锭中的分布规律;铸造多晶硅中杂质浓度的分布与材料少子寿命的关系;铸造多晶硅中缺陷的研究及其对少子寿命的影响。

关键词:铸造多晶硅;间隙氧;铁;位错;少子寿命1.引言1.1多晶硅的生产简介:硅,1823年发现,为世界上第二最丰富的元素——占地壳四分之一,砂石中含有大量的SiO2,也是玻璃和水泥的主要原料,纯硅则用在电子元件上,譬如启动人造卫星一切仪器的太阳能电池,便用得上它。

由于它的一些良好性能和丰富的资源,自一九五三年作为整流二极管元件问世以来,随着硅纯度的不断提高,目前已发展成为电子工业及太阳能产业中应用最广泛的材料。

多晶硅的最终用途主要是用于生产集成电路、分立器件和太阳能电池片的原料。

硅的物理性质:硅有晶态和无定形两种同素异形体,晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,具有半导体性质,晶态硅的熔点1416±4℃,沸点3145℃,密度2.33 g/cm3,莫氏硬度为7。

单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列为单一晶核,晶面取向相同的晶粒,则形成单晶硅,如果当这些晶核长成晶面取向不同的晶粒,则形成多晶硅,多晶硅与单晶硅的差异主要表现在物理性质方面。

一般的半导体器件要求硅的纯度六个9以上,大规模集成电路的要求更高,硅的纯度必须达到九个9。

太阳电池用铸造多晶硅结构缺陷和杂质的

太阳电池用铸造多晶硅结构缺陷和杂质的

缺陷和杂质2023-11-09•铸造多晶硅太阳电池概述•铸造多晶硅的结构缺陷•铸造多晶硅中的杂质目录•铸造多晶硅结构缺陷和杂质的表征与检测方法•铸造多晶硅结构缺陷和杂质的控制与优化•展望与未来发展趋势01铸造多晶硅太阳电池概述铸造多晶硅太阳电池的制造工艺已经非常成熟,可以实现大规模生产。

制造工艺成熟转换效率较高制造成本较低铸造多晶硅太阳电池的转换效率较高,可以满足大部分应用需求。

铸造多晶硅太阳电池的制造成本较低,具有较好的经济性。

030201吸光层由多晶硅材料构成,能够吸收太阳光并将其转化为电能。

吸光层导电层由掺杂的多晶硅材料构成,能够将吸光层产生的电流导出并传输到外部电路中。

导电层背反射器用于将太阳光反射回吸光层,以增加光吸收效果。

背反射器导电层制备将掺杂的多晶硅材料通过热处理和加工等工艺制成导电层。

铸造多晶硅太阳电池的制造过程原材料准备制造铸造多晶硅太阳电池需要准备多晶硅材料、掺杂剂、反射器等原材料。

吸光层制备将多晶硅材料通过热处理和掺杂等工艺制成吸光层。

背反射器制备将反射器材料通过加工等工艺制成背反射器。

组装将吸光层、导电层和背反射器组装在一起,形成完整的铸造多晶硅太阳电池。

02铸造多晶硅的结构缺陷在铸造多晶硅中,晶界是常见的结构缺陷。

晶界是指不同晶粒之间的交界,通常会对材料的性能产生负面影响。

在太阳电池中,晶界会降低载流子的迁移率,导致光电转换效率下降。

晶界位错是指晶体结构中的原子排列错位。

在铸造多晶硅中,位错会破坏晶体结构的周期性,导致能带结构发生变化。

位错还会影响载流子的散射和复合,进一步降低太阳电池的性能。

位错铸造多晶硅中的晶界与位错杂质陷阱在铸造多晶硅中,杂质原子通常会聚集在晶界或位错等缺陷处。

这些杂质原子会捕获电子或空穴,形成杂质能级,从而影响载流子的迁移和复合过程。

杂质陷阱对太阳电池的光电转换效率产生负面影响。

热处理与杂质陷阱通过热处理可以部分消除杂质陷阱的影响。

在高温下,杂质原子有机会从缺陷处扩散出去,从而减少杂质陷阱的数量。

少子寿命测试原理

少子寿命测试原理

EC
ED
EC
EV
EV
EA
• P型掺杂(III族):B、Al、Ga、In • N型掺杂(V族):P、As、Sb • 均为浅能级杂质
• 常温下,非重掺,P型硅的空穴浓度等于 P型掺杂剂浓度;N型硅的电子浓度等于 N型掺杂剂浓度。
• P型硅的载流子绝大部分为空穴。空穴为多 数载流子(majority carrier),简称多子;电 子为少数载流子(minority carrier),简称少 子。
• N型硅的载流子绝大部分为电子。电子为多 子,空穴为少子。
3. 非平衡载流子
• 平衡状态下,电子空穴对的产生和复合 率相等。电子和空穴浓度n、p不变。
EC
产生 复合
EV
• 受外界因素(光照、载流子注入等)影响比 平衡状态下多出来的载流子。
EC

