整式的除法与因式分解
整式运算公式汇总

整式运算公式汇总整式是由常数、变量及其乘积所构成的代数表达式,常见的整式运算包括加法、减法、乘法和除法。
下面是整式运算的一些常用公式汇总。
1.加法和减法:-任意两个整式之和或之差仍然是整式。
2.乘法:-一个整数与一个整式相乘,所得结果仍然是整式。
-两个整式相乘时,可以利用分配律进行展开。
-两个含有相同的因子的整式相乘时,可以利用公因式提取法进行合并。
3.乘方:a^n表示a的n次方,在整式运算中,可以使用以下公式进行乘方运算:-a^m*a^n=a^(m+n)(底数相同的乘方,指数相加)-(a^m)^n=a^(m*n)(乘方的乘方,指数相乘)-a^0=1(任何数的0次方等于1)4.除法:整式的除法运算可以利用乘法的逆运算,即乘法逆元素,其中,除法过程可以通过因式分解、相除法或多项式长除法等方法进行。
5.因式分解:将一个整式分解为几个不可再分解的乘积形式的过程称为因式分解。
常见的因式分解公式包括:-公因式提取法:将一个整式中的公因子提取出来。
-二次差分公式:a^2-b^2=(a+b)(a-b)- 平方差公式:a^2 + b^2 = (a+b)^2 - 2ab- 三次方差公式:a^3 - b^3 = (a-b)(a^2 + ab + b^2)6.基本恒等式:- 乘法结合律:a(bc) = (ab)c- 乘法交换律:ab = ba-加法结合律:(a+b)+c=a+(b+c)-加法交换律:a+b=b+a- 加法与乘法的分配律:a(b+c) = ab+ac这些是整式运算的一些常见公式,它们在代数运算中起到重要的作用。
通过熟练掌握和运用这些公式,可以更好地理解和解决整式运算问题。
第14章整式的乘除和因式分解-(教案)

在今天的教学过程中,我发现学生们对于整式的乘除和因式分解这一章节的内容普遍感到有些吃力。在讲解整式的乘法法则时,我注意到有的学生在进行多项式乘多项式的运算时,容易混淆同类项和如何正确合并它们。这让我意识到,需要通过更多的例题和练习来加强他们的这部分能力。
在因式分解的教学中,我发现十字相乘法对学生来说是一个难点。他们往往在寻找能够相乘得到多项式系数的两个数时遇到困难。我尝试通过一些具体的例题和分解步骤来引导学生,但感觉效果并不如预期。这可能是因为我需要在课堂上提供更多的时间和机会,让学生自己尝试和探索,而不仅仅是观看我的演示。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘除和因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际代数问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.培养学生的逻辑推理能力,使其能够理解和运用整式的乘除法则,以及因式分解的各种方法;
2.提升学生的数学运算能力,熟练掌握整式乘除和因式分解的运算技巧;
3.增强学生的数学抽象思维,通过解决实际问题,体会数学在现实生活中的应用;
4.培养学生的团队合作意识,通过小组讨论和合作,共同解决复杂的整式乘除和因式分解问题;
第14章整式的乘除和因式分解-(教案)
一、教学内容
第14章整式的乘除和因式分解:
1.单项式乘单项式、单项式乘多项式、多项式乘多项式;
2.乘法公式:平方差公式、完全平方公式;
3.整式的除法:整式除以单项式、整式除以多项式;
整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文一、教学目标:1. 知识与技能:(1)理解整式的乘除概念,掌握整式乘除的运算方法;(2)掌握因式分解的方法,能够对简单的一元二次方程进行因式分解。
2. 过程与方法:(1)通过实例演示和练习,培养学生的运算能力;(2)通过小组讨论和探究,培养学生合作解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学内容:1. 整式的乘法:(1)单项式乘以单项式;(2)单项式乘以多项式;(3)多项式乘以多项式。
2. 整式的除法:(1)单项式除以单项式;(2)多项式除以单项式。
3. 因式分解:(1)提取公因式法;(2)十字相乘法;(3)公式法。
三、教学重点与难点:1. 教学重点:(1)整式的乘除运算方法;(2)因式分解的方法及应用。
2. 教学难点:(1)整式乘除中的复杂运算;(2)因式分解中的技巧与策略。
四、教学过程:1. 导入:通过复习相关概念,引导学生进入整式乘除与因式分解的学习。
2. 教学新课:(1)整式的乘法:通过具体例子,讲解单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算方法;(2)整式的除法:通过具体例子,讲解单项式除以单项式、多项式除以单项式的运算方法;(3)因式分解:讲解提取公因式法、十字相乘法、公式法的运用。
3. 课堂练习:布置练习题,让学生巩固所学内容。
4. 总结与拓展:总结整式乘除与因式分解的关键点,引导学生思考如何解决实际问题。
五、课后作业:1. 完成练习册的相关题目;2. 选取一道复杂的整式乘除或因式分解题目,进行深入研究和分析。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究整式乘除与因式分解的方法;2. 利用多媒体课件,展示整式乘除与因式分解的运算过程,增强学生的直观感受;3. 设计具有梯度的练习题,让学生在实践中巩固知识,提高运算能力;4. 组织小组讨论,鼓励学生分享解题心得,培养合作精神。
