一次函数期末复习1
一次函数章节复习

中k、b的符号:
k_>__0,b_>__0
k_>__0,b_<__0
k_<__0,b_>__0 k_<__0,b_<__0
★理解一次函数概念应注意下面两点:
⑴、解析式中自变量x的次数是_1__次,⑵、 比例系数_K__≠_0_。
2、正比例函数y=kx(k≠0)的图象是过点 (0_,___0_),(_1_,__k__)的_一__条__直__线__。
_b__),(3、__一_b_次,函0)的数_y_一=_k_条x_+_直b_(_线k_≠_0。)的图象是过点(0, k
• 7、已知等腰三角形的周长为10cm,将底边长y(cm)表示成腰长x(cm)的函数关
系式为____y_=__1_0_-_2__x_____ 其自变量x的取值范围为_2_._5_<___x_<___5____ 。
• 8、若直线y=kx+b过一、二、四象限,那么直线y=bx+k不经过的象限为
____第___二___象__限________。
例2.已知一次函数y=kx+b,y随着x的增大而减小, 且kb<0,则在直角坐标系内它的大致图象是 ( A)
(A)
(B)
(C)
(D)
例3、 已知一次函数
y (3 k)x 2k 18
(1) k为何值时,它的图象经过原点
1、 -2k+18=0 3-k≠0 解得: k=9
一次函数期末专题复习

一次函数期末复习题型一、对称方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
5、已知直线y=kx+b 与直线y= -3x +7关于y 轴对称,求k 、b 的值。
6、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。
7、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是______;到y 轴的距离是______;到原点的距离是________;3、 点D (a,b )到x 轴的距离是______;到y 轴的距离是__ ___;到原点的距离是_______;4、 已知点P (3,0),Q(-2,0),则PQ=_________,已知点M(0,-1),N(0,-8),则MQ=________;()()2,1,2,8E F --,则EF 两点之间的距离是________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数期末复习

一次函数复习一、知识要点 1.一次函数的概念:函数(,为常数)叫做的一次函数。
学习这个定义应明确下面几点:(1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。
(2)函数()中可以为任意常数,当时,一次函数就成(为常数,且),这时叫做的正比例函数,也可以说与成正比例,常数叫做因变量与自变量的比例系数.因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。
2.一次函数的图像:一次函数y =kx +b (k ≠0)的图像是一条与坐标轴斜交的直线。
因此,只需求出直线y =kx +b 上的两点,就可得到它。
一般,作正比例函数y =kx 的图像常取点(0,0)和(1,k );作一次函数)0(≠+=b b kx y 的图像常取(b ,0)和(0,kb -)两点,这两点是直线与坐标轴的交点。
直线(b ≠0)与两坐标轴围成的三角形面积为b 2/2︱k ︳3.一次函数的性质:(1)参数k 、b 的意义和对一次函数y =kx +b 的图像与性质的影响。
当时,y 随x 的增大而增大,这时函数的图像从左到右呈上升趋势;当时,y 随x 的增大而减小,这时函数的图像从左到右呈下降趋势;因此,k 的符号与直线的方向、函数的增减性是相互决定的。
(2)b 是一次函数y =kx +b 中,当x =0时所对应的函数值,因此直线y =kx +b 与y 轴交于点(0,b ),b 是直线y =kx +b 与y 轴上的交点的纵坐标,所以,b 的符号和直线与y 轴交点位置是相互对应的.(3)k 、b 的符号对直线位置的影响:图像过一、二、三象限 图像过一、三、四象限 图像过一、二、四象限 图像过二、三、四象限讨论k 、b 符号与直线y =kx +b 在坐标系中的位置要注意用k 、b 的意义去解决,不必死记对应的结论。
4.解析式的确定:确定一次函数解析式的常用方法是待定系数法,它的一般步骤如下:(1)写出函数解析式的一般形式:(),其中k ,b 是待定系数。
一次函数复习1

解:由图像知直线过(-2,0),(0,-1)两点, 把两点的坐标分别代入y=kx+b,得 0=-2k+b
-1=b Y
解得 k=- 1
2
b=-1
-2
所以,其函数解析式为y= - 1x-1
-1
X
2
四.知识拓展
1.直线y=k1x+b1 、y=k2x+b2.若平行则
k1=k2 b1≠b2
若与y轴相交于同一点,则 k1 ≠ k2 b1= b2
y
o
x
A
y
o
x
B
y
o
x
C
y
o
x
D
例:线段AB, CD分别是一辆轿车的油箱剩余油量y1 (升) 与另一辆客车的油箱剩余油量y2 (升)关于行驶路程 x(千米)的函数图象。
(1)分别求y1, y2关于x的函数解析式,并写出定义域。
(2)如果两车同时出发,轿车的行驶速度为每小时100千米,
客车的行驶速度为每小时80千米,当邮箱的剩余油量相同
y
x
4.函数y=(-k+3)x+(2k-4)
(1)当k =2 时,函数图像过原点. (2)当k﹤3 时, y随x的增大而增大.
