1.1探索勾股定理(一)
《探索勾股定理》第一课时上课课件

课堂作业: 课堂作业: 教材P7(知识技能1, 教材 (知识技能 ,问题 解决4) 解决 ) 家庭作业: 家庭作业: 全品第一章第一课时 制作四个全等的直角三角形
图 1 图2
1 4 9
1 4 9
2 8 18
SA+SB=SC
图3
直角三 角形三 边数量 关系
a2+b2=c2
(二)自主探索二
你还能数出图 中正方形A、B、 C各占多少个 小格子吗?完 成表格,探究 规律。 图1 图2
A的面积 的面积 单位面积) (单位面积) 图1 图2 A、B、C 面积 、 、 关系
D
) D 7或25 或
C 7
实践应用二: 实践应用二:探索情境 1、某楼发生火灾,消防车立即赶到距大 某楼发生火灾, 楼6米的地方搭建云梯,升起云梯到 米的地方搭建云梯, 达火灾窗口。已知云梯长10 10米 达火灾窗口。已知云梯长10米,问发生 火灾的窗口距离地面多高? 火灾的窗口距离地面多高? (不计消防车的高度) 不计消防车的高度)
(一)新知引入
C C B A B
A
请你数一数图中正方形A、B、C各占多少个小格子?完成表 格,探究规律。
A的面 B的面积 C的面 的面 的面积 的面 (单位 积(单位 单位 单位 积(单位 单位 面积) 面积) 面积) 面积 面积 面积 图1 图2 图3 A、B、 、 、 C 面积 关系
(二)自主探索一
B的面积 的面积 单位面积) (单位面积)
C的面积 的面积 单位面积) (单位面积)
16 4
9 9
25 13
直角三角形 三边数量关系
SA+SB=SC
a2+b2=c2
(二)自主探索三
北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1
2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .
探索勾股定理ppt课件

左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾
股
我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?
?
10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进
新北师大版八年级上册数学1.1探索勾股定理(1)课件

△ABC面积为2__4___,斜边为上的高为4_._8____.
A D
C
B
4.在△ABC中,∠C=90º, (1) 若a=5,b=12,则c=___1_3____; (2) 若a=15,c=25,则b=__2_0_____; (3) 若c=61,b=60,则a=___11_____; (4) 若a:b=3:4,c=10,则a=__6______,b=__8______; (5) 若a:c=3:5 ,b=8,则a=___6_____;
勾股定理在中国有着悠久的历史, “勾三,股四,弦五” 结论可以上溯到大禹治水时代(大约公元前21世纪),一般 勾股定理最晚到公元前6至7世纪己经明确并得到广泛的 应用.
勾股定理是数学中最重要的基本定理之一,20世纪80 代,科学界曾征集有史以来科学上的十大发现,结果数学只 有唯一的一条入选,它就是勾股定理.
5. 一高为2.5米的木梯,架在高为2.4米的墙 上(如图),这时梯脚与墙的距离是多少?
A
解:在Rt△ABC中,根据勾
股定理,得 BC2+AC2=AB2
即 BC2+2.42 = 2.52
∴ BC=0.7.
C
B
6.在等腰三角形ABC中, AC=BC=5cm,AB=6cm,
求三角形ABC的面积
重要的 思想方 法及数 学思想
格?它们的面积各是多少?
4,4,8
C
A
(3)你能发现两图中三个
B
C 图1-1 A
正方形A,B,C的面积之 间有什么关系吗?
9,9,18; 4,4,8
B
图1-2
SA+SB=SC
(图中每个小方格代表一个单位面积)
2.阅读课本P3做一做
1.1 勾股定理学案