初中数学八年级上册第十五章《整式的乘除与因式分解》简介

新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
整式的运算与因式分解

整式的运算与因式分解1. 概述整式是数学中的一种常见形式,由数字、字母和运算符号组成。
本文将介绍整式的运算和因式分解两个主题。
2. 整式的基本运算整式的基本运算包括加法、减法、乘法和除法。
下面我们逐个介绍每种运算。
2.1 加法整式的加法就是把相同变量的项进行合并,例如:2x² + 3x + 5 + 4x² - 2x - 3合并同类项结果为:(2x² + 4x²) + (3x - 2x) + (5 - 3)6x² + x + 22.2 减法整式的减法与加法类似,合并同类项后进行相减,例如:(3x² + 2x - 7) - (x² - 4x + 2)合并同类项结果为:(3x² - x²) + (2x + 4x) + (-7 - 2)2x² + 6x - 92.3 乘法整式的乘法是将每个项相乘,并合并同类项,例如:(2x + 3)(x - 4)展开并合并同类项结果为:2x² - 8x + 3x - 122x² - 5x - 122.4 除法整式的除法是指定一个整式为除数,将被除数做整除运算得到商和余数。
例如:(2x³ - 5x² + 3) ÷ (x - 2)使用长除法进行计算,得到商为2x² - x + 1,余数为5。
3. 整式的因式分解因式分解是将一个整式写成多个因式相乘的形式。
下面我们介绍几种常见的因式分解方法。
3.1 公因式提取法对于给定的整式,如果每一项都有相同的因子,那么可以先提取出公因式,例如:6x² + 9x这里的公因式是3x,提取后得到:3x(2x + 3)3.2 完全平方公式对于一个二次整式(二项式的平方),可以使用完全平方公式进行因式分解,例如:x² + 4x + 4这里的完全平方是(x + 2)²,因此可以写成:(x + 2)²3.3 平方差公式平方差公式可以将一个差的平方整式进行因式分解,例如:x² - 4这里可以使用差的平方公式:(x + 2)(x - 2)4. 示例与应用现在我们通过一些示例来展示整式的运算和因式分解的应用。
整式乘除与因式分解复习教案

整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。
通过练习,熟悉常规题型的运算,并能灵活运用。
教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。
教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。
难点整式的除法与因式分解的应用是本课难点。
教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。
本课教学以练习为主。
教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。
整式的乘除因式分解定义公式总结
《整式的乘除与因式分解》四大知识点归纳第一类、幂的运算法则:同底数幂的乘法a m a n=a m+n幂的乘方(a m )n=a m n积的乘方(a b)n = a n b n同底数幂的除法a m÷a n=a m+n (a≠0,m、n为正整数,m﹥n)零指数幂a0 = 1(a≠0)负指数幂 a – p = (a≠0 ,p为正整数)第二类、整式的乘、除法整式的乘法1.单项式乘以单项式法则单项式和单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数一起作为积的一个因式.2。
单项式乘以多项式法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a+b+c)=ma+mb+mc3.多项式乘以多项式法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加即(a+b) (m+n) = am + an + bm +bn整式的除法1.单项式除以单项式法则单项式相除,把系数和同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2.多项式除以单项式法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
即(am+bm)÷m = a + b第三类、乘法公式平方差公式两个数的和与这两个数的差的积,等于这两个数的平方差。
即(a+b)(a –b)= a2 –b2完全平方公式两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.即(a+b)2=a2+2ab+b2 (a—b)2=a2—2ab+b2第四类、因式分解:1。
定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.2。
方法①提公团式法:如果一个多项式的各项含有公因式,那么可以把这个公因式提到括号外面,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.②运用公式法:把乘法公式逆运用,可以把某些类型的多项式因式分解,这种方法叫公式法。
初中数学整式的乘除与分解因式知识点