5.函数y=kx+b 当k>0,b<0时,此函数图像不经过
的象限是 第二象限
y x
6.一次函数y=(a-5)x+(a-3)的图像不经过第三
象限,则a的取值范围 _3_≤_a_﹤__5_
(1) y 2x (2) y 1 (3) y x 1(4) y kx b x
答: (1)是 (2)不是 (3)是 (4)不是
2:函数y=(k+2)x+( k2-4)为正比例
八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。
期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。
一次函数复习题1
2.已知一次函数 已知一次函数y=kx+b,当x=2时,y= -1,当 已知一次函数 , 时 , x=1时,y= 1/2,那么该一次函数的解析式为 时 , _________, 时 。 y= -3/2 x+2 当x= _______时,y=8。 -4
a2-8+a+1是一次函数, 3.当a=______时,y=(a-3)x 是一次函数, 当 时 是一次函数 -3
且图象经过第___________象限。 且图象经过第 二、三、四 象限。 象限 4.直线y=-4+4/3 x在y轴上的截距是 -4 轴上的截距是_______, 在 轴上的截距是 , 如果这条直线分别交x轴 轴于点A、 , 如果这条直线分别交 轴、y轴于点 、B,那么 轴于点 线段AB=_______。 线段AB=_______。 5 5.如果直线 如果直线y=2x+a不经过第二象限,那么实 不经过第二象限, 如果直线 不经过第二象限 的取值范围是_________。 数a的取值范围是 a≤0 的取值范围是 。
5 y=− x
2、某函数具有下列两条性质 、 (1)它的图像是经过原点(0,0)的一条直线; )它的图像是经过原点( , )的一条直线; 的值随x值的增大而增大 (2)y的值随 值的增大而增大。 ) 的值随 值的增大而增大。 请你举出一个满足上述条件的函数(用关系式表示) 请你举出一个满足上述条件的函数(用关系式表示) 2 3、函数 y = x + 4 的图像与 轴交点坐标为 的图像与x轴交点坐标为 轴交点坐标为________, 、 3 轴的交点坐标为____________。 与y轴的交点坐标为 轴的交点坐标为 。
6. 函数 函数y=ax+b的图象 的图象 如图所示 , y随x的增大而 减小 , 随 的增大而 的增大而______, < > a_____0,b_____0。 , 。 7. 已知点 已知点A(- 4,a) B(-2,b)都在直线 都在直线y=3x+m 都在直线 为常数) 那么a与 的大小关系是 (m为常数)上,那么 与b的大小关系是 为常数 a_____b. <
一次函数考点分类总复习(解析版)
【期末复习】浙教版八年级上册提分专题:一次函数考点分类总复习考点一待定系数法求一次函数表达式❖一次函数的定义:形如y=kx+b(k≠0)的函数叫做一次函数;正比例函数的定义:形如y=kx(k≠0)的一次函数叫做正比例函数;☆从定义可知:1.一次函数y=kx m+b需满足的条件有两点:①m=1;②k≠0;2.正比例函数是特殊的一次函数❖待定系数法求一次函数表达式的方法:❖首先明确一次函数的图象是一条直线,具体图象的性质见下一个考点总结;直线解析式的平移口诀:左加右减(x),上加下减(整体)【类题训练】1.下列y关于x的函数关系式:①y=x;②y=;③y=﹣1;④y=﹣x+10;⑤y=+1;⑥;⑦y=2x﹣1其中是一次函数的是,是正比例函数的是【分析】根据一次函数和正比例函数的定义条件进行逐一分析即可.【解答】解:①y=x是一次函数,也是正比例函数;②y=属于二次函数;③y=﹣1不属于一次函数;④y=﹣x+10是一次函数,不是正比例函数;⑤y=+1不是一次函数;⑥是一次函数,也是正比例函数;⑦y=2x﹣1是一次函数,不是正比例函数;综上所述,是一次函数的有:①、④、⑥、⑦;是正比例函数的是:①、⑥故答案为:①、④、⑥、⑦;①、⑥2.若函数y=(m﹣2)x n﹣1+n是一次函数,则m,n应满足的条件是()A.m≠2且n=2B.m=2且n=2C.m≠2且n=0D.m=2且n=0【分析】根据一次函数的定义列出方程组解答即可.【解答】解:∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选:A.3.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是()A.k≠2 B.k=2 C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.4.定义[p,q]为一次函数y=px+q的特征数,若特征数为[t,t+3]的一次函数为正比例函数,则这个正比例函数为.【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【解答】解:根据题意,特征数是特征数为[t,t+3]的一次函数表达式为:y=tx+(t+3).因为此一次函数为正比例函数,所以t+3=0,解得:t=﹣3.故正比例函数为y=﹣3x,故答案为:y=﹣3x.5.一次函数y=kx+b,当﹣1≤x≤1时,对应的y的值为2≤y≤8,则kb的值为()A.15B.﹣15C.﹣10或12D.15或﹣15【分析】一次函数可能是增函数也可能是减函数,应分两种情况进行讨论,根据待定系数法即可求得解析式.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得k=3,b=5.即kb=15;当k<0时,y随x的增大而减小,所以得,解得k=﹣3,b=5.即kb=﹣15.故选:D.6.若y+1与x﹣2成正比例,当x=0时,y=1;则当x=1时,y的值是()A.﹣2B.﹣1C.0D.1【分析】根据正比例的意义可设y+3=k(x﹣2),然后把已知的对应值代入求出k即可得到y与x之间的函数关系式,进而求得当x=1时,y的值.【解答】解:设y+1=k(x﹣2),把x=0,y=1代入得k•(0﹣2)=1+1,解得k=﹣1,所以y+1=﹣(x﹣2),所以y与x之间的函数关系式为y=﹣x+1,当x=1时,y=﹣1+1=0,故选:C.7.若y与z成正比例,z+1与x成正比例,且当x=1时y=1,当x=0时,y=﹣3,则y与x的函数关系式为.【分析】根据题意设y=kz,z+1=mx,将x与y的两对值代入求出k与m的值,即可确定出y与x的函数关系式.【解答】解:设y=kz,z+1=mx,即y=k(mx﹣1)=kmx﹣k,将x=1,y=l;x=0,y=﹣3代入得:,解得:,∴y=4x﹣3.故答案为:y=4x﹣3.8.将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.故选:A.9.一次函数y=kx+b的图象经过点A(0,1),B(3,0),若将该图象沿着x轴向左平移2个单位,得到的直线表达式为.【分析】先将A(0,1),B(3,0)两点的坐标代入y=kx+b,运用待定系数法求出一次函数的解析式为y=﹣x+1,再根据“左加右减”的原则得出新的直线表达式.【解答】解:∵一次函数y=kx+b的图象经过点A(0,1),B(3,0),∴,解得,∴y=﹣x+1.将该图象沿着x轴向左平移2个单位,得到y=﹣(x+2)+1,即y=﹣x+.故答案是:y=﹣x+.10.将直线y=2x﹣1向上平移4个单位,平移后所得直线的解析式为.【分析】直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.