达朗贝尔原理
达朗贝尔原理

达朗贝尔原理
达朗贝尔原理是描述在没有内部能量源的封闭系统中,各个分子之间的碰撞会导致热量传递的物理定律。
根据达朗贝尔原理,当两个物体处于不同温度时,较高温度的物体的分子运动速度较快,向较低温度的物体传递能量,使得两个物体的温度逐渐趋于平衡。
达朗贝尔原理是理解热平衡和传热过程的基础。
通过达朗贝尔原理,我们可以解释为什么将热水与冷水混合后会均匀分布热量。
在混合过程中,热水的热量会传递给冷水,使其温度升高,而热水的温度则会降低,最终两者达到热平衡。
达朗贝尔原理也可以解释热传导的现象。
当一个物体的一部分受热时,这部分的分子会增加动能,与其他部分的分子发生碰撞,并将能量传递给它们。
这样,热量就会在物体内部传导,使整个物体温度均匀。
除此之外,达朗贝尔原理还可以用来解释气体的扩散现象。
在两个容器中分别装有不同浓度的气体时,两者之间存在浓度差。
根据达朗贝尔原理,气体分子会沿着浓度梯度运动,使得浓度逐渐趋于均匀。
总的来说,达朗贝尔原理是解释热平衡、热传导和气体扩散等现象的重要物理定律,对于研究能量传递和分子运动具有重要意义。
达朗贝尔原理名词解释

达朗贝尔原理名词解释引言达朗贝尔原理是热传递领域中的基础原理之一。
它描述了热量是如何通过辐射传递的过程,深化了我们对热辐射现象的理解。
本文将对达朗贝尔原理进行详细解释,包括其定义、物理背景、数学表达和应用。
定义达朗贝尔原理是指在热平衡状态下,两个物体的辐射热流密度与它们的辐射特性(如温度、表面特性等)有关。
根据该原理,两个物体之间的净辐射热流密度正比于它们的体温差的四次方,并与它们的表面性质有关。
物理背景达朗贝尔原理建立在基于物体的辐射行为的基础上。
物体发出的热辐射能够传递能量,并且辐射的强度与物体的温度有关。
辐射热量的传递主要通过光子的辐射和吸收来实现,而达朗贝尔原理描述了这一现象的规律。
数学表达达朗贝尔原理的数学表达式为:q=σ⋅A⋅(T14−T24)其中,q表示两个物体之间的净辐射热流密度,σ是斯特藩-玻尔兹曼常数,A是两个物体之间的表面积,T1和T2分别是两个物体的绝对温度。
辐射特性达朗贝尔原理中涉及到物体的表面性质,这些性质对辐射热流密度产生影响。
以下是一些影响辐射特性的因素: 1. 反射率:物体的反射率决定了其对外界辐射的反射程度,反射率越高,辐射热流密度越低。
2. 吸收率:物体的吸收率决定了其对外界辐射的吸收程度,吸收率越高,辐射热流密度越高。
3. 发射率:物体的发射率决定了其自身的辐射能力,发射率越高,辐射热流密度越大。
达朗贝尔原理的应用达朗贝尔原理在很多领域都有重要的应用,下面列举了一些应用案例: 1. 热辐射计算:在热传递计算中,达朗贝尔原理通常被用于计算不同温度物体之间的热辐射传递。
2. 太阳能利用:太阳能的收集和利用依赖于太阳辐射能量的捕获,达朗贝尔原理可用于描述太阳辐射的传递和捕获过程。
3. 红外热成像:红外热成像技术通过捕捉物体的红外辐射来显示物体的温度分布情况,达朗贝尔原理为该技术的基础原理。
4. 空间热传递:在航天器和卫星中,热传递对于电子设备和舱内环境的控制非常重要,达朗贝尔原理可用于优化热传递效果。
理论力学第12章 达朗贝尔原理

基础部分——动力学第12 章达朗贝尔原理惯性力Jean le Rond d’Alembert (1717-1783)达朗贝尔达朗贝尔原理达朗贝尔原理具体内容:a F F m −=−='惯性力定义:质点惯性力aF m −=I 一、惯性力的概念aF m −='2222d d d d z ty m t[注意]不是真实力直角坐标自然坐标aF m −=I−a m 质点的达朗贝尔原理二、质点的达朗贝尔原理合力:NF I FI N =++F F F 注意:◆◆优点:◆可以将动力学问题从形式上转化为静力学动静法◆给动力学问题提供了一种统一的解题格式。