初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。
将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。
例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。
2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。
将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。
然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。
例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。
然后将乘积减去被除式,得到0。
所以结果为2x + 3。
3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。
例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。
这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。
数学中考复习 整式的加减乘除与因式分解
第一讲 整式的加减乘除与因式分解代数式、单项式、多项式代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式. 单独的一个数或字母也是代数式.列代数式:列代数式实质上是把“文字语言”翻译成“符号语言”.列代数式的关键是正确地分析数量关系,要掌握和、差、积、商、幂、倍、分、大、小、多、少、增加、增加到等数学概念和有关知识.在列代数式时,应注意以下几点:(1) 在同一问题中,要注意不同的对象或不同的数量必须用不同的字母来表示;(2) 字母与字母相乘时可以省略乘号;(3) 在所列代数式中,若有相除关系要写成分数形式;(4) 列代数式时应注意单位,单位名称在代数式后面写出来,如果结果为加减关系,必须用括号将代数式括起来;(5) 代数式中不要使用带分数,带分数与字母相乘时必须把带分数化成假分数.单项式: 像2-a ,2r π,213-x y ,-abc ,237x yz ,……这些代数式中,都是数字与字母的积,这样的代数式称为单项式.也就是说单项式中不存在数字与字母或字母与字母的加、减、除关系,特别的单项式的分母中不含未知数.!单独的一个字母或数也叫做单项式,例:a 、3-.单项式的次数:是指单项式中所有字母的指数和.例如:单项式212-ab c ,它的指数为1214++=,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式.单项式的系数:单项式中的数字因数叫做单项数的系数.例如:我们把47叫做单项式247x y 的系数. 同类项: 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.多项式: 几个单项式的和叫做多项式.例如:27319-+x x 是多项式. 多项式的项: 其中每个单项式都是该多项式的一个项.多项式中的各项包括它前面的符号.多项式中不含字母的项叫做常数项. 多项数的次数:多项式里,次数最高项的次数就是这个多项式的次数.整式: 单项式和多项式统称为整式.【例1】 讲下列代数式分别填入相应的括号内:222221112113232333a x ab x x m n mn n x b x y x-+-+-+-+,,,,,,, 单项式( );多项式( );二项式( );二次多项式( );整式( )【例2】 找出下列各代数式中的单项式,并写出各单项式的系数和次数.223xy ;-a ;a bc ;32+mn ;572t ;233-a b c ;2;-x π【例3】 单项式113+--a b a x y 与23x y 是同类项,求-a b 的值.【巩固】 若12223559+--m m n ab 与2a b 是同类项,求m ,n 的值.板块二 整式加减合并同类项: 把多项式中同类项合并成一项,叫做合并同类项.合并同类项时,只需把系数相加,所含字母和字母指数不变.【例4】 若232+m m n a b 与39a b 的和仍是一个单项式,求m 、n 的值.【例5】 化简:3223225115225363363--+-+++a b a b ab a b ab ba【巩固】 化简:2222222243{3[24(2)]}--+--+-xy x y x y xy xy x y x y xy【例6】 第一个多项式是2222-+x xy y ,第二个多项式是第一个多项式的2倍少3 ,第三个多项式是前两个多项式的和,求这三个多项式的和.【例7】 有这样一道题:“已知222223=+-A a b c ,22232=--B a b c ,22223=+-C c a b ,当1=a ,2=b ,3=c 时,求-+A B C 的值”.有一个学生指出,题目中给出的2=b ,3=c 是多余的.他的说法有没有道理?为什么?幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数. 含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.