【解答】解:由“上加下减”的原则可知,直线y=2x﹣1向上平移4个单位,所得直线解析式是:y=2x﹣1+4,即y=2x+3,故答案为:y=2x+3.11.函数y=﹣3x+1的图象,可以看作直线y=﹣3x向平移个单位长度而得到.【分析】根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【解答】解:函数y=﹣3x+1的图象是由直线y=﹣3x向上平移1个单位长度得到的.故答案为:上,1.12.将直线y=﹣2x+3平移后经过原点,则平移后的解析式为.【分析】可设平移后的直线解析式为y=2x+b,把原点的坐标代入可求得b的值,则可求得平移后的解析式;【解答】解:设平移后的直线解析式为y=﹣2x+b,∵将直线y=﹣2x+3平移后经过原点,∴b=0,∴平移后的直线解析式为y=﹣2x,故答案为y=﹣2x.13.(2021•金华模拟)已知经过点(0,2)的直线y=ax+b与直线y=x+1平行,则a=,b=.【分析】相互平行的两条直线的一次项系数相等,故此a=,将a=,x=0,y=2代入y=ax+b可求得b的值.【解答】解:∵直线y=ax+b与直线y=x+1平行,∴a=.∴直线y=ax+b的解析式为y=x+b.将x=0,y=2代入得:b=2.故答案为:;2.14.在平面直角坐标系xOy中,点P绕点T(t,0)逆时针旋转60°得到点Q,我们称点Q是点P的“正影射点”.若t=,则点P1(0,3)的“正影射点”Q1的坐标是.若点P在一次函数y=x﹣上,对于任意的t值,P的“正影射点”Q都在一条直线上,则这条直线的函数表达式为.【分析】如图1,根据“正影射点“的定义,将点P1(0,3)绕点T(,0)逆时针旋转60°,根据旋转的性质即可求得“正影射点”Q1的坐标;如图2,求得直线y=x﹣与x、y轴的交点P1(1,0),P2(0,﹣),根据“正影射点“的定义将点P1、P2绕点T(0,0)逆时针旋转60°,得到Q1(,),Q2(,﹣),根据题意求得直线Q1Q2的解析式即可.【解答】解:如图1,∵点T(,0),点P1(0,3),∴OT=,OP1=3,∴tan∠P1TO==,∴∠P1TO=60°,∴P1T=2,∴点P1绕点T(,0)逆时针旋转60°得到点Q1在x轴上,且Q1T=2,∴点P1(0,3)的“正影射点”Q1的坐标是(﹣,0);如图2,∵点P在一次函数y=x﹣上,∴P1(1,0),P2(0,﹣),∴OP1=1,OP2=,根据题意设T(0,0),则Q1(,),Q2(,﹣),设直线Q1Q2的解析式为y=kx+b,∴,解得,∴直线Q1Q2的解析式为y=﹣x+,∴P的“正影射点”Q所在直线的函数表达式为y=﹣x+;故答案为:(﹣,0);y=﹣x+.考点二一次函数图象与性质❖图象的画法:(原理:两点确定一条直线)❖ 图象的性质对于任意一次函数y=kx+b (k ≠0),点A (x 1,y 1)B (x 2,y 2)在其图象上1.下列函数中:①y=-2x ; ②y=x-2; ③y=31x ; ④y=-2x+1; ⑤y=21-x-4; (1)求出各函数经过的象限① ;② ;③ ;④ ;⑤ ; (2)y 随x 的值的增大而增大的函数有: (3)y 随x 的值的增大而减小的函数有:【分析】(1)根据每个函数y=kx+b 中k 、b 的正负可以确定所过象限; (2)根据函数y=kx+b 中,k >0时,y 随x 的值的增大而增大,可以解决此题 (3)根据函数y=kx+b 中,k <0时,y 随x 的值的增大而减小,可以解决此题 【解答】解:(1)①y=-2x 中,∵-2<0,∴函数过第二、四象限 ②y=x-2中,∵1>0,-2<0,∴函数过第一、三、四象限 ③y=31x 中,∵31>0,∴函数过第一、三象限 ④y=-2x+1中,∵-2<0,1>0,∴函数过第一、二、四象限 ⑤y=21-x-4中,∵21-<0,-4<0,∴函数过第二、三、四象限 故答案为:①第二、四象限;②第一、三、四象限;③第一、三象限;④第一、二、四象限;⑤第二、三、四象限;(2)函数y=kx+b中,k>0时,y随x的值的增大而增大,所以,函数②③符合题意故答案为:②③(3)函数y=kx+b中,k<0时,y随x的值的增大而减小,所以,函数①④⑤符合题意故答案为:①④⑤2.下列各点中在函数的图象上的是()A.(3,﹣2)B.(,3)C.(﹣4,1)D.(5,)【分析】将选项中的坐标代入已知函数的解析式中,能使左右两边相等的即为正确选项.【解答】解:∵当x=3时,y=×3+3≠﹣2,∴点(3,﹣2)不在函数的图象上;∵当x=时,y=×+3≠3,∴点(,3)不在函数的图象上;∵当x=﹣4时,y=×(﹣4)+3=1,∴点(﹣4,1)在函数的图象上;∵当x=5时,y=×5+3≠,∴点(5,)不在函数的图象上.综上,在函数的图象上的点是(﹣4,1).故选:C.3.关于一次函数y=3x﹣1的描述,下列说法正确的是()A.图象经过第一、二、三象限B.函数的图象与x轴的交点坐标是(0,﹣1)C.向下平移 1个单位,可得到y=3xD.图象经过点(1,2)【分析】A:根据k>0,b<0,判断一次函数经过的象限;B:令y=0,x=,判断与x轴的交点;C:一次函数y=3x﹣1向下平移1个单位,可得到y=3x;D:把x=1代入y=3x﹣1得y=2.【解答】解:A:∵一次函数y=3x﹣1,k=3>0,∴一次函数经过一、三象限,∵b=﹣1,∴一次函数交y轴的负半轴,∴一次函数y=3x﹣1经过一、三、四象限,故A错误;B:令y=0,x=,∴函数的图象与x轴的交点坐标是(,0),故B错误;C:一次函数y=3x﹣1向下平移1个单位,可得到y=3x,故C错误;D:把x=1代入y=3x﹣1得y=2,∴图象经过(1,2),故D正确.故选:D.4.若一次函数y=(k﹣3)x+8的图象经过第一、二、四象限,则k的取值范围是()A.k>0B.k<0C.k>3D.k<3【分析】根据一次函数的性质得出k﹣3<0即可求解.【解答】解:y=(k﹣3)x+8的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故选:D.5.如图,直线y=kx+b,与y轴交于点(0,3)与x轴交于点(a,0)当﹣2≤a<0时,k的取值范围是()A.﹣1≤k<0B.1≤k≤3C.k≥3D.k≥【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k 的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣.∵﹣2≤a<0,∴﹣2≤﹣<0,解得:k≥.故选:D.6.已知一次函数y=kx+b(k,b是常数,k≠0)若|k|<|b|,则它的图象可能是()A.B.C.D.【分析】由|k|<|b|可知﹣>1或﹣<﹣1,即可判断直线y=kx+b(k,b是常数,k≠0)与x轴的交点在(1,0)的右边或在(﹣1,0)的左边,观察四个选项即可得出结论.【解答】解:∵|k|<|b|,∴||>1,∴﹣>1或﹣<﹣1,∴直线y=kx+b(k,b是常数,k≠0)与x轴的交点在(1,0)的右边或在(﹣1,0)的左边.故选:D.7.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【解答】解:A、∵一次函数y1=ax+b的图象经过一、二、三象限,∴a>0,b>0;∴一次函数y2=bx+a图象应该经过一、二、三象限,故不符合题意;B、∵一次函数y1=ax+b的图象经过一、三、四象限,∴a>0,b<0;∴一次函数y2=bx+a图象应该经过一、二、四象限,故符合题意;C、∵一次函数y1=ax+b的图象经过一、二、四象限,∴a<0,b>0;∴一次函数y2=bx+a图象应该经过一、三、四象限,故不符合题意;D、∵一次函数y1=ax+b的图象经过一、二、四象限,∴a<0,b>0;∴一次函数y2=bx+a图象应该经过一、三、四象限,故不符合题意;故选:B.8.