如何测定车辆的加速度?虚加惯性力解:达朗贝尔原理[例12-1]IF 摆式加速计的原理⇒⇒构成形式上的平衡力系质点系的达朗贝尔原理内力外力表明:惯性力系外力平面任意力系实际应用时,同静力学问题一样,选取研究对象;刚体惯性力系的简化简化方法一、质点系惯性力系的主矢与主矩无关有关二、刚体惯性力系的简化◆质心C结论:1IF2IF3IF IRFCm aF−=IR⇒交点O简化tI iF nI iF αα特殊情形:●●αOz O J M −=I 作用在O 点C m a F −=IR t I iFn I iFn IRFt IRF OM I αt I iFn I iFα[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O=(逆)①2IR ωme F =②αCz O J M −=I (与α反向)③0, 0I IR ==O M F (惯性力主矢、主矩均为零)IRF OM I α(作用于质心C )C m a F −=IR αCz C J M −=I 质心C IRF CM I α特殊情形:●●⇒[思考]εmr F =t IRrR r mF −=22n IRωε2I 21mr M C=求:惯性力系向质心C 简化的主矢?主矩?达朗贝尔原理上节课内容回顾(质点惯性力)或:质心C Cm a F −=IRαOz O J M −=I Cm a F −=IR 交点O t I iFn I iFn IRFt IRF OM I ααOz O J M −=I C m a F −=IR 交点O t I iFn I iFn IRFt IRF OM I αCm a F −=IR αCz C J M −=I质心C IRF CM I α质心C[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O =问:若向质心C 简化,则主矢?e =−∑Cx xma F 平面运动微分方程0)( e=−∑αCz C J MF 0e =−∑Cy yma F IRF CM I α⇒⇒[例12-2]解:惯性力系αt RI Fn IRFn AFt A FAM I αtRI Fn IR F nA F t AF AM I α惯性力系)解题步骤及要点:注意:F IR = ma C M I O = J Oz αα思考:AC CθASO[例12-3]先解:惯性力系m gF IR M I C F sF NαR a C =CθASOm gF IRF OxF OyM I C再惯性力系M O[例12-4]解:惯性力系 1I F OM I 2I F α)(=∑F OMα11r a =2211 α22r a =1I F OM I 2I F α[思考题] A BCD E )(118↓=g a A mgF 113T =111≥f主动力系惯性力系RFIRF OMIRF IRF OM I tI iFn I iF∑∑==ii iyzi i i zx z y m J x z m J RF IRF OM I tI iFn I iFRF IRF OM Ill F M l F M y x y x /)]()[( 2I I 2R ⋅−+⋅−ll F M l F M x y x y /)]()[(2I I 2R ⋅++⋅+−ll F M l F M y x y x /)]()[(1I I 1R ⋅++⋅+−ll F M l F M x y x y /)]()[( 1I I 1R ⋅−+⋅−xF R −约束力静动主动力惯性力动约束力I x 02=ωJ 质心过)04222≠+=−ωααωωα惯性主轴z 轴为中心惯性主轴静平衡过质心⇒动平衡中心惯性主轴⇒[例12-5]静平衡动平衡爆破时烟囱怎样倒塌θOAωα解:m g)cos 1(3θ−lg F OxF OyMI On RI F t IRF 受力分析[例12-6])]([)(sin ⋅−−+−+⋅x x l l x x l mg ααθ1()(sin mgl −θB注意:求内力(矩)时惯性力的处理!xθxAB()ml x lα−m l lαBM BxF x mg lByF12-5-1 关于惯性力系的简化OA ωαMI OnR I FtIRFOAωαMI CnRIFtRIFC 思考思考12-5-2 刚体平面运动时有关动力学量的计算mv+C12-5-3 本章知识结构框图达朗贝尔原理惯性力系的简化质点系达朗贝尔原理定轴转动的约束力一般质点系刚体静、动约束力静、动平衡课后学习建议:◆。
《达朗贝尔原理》课件

该微分方程描述了刚体在力矩作用下的动态行为,是刚体动力学中的基本方程之 一。
达朗贝尔原理的积分方程形式
达朗贝尔原理的积分方程形式为:M(t2)-M(t1)=∫t1t2F·dr, 其中M(t2)和M(t1)分别表示刚体在时刻t2和t1的动量矩, ∫t1t2F·dr表示在时间t1到t2之间力矩的积分。
船舶工程
用于分析船舶的运动特性和稳定性。
02
达朗贝尔原理的数学表达
达朗贝尔原理的公式表达
达朗贝尔原理的公式表达为: M=∫F·dr,其中M表示刚体绕固定 点O转动的动量矩,F表示刚体上任 一点的速度矢量,dr表示矢径。
该公式描述了刚体在力矩作用下的运 动规律,是刚体动力学中的基本原理 之一。
达朗贝尔原理的微分方程形式
限制条件
达朗贝尔原理在处理复杂系统时,可能无法考虑所有 相互作用力和能量转换,导致预测精度下降。
与其他物理定律的互补性
与牛顿第三定律互补
达朗贝尔原理与牛顿第三定律互补,强调了 力和运动的相互关系。
与能量守恒定律的互补性
达朗贝尔原理在处理保守系统时,与能量守 恒定律相一致,但在非保守系统中存在差异
。
详细描述
在弹性力学中,达朗贝尔原理可以用来分析 各种复杂的力学问题,如梁的弯曲、板的变 形等。通过应用该原理,我们可以建立各种 弹性力学问题的数学模型,并进一步求解其 解析解或近似解。
05
达朗贝尔原理的局限性
适用范围和限制条件
适用范围
达朗贝尔原理主要适用于线性、保守的力学系统。对 于非线性、非保守系统,达朗贝尔原理可能不适用。
达朗贝尔原理

α O
有质量对M称O面 F且i转e 轴垂直M此O面F的Ii 定轴0转动
的刚体, 其上达朗伯惯性力系向对称面与
C
定轴的交点O简化可得一力和一力偶.
FI
M IO
惯性力: FI M aC
惯性力偶: M IO JO
3. 刚体平面运动( 刚体有质量对称面且运动平面平行于此面).
刚体平面运动是随质心的平动和绕质心 的转动的合成. 其上的达
下面, 我们将对常见的几种运动的刚体上的达氏惯性力进行简化.
§14 – 3 刚体惯性力系的简化
1. 刚体的平动
FI C
刚体作平动, 其上所有点的加速度矢都相等. 因而惯性力系是一同向平行力系. 这个力系 与重力系类似, 其合力过质心C .
a a
C
i
F I
F Ii
mi ai
mi a C M a C
§13 – 1 惯性力 . 质点的达朗贝尔原理
1. 达朗贝尔惯性力:
FI
定义: F I ma
m
F
FN ma
▲: 达朗贝尔惯性力是在惯性参考系下定 义的惯性力, 惯性力中所含的加速度是绝 对加速度 , 在合成运动的分析中, 它是相 对, 牵连和科氏加速度的总和.