例如:53表示33333⨯⨯⨯⨯,5(3)-表示(3)(3)(3)(3)(3)-⨯-⨯-⨯-⨯-,53-表示(33333)-⨯⨯⨯⨯52()7表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯ 特别注意负数及分数的乘方,应把底数加上括号.“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:⑴多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=.⑵有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号, 例如:(3)(2)(6)36-⨯-⨯-=-,而(3)(2)(6)36-⨯-⨯+=.⑶有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如:2(3)9-=,3(3)27-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()n n a a -=.负数的奇次幂是负数,负数的偶次幂是正数正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”.⑴ 同底数幂相乘.同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m n a a a +⋅=(,m n 都是正整数).⑵ 幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘.用式子表示为:()nm mn a a =(,m n 都是正整数). ⑶ 积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用式子表示为:()n n n ab a b =(n 是正整数).⑷ 同底数幂相除.同底数的幂相除,底数不变,指数相减.用式子表示为:m n m n a a a -÷= (0a ≠,m ,n 都是正整数)⑸ 规定()010a a =≠;1p p a a-=(0a ≠,p 是正整数). 【例1】 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=【巩固】 下列计算错误的是( )A .()333327ab a b -=-B .2326411416a b a b ⎛⎫-= ⎪⎝⎭ C .()326xy xy -=- D .()24386a b a b -=计算:()43- 计算:43- 计算:332⎛⎫- ⎪⎝⎭ 计算:332-填空:54x x x ÷⨯= ;填空:()()()324a a a -⋅-⋅-= ; 填空:()()2322a b b ⋅-= ; 填空:()()3223x x x --⋅=【巩固】 ()4m m x x ÷=填空:;()224m a a +⋅=;()234n n n n a b =;()()()284n a a a ⎡⎤==⎣⎦【例2】 计算:()()()24143 6.526313⎛⎫--⨯+-÷-= ⎪⎝⎭__________【例3】 n 为自然数,那么(1)n -= ;2(1)n -= ;21(1)n +-= ;当n 为 数时,()()n 2n 110-+-=;当n 为 数时,()()n 2n112-+-=【例4】 计算:12468...(1)2n n +-+-++-⨯【例5】 计算:23456789102222222222--------+=_____________.计算:6660.12524⨯⨯计算:10200.252⨯计算:1996199519952(1.5)(1)3⎛⎫⨯⨯- ⎪⎝⎭【例6】 已知2m a =,3n a =,求32m n a +的值.【例7】 若2530x y +-=,求432x y ⋅.【巩固】 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:①1m a +;②32m n a -.【例8】 已知232122192x x ++-=,求x .板块二 幂的大小比较【例9】 比较503,404,305的大小.【例10】 已知221410103498a b c d ====,,,,则a b c d ,,,的大小关系为整式的乘法⑴单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式.以下举例说明单项式与单项式相乘的规则如下:23234233ab a b c a b c ⋅=,两个单项式的系数分别为1和3,乘积的系数是3,两个单项式中关于字母a 的幂分别是a 和2a ,乘积中a 的幂是3a ,同理,乘积中b 的幂是4b ,另外,单项式ab 中不含c 的幂,而2323a b c 中含2c ,故乘积中含2c . ⑵单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a b c ++为多项式.⑶多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++【例11】 若M N ,分别是关于x 的2次多项式与3次多项式,则MN ( )A .一定是5次多项式B .一定是6次多项式C .一定是2次或3次多项式D .