如果一次函数y=kx+b(k≠0)的图象经过第二象限,且与y轴的负半轴相交,那么()A.k>0,b<0 B.k>0,b>0 C.k<0,b>0 D.k<0,b<0【分析】由一次函数图象经过第二象限及一次函数图象与y轴的负半轴相交,可得出一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,再利用一次函数图象与系数的关系,可得出k<0,b<0.【解答】解:依题意可知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,∴k<0,b<0.故选:D.9.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1(k1≠0)与y2=k2x+b2(k2≠0)的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图象过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.10.一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过第一,二,三象限,同负时过二,三,四象限,y=mnx 过原点,一、三象限;②当mn<0时,m,n异号,则y=mx+n过一,三,四象限或一,二,四象限,y=mnx过原点,二、四象限.解法二:本题还可用矛盾分析法来解决A、一次函数m>0,n>0;正比例mn<0,与一次矛盾.B、一次m>0,n<O;正比例mn>0,与一次矛盾.C、一次m>0,n<0,正比例mn<0,成立.D、一次m<0,n>0,正比例mn>0,矛盾.故选:C.11.一次函数y=(m﹣6)x+5中,y随x的增大而减小,则m的取值范围是.【分析】先根据一次函数的增减性判断出(m﹣6)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣6)x+5中,y的值随x值的增大而减小,∴m﹣6<0,∴m<6.故答案为:m<6.12.直线y=﹣2x+b上有三个点(,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y1<y3【分析】利用一次函数y=﹣2x+b的性质,当﹣2<0时,y随x的增大而减小,通过比较横坐标x的大小,即可得到对应y值的大小.【解答】解:∵﹣2<0,∴一次函数y=﹣2x+b中y随x的增大而减小,∵﹣1.5<﹣<1.3,∴y2>y1>y3.故选:C.13.在下列叙述中:①正比例函数y=2x的图象经过二、四象限;②一次函数y=2x﹣3中,y随x的增大而减小;③函数y=3x+1中,当x=﹣1时,函数值y=﹣2;④一次函数y=x+1的自变量x的取值范围是全体实数.正确的个数有()A.1个B.2个C.3个D.4个【分析】①利用正比例函数的性质判断即可;②利用一次函数的性质判断即可;③将x=﹣1代入y=3x+1中,计算即可;④利用一次函数的性质判断即可.【解答】解:①正比例函数y=2x的图象经过一、三象限,故①错误;②一次函数y=2x﹣3中,y随x的增大而增大,故②错误;③函数y=3x+1中,当x=﹣1时,函数值为y=﹣2,故③正确;④一次函数y=x+1的自变量x的取值范围是全体实数,故④正确.则正确的个数为2个.故选:B.14.无论m取任何实数,一次函数y=(m﹣1)x+m必过一定点,此定点坐标为【分析】解析式变形为m(x+1)﹣x﹣y=0,令,解得即可.【解答】解:由一次函数变形为m(x+1)﹣x﹣y=0,令,解得,故一次函数y=(m﹣1)x+m必过一定点(﹣1,1).故答案为:(﹣1,1).15.已知点A(1,y1)和点B(a,y2)在一次函数y=﹣2x+b的图象上,且y1>y2,则a的值可能是()A.2 B.0 C.﹣1 D.﹣2【分析】根据一次函数的性质说明函数的递增情况,确定a的取值范围,再从选项中确定正确的结果.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵y1>y2,∴1<a.∴a的值可能是2,故选:A.考点三一次函数与方程(组)、不等式(组)的关系1.一次函数y=﹣3x+6的图象与x轴的交点坐标是()A.(2,0)B.(6,0)C.(﹣3,0)D.(0,6)【分析】令y=0,可求得与x轴交点横坐标,进而求出与x轴交点坐标.【解答】解:把y=0代入y=﹣3x+6得,x=2,∴图象与x轴的交点坐标为(2,0).故选:A.2.若直线y=4x+4与x轴交于点A,与y轴交于点B,则△AOB的面积是()A.2 B.4 C.11 D.5【分析】利用函数的解析式求得点A,B的坐标,进而得出线段OA,OB的长度,利用三角形的面积公式即可得出结论.【解答】解:当y=0时,4x+4=0,解得:x=﹣1,∴点A的坐标为(﹣1,0).∴OA=1.当x=0时,y=4x+4=4,∴点B的坐标为(0,4),∴OB=4.∴S△AOB=OA•OB=×1×4=2.故选:A.3.若一次函数y=kx+b (k≠0)的图象经过(4,0)和(3,2)两点,则方程kx+b=4的解为()A.x=0 B.x=2 C.x=3 D.x=5【分析】先求出函数的解析式,再把y=4代入,即可求出x.【解答】解:把(4,0)和(3,2)代入y=kx+b得:,解得:,即y=﹣2x+8,当y=4时,﹣2x+8=4,解得:x=2,∴方程kx+b=4的解为x=2,故选:B.4.如图,直线y=x+5和直线y=ax+b相交于点P(20,25),根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=15【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.5.已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A.x=0 B.x=1 C.x=﹣2 D.x=3【分析】直线y=mx+n与x轴的交点横坐标的值即为方程mx+n=0的解.【解答】解:∵直线y=mx+n(m,n为常数)经过点(3,0),∴当y=0时,x=3,∴关于x的方程mx+n=0的解为x=3.故选:D.6.若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)【分析】直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n 的图象与x轴的交点为(2,0),进而得到一次函数y=﹣mx﹣n的图象与x轴的交点为(2,0),由于一次函数y=﹣mx﹣n的图象向右平移一个单位得到y=﹣m(x﹣1)﹣n,即可求得一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标.【解答】解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=﹣mx﹣n的图象与x轴的交点为(2,0),∵一次函数y=﹣mx﹣n的图象向右平移一个单位得到y=﹣m(x﹣1)﹣n,∴一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标是(3,0),故选:B.7.