高阶导数的运算法则
合集下载
17-第17讲高阶导数

C (1 x )( f ( x))
2 n 2
( n 2)
C x ( f ( x))
0 n
( n)
C ( x)( f ( x))
1 n
( n1)
0
n(n 1) (n) ( x) (2) f ( x) 2!
( n)
故
(1 x ) f
2
( n 2)
( x) n(2 x) f
n 3
... 2an 2
………………
y
( n)
a0 n!
y
( n 1)
y
( n 2)
0.
例4
y = ex 的任何阶导数仍为 ex x 的各阶导数. 求y=e
解
y e ......
x
y ( y) (e ) e
x
x
y
( n)
e
x
......
例5
100
(1) 100!( x 2)
100
101
(1) 100!( x 3)
100
101
1 1 100! 101 101 ( x 3) ( x 2)
例14
(80 )
设 y x sin x , 求 y
2
(80)
.
解 由莱布尼兹公式
y ( x sin x)
2
d ( y) dy 2 ( y)
d( y) dx dx dy y 3 2 ( y ) ( y)
1 y
例12
( x) f 2 ( x), 设 f ( x) 有任意阶导数 , 且满足 f 求 f
(n)
( x).
一、高阶导数及其运算法则(精)

2
2
y(n) (cos x)(n) cos(x n ). ——逐阶整理法
2
例4. f (x) (1 x) , ( R)
f (x) (1 x) 1,f (x) ( 1)(1 x) 2,
f (n) (x) ( 1)( 2)( (n 1))(1 x) n.
Def : y f (x)的导数y f (x() 一阶导数)在x的导数,称为
f (x)在x的二阶导数,记为 y,或 f (x),或 d 2 y ,即 dx 2
y f (x) lim f (x x) f (x) ( f (x)).
x0
•
高阶导数的运算法则
1. (u(x) v(x))(n) u(n) (x) v(n) (x).
2. Leibniz 公式:
(u(x) v(x))(n) u(0)v(n) Cn1uv(n1) Cnku(k )v(nk )
n
Cnn1u (n1)v u (n)v(0) Cnku (nk )v(k ) , k 0
因为x不是自变量, x
g (t
),dx
g(t)dt是t的函数.
而当x是自变量时,有 d 2 x d (dx) d (1)dx 0,
此时 d 2 y f (x)dx2.
这两式一般不相等.
高阶微分不具有形式不 变性
注意:
(1) dxn (dx)n,dxn d (xn ), (dx)n 表示微分的幂,
x) .
二、高阶微分 Def: y f (x)的微分dy f (x)dx的微分称为f (x)的二阶微分,
记为d 2 y. 一般地,f (x)的n 1阶微分d n1 y的微分称为f (x)的 n阶微分,记为d n y. 二阶及二阶以上的微分 统称为高阶微分.
高阶导数的运算法则

v(k) 0 (k 3 ,, 20)
代入莱布尼兹公式 , 得
y(20) 220 e2x x2 20 219 e2x 2x 20 19 218 e2x 2
2!
高阶导数的求法
(1) 逐阶求导法
(2) 利用归纳法
(3) 间接法 —— 利用已知的高阶导数公式
如,
a
Байду номын сангаас
1
x
(n)
(1)n
(a
y
2x x2 (1 x) 22x 2 2x x2
2x x2 (1 x)2
2x x2
(2x x2) (2x x2
2x x2 (1 x)2 (2x x2) (2x x2)
1
3
(2x x2)2
1 y3
所以y 3y10
例2. 设
存在,求下列函数的二阶导数
(1) y f (ex ); (2) y e f (x).
n! x)n1
1 ax
(n)
n! (a x)n1
(4) 利用莱布尼兹公式
例9. 如何求下列函数的 n 阶导数?
(1) y 1 x 1 x
(3)
y
x2
1 3x
2
解:
y(n)
2 (1)n
n! (1 x)n1
(2) y x3
1 x
解:
1 解: (x 2)(x 1)
(x 1) (x 2) (x 2)(x 1)
类似地 , 二阶导数的导数称为三阶导数 ,
依次类推 ,
n 1 阶导数的导数称为 n 阶导数 ,
分别记作
或
y(y) f (x)[f (x)]
d2y dx2
d dx
(dy) dx
导数的基本公式与运算法则高阶求导

( f ( x)) lim f ( x x) f ( x)
x0
x
存在,则称( f ( x))为函数f ( x)在点x处的二阶导数.
记作
f ( x),
y,
d2 dx
y
2
或
d
2 f (x dx 2
)
.
d (dy) d x dx
y f (x) y f (x) y [ f (x)] f (x)
dx n
dx n
二阶和二阶以上的导数统称为高阶导数.
相应地, f ( x)称为零阶导数; f ( x)称为一阶导数.
二、 高阶导数求法举例
例
设 y arctan x, 求f (0), f (0).
( 1
1(xu21))
1(1u(112x2
x2 )2
)
解
y
1
y(n) ( 1)( n 1)xn (n 1)
若 为自然数n,则
y(n) ( xn )(n) n!, y(n1) (n!) 0.
注意:求n阶导数时,求出1-3或4阶后,不要急于合并, 分析结果的规律性,写出n阶导数.(数学归纳法)
例. 设 y eax , 求 y(n). 解: y aeax ,
y a2 eax , y a3eax , , y(n) an eax
特别有: (e x )(n) e x
例 设 y ln(1 x), 求y(n) .
[([(11(112xx1)x)3)2]](1[2[1(x1()12 x(1)x)3]2x]) 22(13(1x)x3 )4
0,
求
d2 y d x2
高阶导数