非平衡载流子浓 度为Δn、Δp。
Δn = Δp
EV
位错
• 在多晶硅铸造过程中,由于热应力的作 用会导致位错的产生。另外,各种沉淀 的生成,及由于晶格尺寸的不匹配也会 导致位错的产生。这些位错本身就具有 悬挂键,存在电学活性,降低少数载流 子的寿命而且金属在此极易偏聚,对少 数载流子的降低就更加严重。
• SRH(Shockley-Read-Hall)模型
τn0和τp0分别是电子和空穴的俘获时间常 数。n1和p1分别为费米能级处于复合中心 能级Et时电子和空穴的浓度。
1. 复合中心能级Et越深少子寿命越小,所 以深能级杂质对少子寿命影响极大,即 使少量深能级杂质也能大大降低少子寿 命。过渡金属杂质往往是深能级杂质, 如Fe、Cr、Mo等杂质。
• 2. 电阻率的影响 • 随着电阻率的增大,少子寿命也不断增 大。

多晶硅与少子寿命分布

多晶硅与少子寿命分布

• 多晶硅照片
• 装料
硅锭
840X840X305
• 硅锭开方
多晶硅片
单晶硅片Leabharlann 硅片二.多晶硅生产简介
硅的卤化物的简介 三氯氢硅氢还原的原理 多晶硅生产工艺简介
1.
2.
3.
1. 硅的卤化物的简介




硅的氯化物主要介绍SiCl4、SiHCl3等,它们和 碳的卤化物CF4和CCl4相似,都是四面体的非极 性分子,共价化合物,溶沸点都比较低,挥发性 也比较大,易于用蒸馏的方法提纯它们。 在常温下,纯净的SiCl4、SiHCl3是无色透明的 易挥发液体。 SiCl4:沸点为57.6℃,分子量170,液体密度1.47 g/cm3。 SiHCl3 :沸点为31.8℃,分子量135.45,液体密 度1.32 g/cm3。

铸造多晶硅中位错的测定
铸造多晶硅中的沉淀和位错等缺陷都能在 硅晶格中引入局部应力,影响材料的性能, 可以利用SIRM(红外扫描仪)探测硅片体 内的局部应力分布n 。通常,在SIRM图片 中,应力斑点密度对应于缺陷密度,而斑 点尺寸对应于沉淀尺寸。

SIRM(红外扫描仪)

当波长在1.1~1.3µm的红外激光典型波段经一 个孔径大约为的透镜后聚集成一束细小的激 光探针, 照射到硅片上, 由于硅对于此波段的 激光是完全透明的, 激光就会穿透硅片被一个 放置在合适位置上的探头所接受到, 激光信号 再经收集, 放大, 储存到计算机里, 最终经相应 的图象软件在计算机里成像。如果硅片中存 在着缺陷或杂质, 这些缺陷或杂质会在硅片引 入一定大小的局部应力, 从而导致硅片局部的 不均匀, 使得激光经过该位置时产生散射, 从 而导致探头所接受到的信号减弱, 在所生成图 象的对应位置形成暗像。