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b<0;③x=﹣2是方程3x+b=ax﹣2的解,其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据一次函数的图象和性质可得a>0;b>0;直线y=3x+b与直线y=ax﹣2交点的横坐标为x=﹣2,即方程3x+b=ax﹣2的解为x=﹣2.【解答】解:由图象可知,a>0,b>0,故①正确,②错误;当x=﹣2时,直线y=3x+b与直线y=ax﹣2相交,即方程3x+b=ax﹣2的解为x=﹣2,故③正确;故选:C.8.下表是一次函数y=kx+b(k≠0)的部分自变量和相应的函数值,方程kx+b=0的解x0所在的范围是()x﹣2 ﹣1 0 1 2y﹣3 ﹣1 1 3 5 A.﹣2<x0<﹣1 B.﹣1<x0<0 C.0<x0<1 D.1<x0<2【分析】由表格知当x=﹣1时,y=﹣1;当x=0时,y=1,即可得出y=0时,对应的x的取值即可.【解答】解:由题知,当x=﹣1时,y=﹣1;当x=0时,y=1,∴方程kx+b=0的解x0所在的范围是﹣1<x<0,故选:B.9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集为()A.x>2B.x<2C.x>﹣1D.x<﹣1【分析】观察函数图象得到当x<﹣1时,直线y1=x+m都在直线y2=kx﹣1下方,即x+m<kx﹣1.【解答】解:根据题意得当x<﹣1时,y1<y2,所以不等式x+m<kx﹣1的解集为x<﹣1.故选:D.10.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(2,c),则关于x的不等式组的解集为()A.x<5 B.1<x<5 C.﹣2<x<5 D.x<﹣2【分析】y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【解答】解:y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,关于x的不等式组的解集为:x<﹣2,故选:D.11.一次函数y1=ax+b与y2=cx+d的图象如图所示,下列说法:①对于函数y1=ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第二象限;③不等式ax﹣d≥cx﹣b的解集是x≥4;④a﹣c=(d﹣b),其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,对于函数y=ax+b来说,y随x的增大而增大,故①正确;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②不正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到a﹣c=(d﹣b),故④正确;故选:B.12.一次函数y=3x﹣2与y=2x+b的图象的交点为P(2,4),则二元一次方程组的解和b的值分别是()A.,b=﹣6 B.,b=0C.,b=0 D.,b=﹣6【分析】直接根据一次函数和二元一次方程组的关系求解.【解答】解:∵一次函数y=3x﹣2与y=2x+b的图象的交点为P(2,4),∴二元一次方程组的解是,将点P(2,4)的坐标代y=2x+b,得b=0,故选:C.13.一次函数y=ax+b与y=mx+n的图象在同一平面直角坐标系中的位置如图所示,一位同学根据图象写出以下信息:①ab<mn;②不等式mx+n≥ax+b的解集是x≤1;③方程组的解是.其中信息正确的有()A.3个B.2个C.1个D.0个【分析】根据两直线经过的象限判断系数的符号即可判断①;直线y=ax+b在y=mx+n下方的部分对应的x的取值范围就是不等式mx+n≥ax+b的解集,由此判断②;直线y=ax+b在y=mx+n的交点坐标就是方程组的解,由此判断③.【解答】解:如图,∵直线y=ax+b经过一、二、三象限,∴a>0,b>0,∴ab>0∵直线y=mx+n经过一、二、四象限,∴m<0,n>0,∴mn<0,∴ab>mn,故①错误;∵当x≤1时,直线y=ax+b在y=mx+n下方,∴不等式mx+n≥ax+b的解集是x≤1,故②正确;∵直线y=ax+b与y=mx+n的交点坐标为(1,3),∴方程组的解是,故③正确.故选:B.14.一般地,在平面直角坐标系中,任何一个二元一次方程对应的图象都是一条直线.已知如图过第一象限上A点的直线是方程x﹣y=b(b<﹣1)的图象,若点A的坐标恰为关于x,y的二元一次方程组的解,则a 的值可能是()A.﹣1B.0C.1D.2【分析】根据点A的位置可知方程组中x的值x>0,解方程组求得x=﹣>0,由b<﹣1,得出﹣(b ﹣1)>0,即可得出a﹣1>0,解得a>1.【解答】解:∵点A在第一象限,∴x>0,,②﹣①得(a﹣1)x=﹣(b﹣1),∴x=﹣>0,∵b<﹣1,∴﹣(b﹣1)>0,∴a﹣1>0,∴a>1,故选:D.15.直线y=mx+b与y=kx在同一平面直角坐标系中的图象如图所示,则方程组的解为,关于x的不等式mx+b<kx<0的解集为.【分析】根据图象可得,直线y=mx+b与y=kx的交点坐标为:(﹣1,﹣3),所以当x>﹣1时,直线y=mx+b,落在直线y=kx的下方,可得关于x的不等式mx+b<kx.即可得结论.【解答】解:根据图象可知:直线y=mx+b与y=kx的交点坐标为:(﹣1,﹣3),则方程组的解为:;则关于x的不等式mx+b<kx<0的解集为﹣1<x<0,故答案为:;﹣1<x<0.16.如图,直线y1=kx+b与直线y2=﹣x+5交于点(1,m),则关于x的不等式组0<y2<y1的整数解有()A.2个B.3个C.4个D.无数个【分析】根据一次函数与一元一次不等式的关系解决此题.【解答】解:当y=0,﹣x+5=0.∴x=5.由图可知,当0<y2<y1,则5>x>1.∴关于x的不等式组0<y2<y1的整数解有2、3、4,共3个.故选:B.17.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则下列结论:①m<0,n>0;②直线y=nx+4n 一定经过点(﹣4,0);③m与n满足m=2n﹣2;④当x>﹣2时,(n+1)x<m﹣4n,其中正确的有(填所有正确的序号).【分析】①由直线y=﹣x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=﹣4代入y=nx+4n,求出y=0,即可判断结论②正确;③将x=﹣2代入两解析式由纵坐标相等,即可判断结论③正确;④观察函数图象,可知当x>﹣2时,直线y=nx+4n在直线y=﹣x+m的上方,即nx+4n>﹣x+m,即可判断结论④错误.【解答】解:①∵直线y=﹣x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=﹣4代入y=nx+4n,得y=﹣4n+4n=0,∴直线y=nx+4n一定经过点(﹣4,0).故结论②正确;③∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴当x=﹣2时,y=2+m=﹣2n+4n,∴m=2n﹣2.故结论③正确;④∵当x>﹣2时,直线y=nx+4n在直线y=﹣x+m的上方,∴当x>﹣2时,nx+4n>﹣x+m,即(n+1)x>m﹣4n,故结论④错误,故答案为:①②③.18.