2. 质点的达朗贝尔原理:
由动力学基本方程
这个‘ 平衡力系’ 显然是一个空间的平衡力系. 根据空间力系的 平衡理论 , 就是: 系统中的所有质点的达朗贝尔惯性力和外力系的 矢量和为零( 主矢为零), 以及这些力对任意点的矩的矢量和为零( 主 矩为零). 用数学式表示, 即是:
e
F i F Ii 0
M
O
F
e
i
M O
F Ii
0
达朗贝尔原理

结论:平动刚体的惯性力系合成为一个 作用在质心的惯性力
二、刚体定轴转动
(一) 刚体有与转轴 垂直的对称面 结论:可将空 间惯性力系简 化为在对称平 面内的力系( 相当于将刚体 压扁到对称平 面内)
l
FIjn
j
z
FIjt
z
FIin
i
FIit
ω α ω α
l
O
O
0 C α 45 A
O FIy
aC acx acy a A aCA
acx 2 2 l 2 acy 2 2 2 2
aA
aCA
a cx a cy
B
FIx macx FIy macy
l a cx a cy 2
mi ai FRi FIi mi ai FRi FIi 0
在每一个质点上加上惯性力后,此质点平衡。
显然,系统的任意部分(包括整体)也是平衡的。
O
例:质量m、长度l的均 质杆,以匀角速度ω绕z 轴转动,试求θ角。
z
θ
dFI
A mg η
ω d 2 dFI m sin l l l M zi mg 2 sin cosdFI 0 0
达朗贝尔原理
在惯性系中
ma FR
a
非惯性系中的妙招
mar FR mae mac FR FIe FIc
惯性
0 FR ma FR FI
§9-1达朗贝尔原理(动静法) 一、质点的达朗贝尔原理 牛顿定律
α C A
a cx
a cy
达朗贝尔原理的应用

达朗贝尔原理的应用什么是达朗贝尔原理?达朗贝尔原理又称为达朗贝尔定理,是热力学中的重要原理之一。
它是由法国物理学家萨迪·达朗贝尔于1896年提出的,主要阐述了气体的熵变与温度变化之间的关系。
达朗贝尔原理的表述达朗贝尔原理指出,在绝热条件下,当气体被压缩时,其温度会升高;当气体被膨胀时,其温度会降低。
具体而言,达朗贝尔原理可以通过以下公式来表示:ΔT = (T2 - T1) = (P1V1 - P2V2) / C其中,ΔT表示气体温度的变化,T1和T2分别表示初始和末态的温度,P1和P2分别表示初始和末态的压强,V1和V2分别表示初始和末态的体积,C是气体的摩尔热容。
达朗贝尔原理的应用达朗贝尔原理在工程和科学领域中有着广泛的应用。
以下是一些常见的应用:1.制冷和空调系统:达朗贝尔原理被广泛应用于制冷和空调系统中。
通过压缩和膨胀气体来控制温度。
当气体被压缩时,其温度升高,从而提供制冷效果。
2.冷凝器和蒸发器:达朗贝尔原理也被应用于冷凝器和蒸发器中。
在冷凝器中,气体被压缩并且冷却,使其从气态变为液态。
而在蒸发器中,液体被膨胀并且加热,使其从液态变为气态。
3.发动机和汽车制动系统:达朗贝尔原理还被应用于发动机和汽车制动系统中。
在内燃机中,通过压缩气体并点燃燃料来产生能量。
而在汽车制动系统中,利用气体的压缩和膨胀来控制刹车。
4.混合动力系统:在混合动力系统中,达朗贝尔原理被用于控制电池的充电和放电过程。
通过控制气体的压缩和膨胀,可以有效地管理电池的能量存储和释放。
总结达朗贝尔原理作为热力学中的重要原理,被广泛应用于工程和科学领域。
它通过控制气体的压缩和膨胀来控制温度变化,并在制冷系统、发动机、汽车制动系统等方面发挥重要作用。
了解达朗贝尔原理的应用,可以帮助我们更好地理解和应用热力学的原理。
达朗贝尔原理

FT maB ml cos30 0
Fy 0
FN FIr sin30 mg 0
(2)
C
FN ml sin30 mg 0 MC (F ) 0
B
FN
mg
x
FT l cos30 FN l sin30 M I 0
(3)
1 2 FT l cos 30 FN l sin 30 ml 0 3
以B为基点, 则A点的加速度为
t n t n aA aA aB aAB aAB
aB
2
A
t aA t aCB
其中
a v AE 0
n A 2 A
a
n AB
2l 0
B aB