18-磷吸杂对冶金多晶硅片的少子寿命的影响

18-磷吸杂对冶金多晶硅片的少子寿命的影响

18-磷吸杂对冶金多晶硅片的少子寿命的影响第 12 届中国光伏大会暨国际光伏展览会论文(晶体硅材料及电池)磷吸杂对磷吸杂对冶金多晶硅片冶金多晶硅片的少子寿命的影响少子寿命的影响徐志虎 1,3 谢俊叶 2 马承宏 2 李健 1,3(1.内蒙古大学物理科学与技术学院;2.内蒙古日月太阳能科技责任有限公司3.内蒙古自治区半导体光伏技术重点实验室呼和浩特010021)摘要:摘要本研究采用液态三氯氧磷源扩散方法对物理冶金法提纯多晶片(6N)进行恒温磷吸杂.研究温度、时间和通磷源量等参数对吸杂效果的影响,摸索可用于生产最有效的工艺条件.用少子寿命测试仪和四探针测试仪测试硅裸片的少子寿命和电阻率. 实验给出:通源量较低时,950℃吸杂30min 的效果相对好;其他工艺参数不变时随通源量增大,硅片表面有效吸杂点增加,吸杂效果逐渐明显,少子寿命可提高近4 倍;当通源量增到一定时,吸杂效果开始下降.关键词:关键词冶金法提纯,多晶硅片,磷吸杂,少子寿命,电阻率 1 引言常规多晶硅太阳电池材料普遍采用改良西门子法提纯,此法技术成熟,提纯的硅材料可达7N,但此法存在产能低、成本高、环境威胁大等缺点.冶金物理法提纯多晶硅技术虽然有工艺简单、成本低、产能大和对环境友好的优势,但其提纯的硅材料的纯度在 5-6N 明显低于西门子法技术,材料中的金属杂质含量较高及存在更多的缺陷,这些微缺陷和金属杂质在硅禁带中引入了一些深能级,成为光生少数载流子的复合中心,从而降低了少数载流子的寿命,直接影响太阳电池的光电转换效率.为改善硅片性能,通过一定的后续处理,使硅片的少子寿命提高到与化学法提纯硅片的量级,就可满足生产电池的要求,提高太阳电池的效率改善电池的性能. 半导体技术中一般吸杂分为内吸杂和外吸杂,内吸杂通常用于 IC 领域,即利用适当的热处理工艺,通过控制硅片的氧浓度及氧沉淀在硅片内形成有效的吸杂点,而达到去除金属杂质的目的.外吸杂是利用各种工艺在硅片背面制造有效的吸杂点,在其后的器件热循环工艺或结合内吸杂热处理工艺中,使金属杂质沉积,而达到去除金属杂质的目的[1].多晶硅太阳电池作为体器件,其吸杂必须采用外吸杂.常用的光伏用材料吸杂方法有磷吸杂、铝吸杂、背损伤吸杂和磷铝共吸杂等.吸杂过程可以采用恒温或变温的形式.目前,关于冶金物理法多晶硅片的吸杂[2,3] 研究很少还不够系统需要做深入的研究.本工作主要采用液态源磷吸杂的方法,对物理提纯多晶硅片进行吸杂研究..2 实验实验采用包头山晟新能源公司和中科院半导体所联合研制的物理冶金多晶硅片(6N ) . 规格:面积156×156cm2 ,厚180±20μm,电阻率 1-3Ω·cm,氧浓度5× 1017atom/cm3 ,主要金属含量 Ti<0.005ppmw 、 Fe<0.05ppmw 、 Co<0.005ppmw、Al<0.01ppmw. 原始多晶硅裸片去损伤后少子寿命约 0.9-1.0μs,磷源是液态三氯氧磷,设备采用中电集团第48 所生产的M5111-4W*/UM 型扩散炉. 选择 100 片同一多晶硅块连续切割的硅片(晶体结构分布相同晶粒分布相似)进行实验,实验步骤见图 1.图 1.吸杂实验流程示意图3. 不同温度、时间少子寿命增加率图 1 中去损伤和去除 PN 结均采用的 HF:HNO3:H2O=1:3:2 的酸溶液.因测试采用电池生产线的少子寿命测试仪,所以腐蚀后(无表面表面钝化)快速直接测试多晶硅裸片的少子寿命、方块电阻和电阻率.考虑到生产的实用性,尽可能减少高温带来新的缺陷等负面影响,实验中在磷吸杂扩散温度和处理时间,在保证形成足够的吸杂点和杂质能够运动到表面吸杂点处的前提下应尽量缩短时间降低和降低温度 .为做比较,实验选择四个温度段:880 ℃ 、900℃ 、950℃和970℃ ,时间选择五种条件 20min、30min、45min、1h、3h. 