如图,已知直线l1:y=kx+b与直线l2:y=−x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x 轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,以下说法错误的是()A.△ABD的面积为3B.当P A+PC的值最小时,点P的坐标为(0,2)C.△BCD为直角三角形D.方程组的解为【分析】求得BD和AO的长,根据三角形面积计算公式,即可得到△ABD的面积;根据轴对称的性质以及两点之间,线段最短,即可得到当P A+PC的值最小时,点P的坐标为(0,1);利用勾股定理的逆定理进行判断;根据一次函数图象与二元一次方程的关系,利用交点坐标可得方程组的解.【解答】解:A、把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2.把C(﹣,)代入直线l2:y=﹣x+m,可得﹣×(﹣)+m=,解得m=1,∴直线l2:y=﹣x+1,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,∴S△ABD=BD•AO=×3×2=3,故本选项正确,不符合题意;B、点A关于y轴对称的点为A'(2,0),由点C、A′的坐标得,直线CA′的表达式为:y=﹣x+1,令x=0,则y=1,∴当P A+PC的值最小时,点P的坐标为(0,1),故本选项错误,符合题意;C、∵B(0,4),C(﹣,),D(0,1),∴BC2=(0+)2+(4﹣)2=,CD2=(0+)2+(1﹣)2=,BD2=(1﹣4)2=9,∴BC2+CD2=BD2,∴△BCD为直角三角形,故本选项正确,不符合题意;D、∵直线l1:y=kx+b与直线l2:y=−x+m都经过C(﹣,),∴方程组的解为,故本选项正确,不符合题意.故选:B.19.已知一次函数y1=mx﹣2m+4(m≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y2=﹣x+6,当m>0,试比较函数值y1与y2的大小;(3)函数y1随x的增大而减小,且与y轴交于点A,若点A到坐标原点的距离小于6,点B,C的坐标分别为(0,﹣2),(2,1).求△ABC面积的取值范围.【分析】(1)把点(2,4)代入解析式即可判断;(2)求得两直线的交点为(2,4),根据一次函数的性质即可比较函数值y1与y2的大小;(3)根据题意求得A的坐标,然后根据三角形面积公式即可求得.【解答】解:(1)把x=2代入y1=mx﹣2m+4得,y1=2m﹣2m+4=4,∴点(2,4)在该一次函数的图象上;(2)∵一次函数y2=﹣x+6的图象经过点(2,4),点(2,4)在一次函数y1=mx﹣2m+4的图象上,∴一次函数y2=﹣x+6的图象与函数y1=mx﹣2m+4的图象的交点为(2,4),∵y2随x的增大而减小,y1随x的增大而增大,∴当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2;(3)由题意可知,﹣2m+4=±6且m<0,∴m=﹣1,∴A(0,6),∵点B,C的坐标分别为(0,﹣2),(2,1).∴AB=8,∵=8,∴6<S△ABC<8.20.如图,过点B(1,0)的直线l1:y1=kx+b与直线l2:y2=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式.(2)不等式y1≥y2的解集为;(直接写出答案)(3)求四边形PAOC的面积.【分析】(1)由点P(﹣1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a值,再利用点P 的坐标和点B的坐标可求直线l1的解析式;(2)不等式y1≥y2即y=kx+b的函数值不小于2x+4的函数值,观察函数图象得到当x≤﹣1时满足条件;(3)根据S四边形PAOC=S△PAB﹣S△BOC可得结论.【解答】解:(1)∵点P(﹣1,a)在直线l2:y2=2x+4上,∴a=2×(﹣1)+4=2,则P的坐标为(﹣1,2),∵直线l1:y1=kx+b过点B(1,0),P(﹣1,2),∴,解得.∴直线l1的解析式为:y=﹣x+1;(2)不等式y1≥y2的解集为x≤﹣1.故答案为:x≤﹣1;(3)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(﹣2,0),∴AB=3,∴S四边形PAOC=S△PAB﹣S△BOC=×3×2−×1×1=3﹣=.21.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数的图象交于点B(a,2).(1)求a的值及△ABO的面积;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式的解集.【分析】(1)先确定B的坐标,然后根据待定系数法求一次函数解析式,可得C(﹣4,0),根据S△ABO=S△ACO ﹣S△BCO即可求解;(2)根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得m的值;(3)找出直线y=﹣x落在直线y=kx+b上方的部分对应的自变量的取值范围即可.【解答】解:(1)∵正比例函数y=﹣x的图象经过点B(a,2),∴2=﹣a,解得,a=﹣3,∴B(﹣3,2),∵一次函数y=kx+b的图象经过点A(﹣2,4),B(﹣3,2),∴,解得,∴一次函数y=kx+b的解析式为y=2x+8,∵一次函数y=2x+8的图象与x轴交于点C,则2x+8=0,解得x=﹣4,∴C(﹣4,0),∴S△ABO=S△ACO﹣S△BCO=×4×4﹣×4×2=4;(2)∵正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,∴平移后的函数的解析式为y=﹣x﹣m,∴0=﹣×(﹣4)﹣m,解得m=;(3)∵一次函数y=kx+b与正比例函数y=﹣x的图象交于点B(﹣3,2),∴根据图象可知﹣x>kx+b的解集为:x<﹣3.考点四一次函数的实际应用❖一次函数与行程问题方法总结:1.图象问题首先确定x轴、y轴的具体意义,其次找拐点;2.图象中的拐点一般指行程形式的改变,如从行进到停止、从停止再出发等;3.行程问题中,函数图象的表示式中的|k|通常等于速度;4.甲乙相距a㎞的问题中,甲在乙的前方a㎞,等价函数关系式为:y甲-y乙=a㎞;乙在甲的前方a㎞,等价函数关系式为:y乙-y甲=a㎞;另外,注意题目中是否有谁晚出发几小时,因为早出发的人离出发地a㎞,使两人相距a㎞;或者谁先到目的地后,因为另一个人离目的地a㎞,使两人相距a㎞;❖一次函数与几何图形结合问题要点提示:1.首先明确x轴、y轴的具体意义2.其次注意拐点的意义3.一次函数与谁结合,多注意所结合图形的特殊性质的应用。
第19章 一次函数性质考察(一)期末复习练习 2020-2021学年 人教版八年级数学下册