无法确定次数【例12】 先化简,在求值:()()()()22215423125a a a a a a a -⋅------,其中1a =-【巩固】 计算2332536()()()()1245x y x y x y y x ⎡⎤+⋅--⋅--⋅-⎢⎥⎣⎦.【巩固】 使22(8)(3)x px x x q ++-+的积中不含2x 和3x ,求p ,q 的值.整式的除法⑴ 单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.如:2322233a b c ab ab c ÷=,被除式为2323a b c ,除式为ab ,系数分别为3和1,故商中的系数为3,a 的幂分别为2a 和a ,故商中a 的幂为21a a -=,同理,b 的幂为2b ,另外,被除式中含2c ,而除式中不含关于c 的幂,故商中c 的幂为2c .⑵ 多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:()a b c m a m b m c m ++÷=÷+÷+÷,其中m 为单项式,a b c ++为多项式.【例13】 计算:472632211()()393a b a b ab -÷-;计算:823423236( 1.8)0.655a b a b a b ab --÷【例14】 算:()()()2226969x x x x +-÷++= ;【例15】 如果257x kx -+被52x -除后余6,求k 的值及商式.【例16】 计算:22221112222x y x y x y ⎡⎤⎛⎫⎛⎫⎛⎫-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦因式分解的基本概念因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式因式分解的常用方法:提取公因式法、运用公式法、分组分解法、十字相乘法.分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式十字相乘法分解,如还不能,就试用分组分解法或其它方法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;②结果一定是乘积的形式;③每一个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;③单项式因式写在多项式因式的前面;④每个因式第一项系数一般不为负数;⑤形式相同的因式写成幂的形式.判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++【例17】 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:系数——取多项式各项系数的最大公约数;字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.【例18】 分解因式:ad bd d -+【例19】 分解因式:4325286x y z x y -【例20】 分解因式:322618m m m -+- 分解因式:23229632x y x y xy ++ 分解因式:2222224x y x z y z z --+【例21】 不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.【例22】 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【例23】 求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.公式法平方差公式:22()()a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++33223()33a b a a b ab b +=+++ 33223()33a b a a b ab b -=-+-2222()222a b c a b c ab ac bc ++=+++++【例24】 分解因式:44a b -【例25】 分解因式:2249()16()m n m n +--【例26】 分解因式:22()()a x y b y x -+-【例27】 分解因式:229()4()m n m n --+【例28】 分解因式:22(32)16x y y --【例29】 利用分解因式证明:712255-能被120整除.【例30】 分解因式:2242x x -+= ;【例31】 分解因式:244ax ax a -+= ;【例32】 分解因式:2844a a --= ;【例33】 分解因式:2292416x xy y -+=【例34】 分解因式:3269x x x -+【例35】 分解因式:2363x x -+【例36】 在实数范围内分解因式:224x -;【例37】 在实数范围内分解因式:264m m -+【例38】 分解因式:22222(91)36a b a b +--【例39】 若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解【例40】 分解因式:256x x ++【例41】 分解因式:256x x -+【例42】 分解因式2299x x +-等于( )A .()()911x x --B .()()911x x +-C .()()911x x -+D .()()911x x ++【例43】 分解因式:276x x ++【例44】 分解因式:268x x ++【例45】 分解因式:278x x +-【例46】 分解因式:212x x +-【例47】 分解因式:2376a a --【例48】 分解因式:2383x x --【例49】 分解因式:25129x x +-【例50】 分解因式:2121115x x --板块三:双十字相乘双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