n
则 y1
(1)(2)(n)(1 x )
Hale Waihona Puke ( n 1)n! (1) (1 x ) n1
n
y1
n
(1)(2)(n)(1 x )
( n 1)
n! (1) (1 x ) n1
n
另:
2 3 2 y ( 1 )( 1 x ) ( 1 ) , y ( 1 )( 2 )( 1 x ) ( 1 ) , 2 2
n n 1 n 1 1 y 2 1 x 1 x
其中: y1 (1 x ) 1 则 (1)(1 x ) 2 , (1)(2)(1 x ) 3 , y1 y1
例 3 设 y=x μ (x> 0, μ为任意实数),求 yn .
解:
y x 1 , y ( 1) x 2
y ( n ) 1 2 n 1x n
特别: x
n
n
=n! (n为自然数)。
例 4 设 f ( x) =sin x ,求f
则 y2
n
(1)(2)(n)(1 x )
n
( n 1)
n! (1) n 1 (1 x )
n
y
1 n! n! n (1) n1 n1 2 (1 x ) (1 x )
例 8 设 y=x2 + 1 ln 1 +x ,求 y100 .
解:
令 u=ln 1 x ,v= x 2 1 v=2 x , v=2 , v n= 0 n 3
则利用莱布尼兹公式可 得: 99! 100 98! 100 99 97! 2 y =- 1+ + 0 + + 0 100 x + 99 2 x- 98 2 1 x 1 x 2!1 x =
则 y1
(1)(2)(n)(1 x )
Hale Waihona Puke ( n 1)n! (1) (1 x ) n1
n
y1
n
(1)(2)(n)(1 x )
( n 1)
n! (1) (1 x ) n1
n
另:
2 3 2 y ( 1 )( 1 x ) ( 1 ) , y ( 1 )( 2 )( 1 x ) ( 1 ) , 2 2
n n 1 n 1 1 y 2 1 x 1 x
其中: y1 (1 x ) 1 则 (1)(1 x ) 2 , (1)(2)(1 x ) 3 , y1 y1
例 3 设 y=x μ (x> 0, μ为任意实数),求 yn .
解:
y x 1 , y ( 1) x 2
y ( n ) 1 2 n 1x n
特别: x
n
n
=n! (n为自然数)。
例 4 设 f ( x) =sin x ,求f
则 y2
n
(1)(2)(n)(1 x )
n
( n 1)
n! (1) n 1 (1 x )
n
y
1 n! n! n (1) n1 n1 2 (1 x ) (1 x )
例 8 设 y=x2 + 1 ln 1 +x ,求 y100 .
解:
令 u=ln 1 x ,v= x 2 1 v=2 x , v=2 , v n= 0 n 3
则利用莱布尼兹公式可 得: 99! 100 98! 100 99 97! 2 y =- 1+ + 0 + + 0 100 x + 99 2 x- 98 2 1 x 1 x 2!1 x =
高等数学高阶导数