采用匈牙利生产的WT-1200 少子寿命仪测量硅片的少子寿命;用广州生产的 RTS-4 四探针电阻率测试仪测试硅片的方块电阻和电阻率.3结果与讨论3.1 吸杂工艺条件吸杂工艺条件对工艺条件对硅片少子寿命的影响图 2 是不同温度、时间下冶金硅片吸杂后少子寿命变化情况 .图 2 给出,当温度为880℃时(曲线 b),去除 PN 结后裸硅片的少子寿命随吸杂时间的增加而增大,说明增加吸杂时间能够促进磷扩散在硅片上吸杂点的形成,使得硅片吸杂效果明显.当时间吸杂过长(1h)少子寿命有所降低最终趋于平稳;当温度增加到900 ℃时(曲线 a),硅片的少子寿命相比880℃ 有整体的提高,900℃、3h 组合使得少子寿命达到 2us,说明温度的升高有助于杂质的扩散和硅片表面吸杂点的形成,利于杂质的吸除,但是由于温度较低,故需要较长的时间达到最佳吸杂的效果;当温度为920℃时(曲线d),由于温度的升高使硅片中缺陷和位错增多体内产生更多的复合中心,使吸杂的效果被其掩盖,因此920℃时整体的少子寿命较低与900℃;温度增到950℃(曲线c),温度的升高大大促进吸杂的效果,而此时高温形成的缺陷和位错对少子寿命的影响占次要,所以吸杂后的少子寿命有很大的提高,温度950℃时间吸杂 30min 少子寿命也达到2us;但当温度升高到970℃时(曲线 e)吸杂效果不明显,此时高温产生的大量复合中心抵消掉了吸杂的效果. 图 2 给出900℃吸杂 3h 和950℃吸杂 30min 后,裸硅片的,去除 PN 结后测试裸硅片的少子寿命都达到2us. 但是去损伤后原始裸硅片的少子寿命不同,所以图3 给出少子寿命的增加率.由图 3 可以看出950℃、 30min 组合少子寿命增加了 81.1%,吸杂效果达到最佳.图 2. 不同温度、时间吸杂硅裸片少子寿命变化曲线图图 4. 少子寿命随磷源流量的变化曲线图 4 是少子寿命随磷源流量的变化曲线. 图中给出少子寿命随磷源的增加而增加,表明磷源通入的增多能够促进吸杂点的形成使得吸杂效果明显,但当磷源增加到一定程度时,少子寿命会降低.3.2 吸杂对硅片的电阻率的影响表面的复合.而吸杂之后(曲线a)少子寿命比去损伤后有很大的提升. 图 6 给出去损伤(曲线 b)和吸杂后(曲线 a)的裸硅片电阻率比原始裸片(曲线 c)有所增大,由于去损伤和吸杂工艺有助于降低硅片表面和体内的杂质含量引起的.扩散后去结前(曲线d)的电阻率急剧下降,是因为浓磷扩散后硅片表面形成一层厚厚的磷硅玻璃,其中含有大量的磷原子和从体内吸杂到该区域的杂质,使得电阻率变得很小.4 结论本项研究对物理法提纯多晶裸片进行磷吸杂.实验显示吸杂温度升高有利于杂质的扩散和硅片表面有效吸杂点的形成利于杂质的吸除,温度超过950℃由于硅片体内产生大量的缺陷和位错导致吸杂失效,硅片的少子寿命降低.温度较低时(900℃)需配合较长吸杂时间(3h)能达到较好的吸杂效果,而950℃对应短时吸杂时间(30min)吸杂效果较明显;磷源通入的增多能够促进吸杂点的形成使得吸杂效果明显,但当磷源增加到一定程度时,少子寿命会降低.图5. 950℃、30min 吸杂前后少子寿命变化曲线图6. 950℃、30min 吸杂电阻率变化曲线图 5、图 6 分别给出950℃、30min 吸杂后,多晶裸硅片少子寿命及电阻率在每步后的变化.图 5 给出硅片去损伤层后(曲线 b)少子寿命增加,是由于减少了光生载流子在5 参考文献:参考文献:[1] 杨德仁. 硅材料的吸杂研究[J]. 1992.半导体技术. 8.53-56 [2] 武智平,潘淼,庞爱锁等. 物理冶金法多晶硅片磷吸杂工艺的优化[J]. 2011.半导体光电. 32. 668-671 [3] 徐华毕. 物理提纯硅磷吸杂及其太阳电池光衰减性能的研究(博士学位论文).中山大学.2010。