1.1 探索勾股定理(1)一、课前预习1、正方形面积的计算公式,边长为5时,面积为多少?2、三角形两边分别是2,5第三边是c ,求第三边的取值范围.3、直角三角形两直角边为3、4求则第三边斜边的取值范围,斜边与这两条直角边的长度之间还有什么关系?二、新课学习 1、观察下面两幅图:2、填表:A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的? 【小结】求面积常用方法: ____________________________(4)你能发现各图中三个正方形的面积之间有何关系吗?【结论】:以_______三角形两_______边为边长的小正方形的面积的和,等于以______边为边长的正方形的面积.AB CC BA思考:(1)若直角三角形两直角边长分别为a 、b ,斜边长为c ,则你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?★【勾股定理】如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么_________________ 即_______三角形两_____边的______和等于斜边的_______. 几何语言:∵在△ABC 中,∠____=900∴____2+____2=____2三、典型例题及练习:例1、如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少? 解:∵在△ABC 中,∠____ =900 ∴____2+____2=____2 即92 +122=AB 2∴AB 2=____ ∴AB =____∴大树在折断之前高 。
【跟踪练习】:1、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.弦股勾ACBabc2、求图形中未知正方形的面积:3、若△ABC 中,∠C =90°,(1)若a =5,b =12,则c =________;(2)若a =6,c =10,则b =________;(3)若a ∶b =3∶4,c =10,则a =________,b =________.4.如图,阴影部分是一个半圆,则阴影部分的面积为多少?5.底边长6cm ,底边上的高为4cm 的等腰三角形的腰长为多少?6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_________cm 2.1.1 探索勾股定理(2)一、课前复习:1、勾股定理:直角三角形_________________________ 几何语言:在△ABC 中,∵∠____ =900∴____2+____2=____22、在直角三角形ABC 中, ∠C =900,BC =12,CA =5,AB = ______.3、 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.?2251002572577cmDACB二、典型例题:例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?例2、受台风麦莎影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?(提示:方程思想)三、课堂练习:1.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为多少?2.我方侦查员小王在距离东西向公路400米处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6米5000m4000mC B A500m400m C B A“路”4m3m3、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ). A .30cm 2 B .130cm 2 C .120cm 2 D .60cm 25、轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.6、如图学校有一块长方形花铺,有极少数人为了避开 拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅 少走了 步路(假设2步为1米),却踩伤了花 草.7、一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?A BOCD3米9km AB9km 4km6km9km 2km8、△ABC中,∠C=900,AC=6,BC=8,沿AD折叠,使C点与AB边上的E点重合,求CD的长。
1.1探索勾股定理(教案)

今天在教授《1.1探索勾股定理》这一章节时,我发现学生们对勾股定理的概念和应用表现出很大的兴趣。在导入新课环节,通过提出与日常生活相关的问题,成功激发了学生的好奇心。然而,我也注意到在讲授过程中,部分学生对代数证明部分的理解存在困难。
在理论介绍环节,我尽量用简单明了的语言解释勾股定理,并通过案例分析让学生了解其在实际中的应用。不过,我意识到在讲解难点时,需要更多具体的例子和图形演示来帮助学生理解。今后,我可以在这一部分增加一些互动环节,如让学生自己动手画图,加深对定理的理解。
2.教学难点
(1)理解勾股定理的证明过程,尤其是代数证明部分。
(2)将勾股定理应用于解决实际问题,特别是需要将实际问题转化为数学模型的能力。
举例:
-在代数证明部分,学生可能对平方的概念理解不深,教师需要通过具体例子和图形演示,帮助学生理解平方的含义。
-在解决实际问题时,学生可能不知道如何将问题转化为直角三角形的模型。教师可以通过案例分析和示范,引导学生学会提取关键信息,建立数学模型。
3.培养学生的数学应用意识,将勾股定理应用于解决实际问题,提高学生运用数学知识解决实际问题的能力。
4.培养学生的合作意识和探究精神,鼓励学生在小组讨论、合作探究中发展团队协作能力和创新思维。
三、教学难点与重点
1.教学重点
(1)理解并掌握勾股定理的表达式:直角三角形的两条直角边的平方和等于斜边的平方。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.1探索勾股定理18

A
90
B
C 40
160
算一算!
1. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少? A
C
B
实 践 运 用
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。 你能解释这是为什么吗? 我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
(1)已知: a=1, b=2, 求c;
(2)已知: a=15, c=17, 求b;
(3)已知: a=4/5,b=3/5, 求c;
(4)已知:c=34,a : b=8 : 15,求a,b. 你能作一条线段,使它的长度为 2 cm? 5 cm呢?
想一想!
1、下图中的三角形是直角三角形,其余是正 方形,求下列图中字母所表示的正方形的面 积.
心动
不如行动
探索勾股定理(1)
合作学习!
(1)作两个直角三角形,使其两直角边分 别是3厘米和4厘米,5厘米和12厘米.
动画
勾股定理(gou-gu theorem)
一般地,如果直角三角形两直角边分别为a、b, 斜边为c,那么 c a 2 2 2
a b c
b
即 直角三角形两直角边的平方和等 于斜边的平方。 在西方又称毕达 哥拉斯定理!
A =625 225 B =144 40081Fra bibliotek225
想一想!
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 49 正方形A,B,C,D的面积之和为___________cm2。
C D
北师大版数学八年级上册课件 第一章 1.1 探索勾股定理(共19张PPT)