第四节
第二章
高阶导数
一、高阶导数的概念 二、几个常用函数的高阶导数 三、高阶导数的运算法则 四、隐函数的二阶导数 五、由参数方程确定的函数的二阶导数
一、高阶导数的概念
引例:变速直线运动 速度 加速度 即 即 v s
a ( s)
定义 如果函数f ( x )的导数f ( x )在点x处可导, 即 f ( x x ) f ( x ) ( f ( x )) lim x 0 x 存在, 则称( f ( x ))为函数f ( x )在点x处的二阶导数.
y (n) a n e ax
特别有: (e x ) ( n ) e x
f (n ) (0) 存在的最高 例6 设 f ( x) 3x x x , 求使
3 2
2 3 4x , x 0 f (x) 3 分析: 2x , x 0 2 x3 0 f (0) lim 0 12 x 2 , x x 0 f (x) 2 4 x3 0 6x , (0) lim f 0 x x 0 6x2 0 又 f (0) lim 24x , x x 0 f (x) 12x , 12 x 2 0 f (0) lim x x 0 但是 f (0) 12 , f (0) 24 , f (0) 不存在 .
若 为自然数 , y xn则 n
y
( n)
( x ) n! ,
n ( n)
y ( n 1) ( n! ) 0.
注意:求n阶导数时,求出1-3或4阶后, 分析结果的 规律性,写出n阶导数.(数学归纳法证明) 1 例2 设 y , 求y ( n) . xa n (1) n! ( n) 1 1 y . 解 ( x a) , n1 xa ( x a) 例3 设 y ln(1 x ), 求y (n) . 1 1 y 解 y 1 x (1 x ) 2 2! 3! (4) y y 3 (1 x ) (1 x ) 4 (n) n 1 ( n 1)! y ( 1) ( n 1, 0! 1) n (1 x )
第二章
高阶导数
一、高阶导数的概念 二、几个常用函数的高阶导数 三、高阶导数的运算法则 四、隐函数的二阶导数 五、由参数方程确定的函数的二阶导数
一、高阶导数的概念
引例:变速直线运动 速度 加速度 即 即 v s
a ( s)
定义 如果函数f ( x )的导数f ( x )在点x处可导, 即 f ( x x ) f ( x ) ( f ( x )) lim x 0 x 存在, 则称( f ( x ))为函数f ( x )在点x处的二阶导数.
y (n) a n e ax
特别有: (e x ) ( n ) e x
f (n ) (0) 存在的最高 例6 设 f ( x) 3x x x , 求使
3 2
2 3 4x , x 0 f (x) 3 分析: 2x , x 0 2 x3 0 f (0) lim 0 12 x 2 , x x 0 f (x) 2 4 x3 0 6x , (0) lim f 0 x x 0 6x2 0 又 f (0) lim 24x , x x 0 f (x) 12x , 12 x 2 0 f (0) lim x x 0 但是 f (0) 12 , f (0) 24 , f (0) 不存在 .
若 为自然数 , y xn则 n
y
( n)
( x ) n! ,
n ( n)
y ( n 1) ( n! ) 0.
注意:求n阶导数时,求出1-3或4阶后, 分析结果的 规律性,写出n阶导数.(数学归纳法证明) 1 例2 设 y , 求y ( n) . xa n (1) n! ( n) 1 1 y . 解 ( x a) , n1 xa ( x a) 例3 设 y ln(1 x ), 求y (n) . 1 1 y 解 y 1 x (1 x ) 2 2! 3! (4) y y 3 (1 x ) (1 x ) 4 (n) n 1 ( n 1)! y ( 1) ( n 1, 0! 1) n (1 x )
高阶导数的运算法则

应用
高阶微分方程在描述复杂系统的行为和解决某些数学问题中有重要应用。
05
高阶导数的物理应用
速度与加速度的关系
总结词
描述速度和加速度之间的数学关系
详细描述
在物理学中,速度和加速度是描述物体运动状态的两 个重要物理量。速度是描述物体位置变化的量,而加 速度是描述物体速度变化快慢的量。通过高阶导数, 我们可以更精确地描述速度和加速度之间的关系。例 如,物体的运动方程可以表示为速度关于时间的导数 (即加速度),而加速度关于时间的导数则表示加加 速度(即物体速度变化的速率)。
举例
$y'' = f(x, y, y', y'')$,其中 $f$ 是可微函数,$y$ 是未知函数,$x$ 是自变量。
应用
二阶微分方程在振动、波动和曲率等领域有广泛应 用。
高阶微分方程
定义
高阶微分方程是包含一个未知函数及其高阶导 数的方程。
举例
$y^{(n)} = f(x, y, y', ldots, y^{(n)})$,其中 $f$ 是可微函数,$y$ 是未知函数,$x$ 是自变 量。
幂的导数法则
总结词
幂的导数法则是计算幂函数的高阶导数的规 则。
详细描述
幂的导数法则是说,如果幂函数y=x^n对x有 n阶导数,则其高阶导数的形式为 d^ny/dx^n=(n!)*x^(n-1)/[(n-
1)!]+...+2*x/1+0*1/x,其中n为非负整数。
03
高阶导数的应用
求极值
极值判定定理
04
高阶导数在微分方程中的应 用
一阶微分方程
定义
01
一阶微分方程是包含一个未知函数及其导数的方程。
高阶导数

①
e y y 1 xe
②
y
在① 两边再对 x 求导 , 得 (1 x e y ) y 2 e y y x e y ( y ) 2
2 e y y xe y ( y ) 2 y y 1 xe y y 2y e 2e xe y y y 2 1 xe 1 xe (1 xe )
y
(n)
n! , n3 n 1 (1 x )
1 (3) y 预习P177有理函数的分解 2 x 3x 2 1 A B 提示: 令 ( x 2)( x 1) x 2 x 1
A ( x y x 2 x 1
y
(n) n
x2 x 1
1 1
1 1 ( 1) n ! n 1 n 1 ( x 1) ( x 2)
(4)
解:
y sin 6 x cos 6 x
sin 4 x sin 2 x cos 2 x cos 4 x
3 2 1 sin 2 x 4
若上述参数方程中 则由它确定的函数
二阶可导,
且
可求二阶导数 .
x (t ) 利用新的参数方程 d y (t ) ,可得 dx (t ) d d y dx d 2 y d (d y ) ( ) 2 dx dx d t dx d t dx (t ) (t ) (t ) (t ) (t ) 2 (t )
n 2m ( m 0 , 1, 2 , ) (0) m m, n 2 m 1 ( 1) ((2 m 1) ! ( 2 m ) ! y ( 0 )
1) y ( 2 m ( 00 ) ,