多晶硅与少子寿命分布

多晶硅与少子寿命分布

多晶硅与少子寿命分布(河南科技大学材料科学与工程系,洛阳 471000)摘要:铸造多晶硅目前已经成功取代直拉单晶硅而成为最主要的太阳能电池材料。

铸造多晶硅材料中高密度的杂质和结晶学缺陷(如晶界,位错,微缺陷等)是影响其太阳能电池转换效率的重要因素。

本文利用傅立叶红外分光光谱仪(FTIR) ,微波光电导衰减仪,红外扫描仪(SIRM),以及光学显微镜(OpticalMicroscopy)等测试手段,对铸造多晶硅中的原生杂质及缺陷以及少子寿命的分布特征进行了系统的研究。

主要包括以下三个方面:间隙氧在铸造多晶硅锭中的分布规律;铸造多晶硅中杂质浓度的分布与材料少子寿命的关系;铸造多晶硅中缺陷的研究及其对少子寿命的影响。

关键词:铸造多晶硅;间隙氧;铁;位错;少子寿命1.引言1.1多晶硅的生产简介:硅,1823年发现,为世界上第二最丰富的元素——占地壳四分之一,砂石中含有大量的SiO2,也是玻璃和水泥的主要原料,纯硅则用在电子元件上,譬如启动人造卫星一切仪器的太阳能电池,便用得上它。

由于它的一些良好性能和丰富的资源,自一九五三年作为整流二极管元件问世以来,随着硅纯度的不断提高,目前已发展成为电子工业及太阳能产业中应用最广泛的材料。

多晶硅的最终用途主要是用于生产集成电路、分立器件和太阳能电池片的原料。

硅的物理性质:硅有晶态和无定形两种同素异形体,晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,具有半导体性质,晶态硅的熔点1416±4℃,沸点3145℃,密度2.33 g/cm3,莫氏硬度为7。

单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列为单一晶核,晶面取向相同的晶粒,则形成单晶硅,如果当这些晶核长成晶面取向不同的晶粒,则形成多晶硅,多晶硅与单晶硅的差异主要表现在物理性质方面。

一般的半导体器件要求硅的纯度六个9以上,大规模集成电路的要求更高,硅的纯度必须达到九个9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造多晶硅中杂质对少子寿命的影响
对于太阳电池材料,勺子寿命是衡量材料性能的一个重要参数。

多晶硅锭中存在高密度的缺陷和高浓度的杂质(氧、碳以及过渡族金属铁等)。

有研究表明,相比于晶界和位错,氧、铁等主要的杂质元素对硅锭中少子寿命的影响更大。

氧是铸造多晶硅材料中最主要的杂质元素之一,间隙氧通常不显电学活性,对少子寿命没有影响。

但在晶体生长或热处理时,在不同温度氧会形成热施主、新施主、氧沉淀,氧沉淀会吸引铁等金属元素。

另外铁也被认为铸造多晶硅中最常见的有害杂质之一。

P型硅中,铁通常与硼结合成铁-硼对,铁一硼对在室温下能稳定存在,但在200℃下热处理或者强光照可以使铁一硼对分解而形成间隙铁离子和硼离子,由于间隙铁离子和铁一硼对少数载流子复合能力的不同,使得处理前后少子寿命值出现变化,从而可以建立起间隙铁浓度对应少子寿命值变化之间的关系。

杂质在铸造多晶硅硅锭中的分布,与该杂质在硅中的分凝系数K有关。

在铸造多晶硅锭料由底部向顶部逐渐凝固时,如果杂质的分凝系数K<1,则凝固过程中,固相中的杂质不断地被带到熔体中,出现杂质向底部集中,越接近底部浓度越大,相反,如果分凝系数K>1,则杂质集中在顶部,越接近顶部浓度越大。

氧主要集中在硅锭头部,其浓度呈现从硅锭底部向顶部逐渐降低的趋势。

可以认为分凝机制对于氧在熔体硅中的传递和分布起主要作用。

间隙铁分布为:头部和尾部浓度较高,中间部分浓度较低,且分布较为均匀。

这与仅由分凝机制决定的间隙铁浓度分布,特别是在底部处产生了较大偏离。

硅锭底部处出现了较大的间隙铁浓度,由于铁在硅中具有较大的扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层向其进行固相扩散的结果。

事实上硅锭的底部最先开始凝固,通常整个凝固过程将持续数十小时,硅锭底部将有较长时间处于高温状态,因而使得固相扩散的现象有可能发生。

固相扩散的程度与凝固后硅锭的冷却速率以及各温度下的铁的扩散系数有关。

从少子寿命的分布图中,可以看出硅锭两端的低寿命区域,对应着过高的间隙铁、氧浓度,因而可以认为高浓度的间隙铁、氧原子形成了有效复合中心,从而导致了硅锭两端低少子寿命区域的出现。

相关文档
最新文档