整式乘除及因式分解知识点
整式乘除与因式分解一.知识点(要点)1.幂的运算性质:a m·a n=a m +n(m 、n 为正整数)同底数幂相乘,底数不变,指数相加.例:(-2a)2(-3a 2)3.a mn=a mn (m 、n 为正整数)2幂的乘方,底数不变,指数相乘 .例:(-a 5)53.ab na nbn(n 为正整数)积的乘方等于各因式乘方的积.例:(-a 2b)3 练习:(1)5x 32x 2y(2)3ab( 4b 2)(3)3ab2a(4)yz2y 2z 2(5)(2x 2y)3(4xy 2)(6)1a 3b6a 5b 2c(ac 2)23 4.a man=am -n (≠,、都是正整数,且>)a0mn同底数幂相除,底数不变,指数相减 .例:(1)x 8÷x 2(2)a 4÷a(3)(ab )5÷(ab )2(4)(-a )7÷(-a )5(5)(-b)5÷(-b)25.零指数幂的观点:a 0=1(a≠0)任何一个不等于零的数的零指数幂都等于l . 例:若(2a3b)0 1建立,则a,b 知足什么条件?6.负指数幂的观点:1a-p=ap(a≠0,p是正整数)任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.p pnm也可表示为:m7.单项式的乘法法例:n(m≠0,n≠0,p为正整数)单项式相乘,把系数、同底数幂分别相乘,作为积的因式;关于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)3 a b2abc12()13)(2m) abc2(2m38.单项式与多项式的乘法法例:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1)2(5ab 3)22ab)1ab(2)(aba b32(3)(-5m2n)(2n3mn2)(4)2(xy2zxy2z3)xyz9.多项式与多项式的乘法法例:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(x)x)((2xy)(xy)(3212))(例:(1)2mn)练习:1.计算2x3·(-2xy)(-1xy)3的结果是2842.(3×10)×(-4×10)=3.若n为正整数,且x2n=3,则(3x3n)2的值为4.假如(a n b·ab m)3=a9b15,那么mn的值是5.-[-a2(2a3-a)]=6.(-4x2+6x-8)·(-1x2)=27.2n(-1+3mn2)=8.若k(2k-5)+2k(1-k)=32,则k=9.(-3x2)+(2x-3y)(2x-5y)-3y(4x-5y)=10.在(ax2+bx-3)(x2-1x+8)的结果中不含x3和x项,则a=,b=211.一个长方体的长为(a+4)cm,宽为(a-3)cm,高为(a+5)cm,则它的表面积为,体积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行之教育学科教师辅导讲义
讲义编号: 年 级:初 二 组长签字: 辅导科目:数 学 教师姓名: *** 日期: 课 时 数:2 小时 时 间:
学生姓名: ***
课
题
《整式的除法与因式分解》
教学目标
重难点、考点 及考试要求
学生评教
学生对于本次课的评价: ○ 特别满意 ○ 满意
○ 一般
行之教育·考试研究院
中小学个性化教育专家
例 3 如图是用火柴棍摆成边长分别是 1、2、3 根火柴棍时的正方形,当边长为 n 根火柴棍时,若 摆出的正方形所用的火柴棍的根数为 S,则 S=__________(用含 n 的代数式表示,n 为正整数) .
二、整式的除法
4、同底数幂的除法的运算性质:am÷an=am n(a≠0,m、n 都是正整数,并且 m>n) . 同底数幂相除,底数不变,指数相减. 注意: (1)因为零不能作除数,所以底数不能为 0. (2)底数可以是一个数,也可以是单项式或多项式. 5、零指数幂 - 因为 am÷am=1,又因为 am÷am=am m=a0.所以 a0=1.其中 a≠0.即: 任何不等于 0 的数的零次幂都等于 1. 6、单项式除以单项式 单项式相除:把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同 它的指数作为商的一个因式.如:-4am2÷2m=[(-4)÷2]·a· (m2÷m) 步骤: (1)把系数相除,所得结果作为商的系数. (2)把同底数幂相除,所得结果作为商的因式. (3)把只在被除式里含有的字母,连同它的指数作为商的一个因式. 7、多项式除以单项式: (am+bm)÷m=am÷m+bm÷m=a+b. 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.其实质就是 把多项式除以单项式的运算转化为单项式除以单项式的运算.计算时不要漏除,同时注意运算符号.