30o
将上式投影到x 轴上得
0 aB a cos30
t AB
x
aB 2l cos30
ma F FN
将上式改写成
FI m F a
F FN ma 0
令
FI ma
FN
FI具有力的量纲, 且与质点的质量有关,称其为质点 的惯性力。它的大小等于质点的质量与加速度的乘 积, 方向与质点加速度的方向相反。
一、质点的达朗贝尔原理
则有
F FN FI 0
即:在质点运动的任一瞬时, 作用于质点上的主动力、
即:作用在质点系上的所有外力与虚加在每个质点 上的惯性力在形式上组成平衡力系。这是质点系达 朗贝尔原理的又一表述。
(e)
(e)
称ΣFIi为惯性力系的主矢, ΣMO(FIi) 为惯性力 系的主矩。
三、刚体惯性力系的简化
用质点系的达朗贝尔原理求解质点系的动力学问题, 需要对质点内每个质点加上各自的惯性力,这些惯性 力也形成一个力系,称为惯性力系。下面用静力学力 系简化理论,求出惯性力系的主矢和主矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达朗贝尔原理
达朗贝尔原理,是法国物理学家与数学家达朗贝尔发现的。
由J.le R.达朗贝尔于1743年提出而得名,达朗贝尔原理阐明,在一个系统内,如果,所有约束力因为虚位移而做的虚功,总合是零,则这系统内的每一个粒子,所受到的外力与惯性力的矢量合,与虚位移的点积,总合起来是零。
达朗贝尔原理因其发现者法国物理学家与数学家J·达朗贝尔而命名。
达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零。
或者说,作用于一个物体的外力与动力的反作用之和等于零。
受约束的非自由质点受有主动力F及约束力FN,如果再加上虚构的惯性力FI=-ma,则下式成立:
F+FN+FI=0 (1)
即在质点运动的任一时刻,主动力、约束力与惯性力构成平衡力系。
上式为质点的达朗贝尔原理。
对质点系,如果在每个质点上都加上虚构的惯性力FIi=-miai,则质系中每个质点均处于平衡,即:Fi+FNi+FIi=0(i=1,2,…,n) (2)
达朗贝尔最初提出的原理与式(1)不同。
把主动力F分为两部分:F使质点产生加速度,F=ma,称为有效力;F=F-F克服
约束力。
对改变质点的运动状态不起作用,称为损失力。
损失力与约束力平衡:
F+FN=0
这就是达朗贝尔原理,它与质点静止时的平衡方程F+FN=0形式上一致。
如果将前面F、F的表达式代入达朗贝尔原理,就得到:
F+FN+(-ma)=0
与式(1)相同,它们均与牛顿第二运动定律等价。
折叠编辑本段原理的意义
达朗贝尔原理是研究有约束的质点系动力学问题的原理。
对于质点系内任一个质点,此原理的表达式为: F+FN+(-ma)=0
从形式上看,上式与从牛顿运动方程F+FN=ma中把ma移项所得结果相同。
于是把-ma看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。
从数学上看,达朗贝尔原理只是牛顿第二运动定律的移项,但原理中却含有深刻的意义。
这就
达朗贝尔原理简化公式是通过加惯性力的办法将动力学问题转化为静力学问题。
亦即所有动力学中的定理通过引入惯性力的概念转化成静力学中的平衡关系,而且求解过程
中可充分使用静力学的各种解题技巧。
一些动力学现象亦可从静力学的观点作出简洁的解释。
这就形成了求解动力学的静力学方法,简称动静法。
这种方法在工程技术中获得了广泛的应用。
此外,在分析力学中,将被称为静力学普遍方程的虚功原理与达朗贝尔原理相结合,就得到动力学普遍方程,它是处理非自由质点系的最基本方程,是分析动力学的基础。
把-miai看成惯性力并把式(1)看成平衡(实际不平衡)的观点所引入的动静法和机械学中的动平衡,对力学的发展则发生积极的影响。
事实上,在跟着质点运动的非惯性坐标系的观察者认为,惯性力是存在的,而且可以测量。
例如在垂直方向加速上升的火箭中的宇航员,他对座位压力大于重力。
爱因斯坦创立的广义相对论认为惯性力完全与万有引力等价;爱因斯坦用升降机说明两者是不能区分的。
因此,从广义相对论的角度看,惯性力是真实的力。