2020-2021学年八年级数学人教版下册期末复习:一次函数性质考察(一)1.如图,平面直角坐标系中,点O为坐标原点,直线AB分别与x轴、y轴交于点A(5,0),B(0,5),动点P的坐标为(a,a﹣1).(1)求直线AB的函数表达式;(2)连接AP,若直线AP将△AOB的面积分成相等的两部分,求此时P点的坐标.2.已知直线a过点M(﹣1,﹣4.5),N(1,﹣1.5).(1)求此直线的函数解析式;(2)求出此函数图象与x轴、y轴的交点A,B的坐标;(3)若直线a与b相交于点P(4,n),a,b与x轴围成的△PAC的面积为6,求出点C的坐标.3.已知一次函数y=kx+b的图象经过点A(0,2)和点B(﹣a,3)且点B在正比例函数y=﹣3x的图象上.(1)求a的值.(2)求一次函数的解析式.(3)若P(m,y1),Q(m﹣1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.4.学习完一次函数后,某班同学在数学老师的指导下,继续对函数y=|x﹣1|的图象和性质进行探究.同学们在研究的过程中发现,这个函数的自变量x的取值范围是全体实数,他们将x与y 的几组对应值列表(如下表),并画出了函数图象的一部分(如图).x…﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…m 3 2 1 0 1 2 3 4 …请你完成以下的研究问题:(1)表中的m=.(2)根据上表的数据,画出函数图象的另一部分.(3)请你根据函数y=|x﹣1|的图象判断以下两种说法(在相应的空内填“对”或“错”).①当x<1时,y随x的增大而增大;②函数图象一定经过点(﹣5,6).5.已知函数,y=kx(k为常数且k≠0);(1)当x=1,y=2时,则函数解析式为;(2)当函数图象过第一、三象限时,k;(3)k,y随x的增大而减小;(4)如图,在(1)的条件下,点A在图象上,点A的横坐标为1,点B(2,0),求△OAB的面积.6.如图,已知点A位于第一象限,且在直线y=2x﹣3上,过点A做AB⊥x轴垂足为点B,AC⊥y轴垂足为点C,BC=.(1)求点A坐标;(2)如果点E位于第四象限,且在直线y=2x﹣3上,点D在y轴上,坐标平面内是否存在点F,使得四边形ADEF是正方形,如果存在,请求出点E的坐标;如果不存在,请说明理由.7.如图,直线y=﹣x+b与x轴,y轴分别交于A,B两点,点A的坐标为(6,0).在x轴的负半轴上有一点C(﹣4,0),直线AB上有一点D,且CD=OD.(1)求b的值及点D的坐标;(2)在线段AB上有一个动点P,点P的横坐标为a,作点P关于y轴的对称点Q,当点Q落在△CDO内(不包括边界)时,求a的取值范围.8.如图,已知四边形ABCD是正方形,点B,C分别在两条直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=;(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化说明理由;若会发生变化,试求出a的值.9.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(a,0)、(a,b)、(c,b),且a,b,c满足|a﹣14|++(c﹣4)2=0,OC=5,点P、Q 同时从原点出发作匀速运动.其中,点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)求点A、B、C的坐标;(2)如果点Q的速度为每秒2个单位,求出发运动5秒时,P、Q两点的坐标;(3)在(2)的条件下:经过多长时间,线段PQ恰好将梯形OABC的面积分成相等的两部分,并求这时Q点的坐标.10.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.11.如图,直线y=kx+8分别与x轴,y轴相交于A,B两点,O为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,垂足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.12.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BP与x轴相交于P,△ABP的面积是,求点P的坐标.13.已知直线y=x+3.(1)若点(﹣1,a)和(,b)都在该直线上,比较a和b的大小;(2)在平面直角坐标系中,求该直线与两坐标轴的交点坐标;(3)求该直线上到x轴的距离等于2的点的坐标.14.如图,在平面直角坐标系xOy中,直线l1经过点A(0,1)、B(2,2).将直线l1向下平移m个单位得到直线l2,已知直线l2经过点(﹣1,﹣2),且与x轴交于点C.(1)求直线l1的表达式;(2)求m的值与点C的坐标;(3)点D为直线l2上一点,如果A、B、C、D四点能构成平行四边形,求点D的坐标.15.如图,在平面直角坐标系中,直线l1:y1=k1x+b经过点(,)和(1,3),直线l2:y2=k2x经过点(m,m).(1)分别求出两直线的解析式;(2)填空:①当y1>y2时,自变量x的取值范围是;②将直线l1向上平移2个单位,则平移后的直线与直线l2和x轴围成的区域内有个整数点(横、纵坐标都为整数的点叫整数点,不包括边界上的整数点).16.如图,直线:y=﹣2x+2与坐标轴交于A、B两点,点C、D的坐标分别为(0,﹣3),(6,0).(1)求直线CD:y=kx+b与AB交点E的坐标;(2)直接写出不等式﹣2x+2≥kx+b的解集是;(3)求四边形OBEC的面积.参考答案1.解:(1)设抛物线的解析式为y=kx+b,把点A(5,0),B(0,5)代入上式,得,解得:,∴直线AB的函数表达式为y=﹣x+5;(2)∵直线AP将△AOB的面积分成相等的两部分,∴直线AP经过OB的中点(0,),设直线AP的解析式为y=mx+n,把A(5,0),(0,)代入上式,得,解得,∴直线AP的解析式为y=﹣,把p(a,a﹣1)代入y=﹣中,得,解得:a=,∴点P的坐标为(,).2.解:(1)设直线a的解析式为y=kx+b,把M(﹣1,﹣4.5),N(1,﹣1.5)代入得:,解得:,则直线解析式为y=1.5x﹣3;(2)令x=0,得到y=﹣3;令y=0,得到x=2,则A(2,0),B(0,﹣3);(3)把P(4,n)代入y=1.5x﹣3得:n=3,即P(4,3),设C的横坐标是m,∵a,b与x轴围成的△PAC的面积为6,∴|m﹣2|×3=6,解得:m=﹣2,或m=6.则C的坐标是:(﹣2,0)或(6,0).3.解:(1)把B(﹣a,3)代入y=﹣3x得﹣3×(﹣a)=3,解得a=1;(2)把A(0,2),B(﹣1,3)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2,(3)因为一次函数y=﹣x+2中,k=﹣1<0,所以y随x的增大而减小,∵m>m﹣1,所以y1<y2.4.解:(1)把x=﹣3代入y=|x﹣1|得,y=4,∴m=4,故答案为:4;(2)函数图象如下:(3)根据第二问的函数图象可知,①当x<1时,y随x的增大而减小,故错误,②函数图象一定经过点(﹣5,6),故正确;故答案为:错,对.5.解:(1)当x=1,y=2时,2=k,∴y=2x,故答案为y=2x;(2)∵函数图象过第一、三象限,∴k>0,故答案为>0;(3)∵y随x的增大而减小,∴函数图象经过第二、四象限,∴k<0,故答案为<0;(4)∵y=2x,点A的横坐标为1,∴A(1,2),∵B(2,0),∴OB=2,∴△OAB的面积=×2×2=2.6.解:(1)设点A的坐标为(a,2a﹣3),∵AB⊥x轴,AC⊥y轴,∴OB=a,OC=2a﹣3,∵BC=,∠BOC=90°,∴5=a2+(2a﹣3)2,∴a=2或a=,∴点A的坐标为(2,1)或(,﹣)∵点A在第一象限,∴点A的坐标为(2,1);(2)如图,分别过点A、点E作AH⊥y轴于H、EG⊥y轴于G,∵∠HAD+∠ADH=90°,∠EDG+∠ADH=90°,∴∠HAD=∠EDG,在△HAD与EDG中,,∴△HAD≌GDE(AAS),∴AH=DG=2,DH=GE,根据E在第四象限且在直线y=2x﹣3上,设E(m,2m﹣3),则GE=DH=m,OG=3﹣2m,∴OG+OH=DH+DG=3﹣2m+1=2+m,∴m=,∴E的坐标为(,﹣).7.