探索勾股定理(1)
2002年世界数学家大会在我国北京召开,下 图是该届数学家大会的会标:
赵爽弦图
毕达哥拉斯——神奇的发现
毕达哥拉斯(公元前 572—前497年),古 希腊著名的数学家、 哲学家.
发现了直角三角形三边 的数量关系!
探究活动1
ac
请你数一数下图正方形A、B、C各占多少个小格子? b
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
求图1中正方形C的面积? 方法二:“补”
Sc
49
4
(
1 2
3
4)
C
25.
求图2中正方形C的面积?
方法一:“割”
Sc 4 ( 1 2 3) 1 2
C
13
求图2中正方形C的面积
方法二:“补”
Sc 25 4 ( 1 2 3)
2
C
13
求图2中正方2 4 5
C
13
总结归纳,得出定理
ac
勾股定理
b
如果直角三角形两直角边长分别
为a,b,斜边长为 c ,那么
a2 b2 c2
即直角三角形两直角边的平方和等于
1.这一节课我们一起学习了哪些知识 和思想方法?
2.对这些内容你有什么体会? 请你在小组内交流.
知识:勾股定理 如果直角三角形两直角边长分别为a,b,斜
边长为 c ,那么 a2 b2 c2.
方法: “割、补、拼”法求面积.
思想:1. 特殊—一般—特殊; 2. 数形结合思想.
布置作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三六五”课堂教学模式导学案
年级学科组总课时数主备教师审查人时间
§1.1探索勾股定理(1)
一、学习目标
1、经历用测量的方法探索勾股定理及用数格子的方法简单的验证勾股定理的过程,提高合情
推理的能力,体会数形结合的思想。
(难点)
2、掌握勾股定理,并能运用勾股定理解决一些简单的实际问题。
是本节的重点和难点。
二、自学感知
自学课本第2—4页解答下面的问题:
1、在纸上作出一个直角三角形,分别测量它们的三条边,看看三边长的平方之间有什么关系?
换一个直角三角形试一试此关系还成立吗?
2、如果直角三角形两直角边分别为a,b斜边为c,那么a2+ = 。
即直角三角形两直角
边的和等于斜边的。
3、我国古代把直角三角形中较短的直角边称为,较长的直角边称为,斜边称
为。
4、如图(1)所示,求出直角三角形未知边的长度。
9
12
(1)
5、如图(2)所示,阴影部分是一个正方形,求此正方形的面积。
(2)
三、小组合作
1、如图,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高?
B 12米 C
2、如图,直角三角形三边的平方分别是多少,你能用它们验证勾股定理吗?你是如何计算的?与同伴交流。
四、展
示风
采
400 225
A
1、求下图中字母所代表的正方形的面积。
2、如图,求等腰△ABC的面积。
5
B
3、小明妈妈买了一部29英寸(74厘米)的电视机。
小明量了电视机的屏幕后,发现屏幕只有
58厘米长和46厘米宽,他觉得一定是售货员搞错了。
你同意他的想法吗?你能解释这是为
什么吗?
4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干个图
形,使得它们的面积之和恰好等于最大的正方形面积,尝试给出两种以上的方案。
五、小结
通过本节课的学习谈谈自己的收获和体会。
六、达标检测
1、已知直角三角形的两条直角边分别是3和4,则斜边长为。
2、在直角三角形中,一条直角边长为5,斜边长为13,则另一条直角边长为。
3、如图,在一块平地上,张大爷家屋前9米处有一颗大树,在一次强风中,这棵大树从离地
面6米处折断倒下,量得倒下部分的长是10米,出门在外的张大爷担心自己的房屋被倒下的大树
砸倒,大树倒下时能砸到张大爷的房子吗?请你通过计算,分析后给出正确的回答()
A、一定不会
B、可能会
C、一定会
D、以上答案都不对
4、如图,一架2.5米长的梯子斜靠在一竖直的墙上,这时,梯
底距墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的底端将滑出多少米?
七、学(教)后反思与错题集锦
班级姓名完成时间小组评价个人评价。