解:(1)将点A的坐标为(6,0)代入y=﹣x+b,解得b=3.y=﹣x+3,∵CD=OD,点C坐标为(﹣4,0),∴点D横坐标为﹣2,当x=﹣2时,y=4,∴点D坐标为(﹣2,4).(2)∵点P所在直线解析式为:y=﹣x+3(0≤x≤6),点P关于y轴的对称点Q,且点Q落在△CDO内(不包括边界),∴点Q所在直线解析式为:y=x+3(﹣6<x<0).设CD所在直线解析式为:y=kx+b,将C(﹣4,0),D(﹣2,4)代入解析式得k =2,b=8,即y=2x+8.设OD所在直线解析式为:y=mx,将D(﹣2,4)代入解析式得m=﹣2,即y=﹣2x.联立方程,解得.联立方程,解得.∵点Q横坐标为﹣a,∴﹣<﹣a<﹣,解得<a<.8.解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴OA=1,OD=1+2=3,∴C(3,2),将C(3,2)代入y=kx,得2=3k,∴k=;故答案为:;(2)k的值不会发生变化,理由:∵正方形边长为a,∴AB=a,在直线y=2x中,当y=a时,x=,∴OA=,OD=,∴C(,a),将C(,a)代入y=kx,得a=k×,∴k=.9.解:(1)∵|a﹣14|++(c﹣4)2=0,∴a﹣14=0,3﹣b=0,c﹣4=0,解得a=14,b=3,c=4,∴A、B、C的坐标分别为(14,0),(14,3),(4,3).(2)点Q运动路程为2×5=10,∴BQ=OC+BC﹣10=5+14﹣4﹣10=5,∴点Q横坐标为14﹣5=9,∴Q(9,3),∵OP=1×5=5,∴P(5,0).(3)设运动时间为t,则AP=14﹣t,BQ=15﹣2t(t≥),∴梯形PABQ的面积为(BQ+AP)•AB=﹣t,∵梯形OABC的面积为(BC+OA)•AB=36,∴当﹣t=36时满足题意,解得t=,∴BQ=15﹣2t=,∴点Q横坐标为14﹣=,∴点Q坐标为(,3).10.解:(1)∵直线y=kx+6与x轴交于点E,且点E的坐标(8,0)∴8k+6=0,解得k=﹣,∴y=﹣x+6;(2)过点P作PD⊥OA于点D,∵点P(x,y)是第一象限内的直线上的一个动点∴PD=﹣x+6.∵点A的坐标为(6,0)∴S=×6×(﹣x+6)=﹣x+18;(3)∵△OPA的面积为,∴﹣x+18=,解得x=,将x=代入y=﹣x+6得y=,∴P(,).11.解:(1)∵直线y=kx+8经过A(4,0)∴0=4k+8,∴k=﹣2.(2)∵点P在直线y=﹣2x+8上,设P(t,﹣2t+8),∴PN=t,PM=﹣2t+8,∵四边形PNOM是长方形,∴C=(t﹣2t+8)×2=10,解得t=3,∴点P的坐标为(3,2).12.解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0),∴OA=,OB=3,∴△AOB的面积:×3×=;(2)由B(0,3)、A(﹣,0)得:OB=3,OA=,∵S△ABP=AP•OB=,∴AP=,解得:AP=3.∴P点坐标为(1.5,0)或(﹣4.5,0).13.解:(1)∵一次函数y=﹣x+3中,k=﹣<0,∴y随x的增大而减小,∵﹣1<,∴a>b;(2)∵令y=0,则x=6;令x=0,则y=3,∴直线与x、y轴的交点坐标分别为:(6,0)、(0,3);(3)该直线上到x轴的距离等于2的点的坐标为(x,﹣x+3),∵|﹣x+3|=2,∴﹣x+3=2或﹣x+3=﹣2,解得x=2或x=10,当x=2时,﹣x+3=(﹣)×2+3=2;当x=10时,﹣x+3=(﹣)×10+3=﹣2;∴该直线上到x轴的距离等于2的点的坐标为:(2,2)或(10,﹣2).14.解:(1)设直线l1的表达式为y=kx+b,∵直线l1经过点A(0,1)、B(2,2),∴,解得,∴设直线l1的表达式为y=x+1;(2)将直线l1向下平移m个单位得到直线l2,则直线l2为y=x+1﹣m,∵直线l2经过点(﹣1,﹣2),∴﹣2=+1﹣m,解得m=,∴直线l2为y=x﹣,令y=0,则求得x=3,∴点C的坐标为(3,0);(3)由题意可知AB∥CD,当A、B、C、D四点构成平行四边形ABDC时,∵A(0,1)、B(2,2),C(3,0),∴点A向右平移3个单位,再向下平移1个单位与C点重合,∴点B向右平移3个单位,再向下平移1个单位与D点重合,此时D的坐标为(5,1);∵AB∥CD,当A、B、C、D四点构成平行四边形ABCD时,∵A(0,1)、B(2,2),C(3,0),∴点B向右平移1个单位,再向下平移2个单位与C点重合,∴点A向右平移1个单位,再向下平移2个单位与D点重合,此时D的坐标为(1,﹣1);综上,如果A、B、C、D四点能构成平行四边形,点D的坐标为(5,1)或(1,﹣1).15.解:(1)∵直线l1:y1=k1x+b经过点(,)和(1,3),∴,解得,∴直线l1:y1=﹣x+4;∵直线l2:y2=k2x经过点(m,m),∴m=mk2,∴k2=1,∴直线l2:y2=x;(2)①由图象可知,当y1>y2时,自变量x的取值范围是x<2;②将直线l1向上平移2个单位,则平移后的直线为y=﹣x+6,与x轴的交点为(6,0),由解得,∴交点为(3,3),∴平移后的直线与直线l2和x轴围成的区域内的整点有(2,1),(3,1),(3,2),(4,1)共4个,故答案为①x<2;②4.16.解:(1)∵点C、D的坐标分别为(0,﹣3),(6,0).∴,解得,∴直线CD为y=x﹣3,解得,∴点E的坐标为(2,﹣2);(2)观察图象,不等式﹣2x+2≥kx+b的解集是x≤2;故答案为x≤2;(3)由直线y=﹣2x+2可知,B(1,0),∴BD=5,∴四边形OBEC的面积=S△COD﹣S△BED=3×6﹣=4.。
全版一次函数期末复习.ppt
12
图像
.精品课件.
13
观察 比较两个函数图象的相同点与不同点
y 2x
y 2x
若题目告诉你 直线经过原点, k>0 你想k到<0了什么?
相同点 :两图象都是经过原点的 直线 ,
函数y=2x的图象从左向右 上升 ,经过第 一、三 象限,
y随x的增大而 增大 ; 函数y=-2x的图象从左向右 下降 ,经过第 二、四 象限,
(1) y 80 2x; (2)由 y 0且2x y可解得20 x 40.
.精品课件.
8
【问题 1】函数 y 2x 1 中,自变量 x 的取值 x1
范围是
x 1 且x 1 2
.
变式题组:
10.函数 y x 2 1 的自变量 x 的取值范 x2
围为( D ).
A. x 2
.精品课件.
17
y=kx+b
k,b共同决定直线的位置,彼此分工合作
K决定上山,下山,即:
当k﹥0时,y随X的增大而增大,随X的减小而减小。两者是同步的。 当k﹤0时,y随X的增大而减小,随X的减小而增大。两者是相反的。
b决定上移,下移,即:
当b﹥0时,直线与y轴的交点在x轴的上方
当b﹤0时,直线与y轴的交点在x轴的下方
.精品课件.
1
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变
量 ;数值始终不变的量叫做 常量
;
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两 个变量x与y,并且对于x的每一个确定的值,y都有 唯一确定的值与其对应,那么我们就说x是自变量, y是x的函数. y写在前面