○ 差
学生签字
所学知识 掌握情况
1、 学生上次作业评价: ○ 好 2、 学生本次上课情况评价: ○ 好
○ 较好 ○ 较好
○ 一般 ○ 一般
○ 差 ○ 差
教师评定
老师签字
课后作业及要求
行之教育
0374-7333871
-1-
行之教育·考试研究院
中小学个性化教育专家
教 【基础知识总结】
学
内
容
一、平方差与完全平方公式
行之教育 0374-7333871 -5行之教育·考试研究院
中小学个性化教育专家
15. 分解因式 (1)-x3+4x2-4x
(2) (x-4) (x-2)+1
1 16. (2008 年江西)先化简,再求值:x(x+2)-(x+1) (x-1) ,其中 x=- . 2
【试题答案】
一. 选择题 1. C 2. D 3. A 4. C 5. C 二. 填空题 9. -a6 14. -1 三. 解答题 5 16. (1) (2)-1(3)1 13 17. (1)原式=-x(x2-4x+4)=-x(x-2)2 (2)原式=x2-6x+8+1=x2-6x+9=(x-3)2 1 18. 原式=2x+1,当 x=- 时,原式=0 2 19. 解答一:Y+Z=(3a2+3ab)+(a2+ab)=4a2+4ab=4a(a+b) . 2 2 2 2 2 解答二:X-Z=(2a +3ab+b )-(a +ab)=a +2ab+b =(a+b)2. 解答三:Y-X=(3a2+3ab)-(2a2+3ab+b2)=a2-b2=(a+b) (a-b) . 20. (1)1,1,„„(2) (n2+n)÷n-n=n+1-n=1 6. C 7. D 8. C
a b
三. 解答题 14. 计算下列各题 5 3 (1) ( )2008· (2 )2007· (π -10)0 13 5 2 1 (2)1. 51001×(-2)1001×(- )1001×(- )1001 3 2 (3)已知 x、y 互为相反数,且(x+2)2-(y+2)2=4,求 x-y 的值.
【方法总结】
通过练习,具备整式乘除运算和因式分解的基本计算技能,解决实际问题时,能把问题情境转化成 数学模型,然后利用整式及其运算和因式分解的知识解决问题.同时注意到数形结合的思想、整体的 思想、转化的思想在解题时的体现和运用.
行之教育
0374-7333871
-4-
行之教育·考试研究院
中小学个性化教育专家 【课后作业】
-
因式分解
根据乘法公式,a2-b2=(a+b) (a-b) ;a2+2ab+b2=(a+b)2,把一个多项式化成几个整式 的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.可见整 式乘法与因式分解互为逆运算. 1. 提公因式法 多项式 ma+mb+mc, 各项都有一个公共的因式 m, 我们把因式 m 叫做这个多项式各项的公因式. 由 m(a+b+c)=ma+mb+mc 可得 ma+mb+mc=m(a+b+c) .这样就把 ma+mb+mc 分解
注意:
(1)分解因式,必须进行到每一个多项式因式都不能再分解为止. (2)在某个范围内,并不是每个多项式都可以分解因式.
例 1. (2008 年哈尔滨)把多项式 2mx2-4mxy+2my2 分解因式的结果是__________. 例 2. (2008 年山东)分解因式: (2a-b)2+8ab=____________.
行之教育
0374-7333871
-3-
行之教育·考试研究院
中小学个性化教育专家
成两个因式乘积的形式,其中一个因式是各项的公因式 m,另一个因式(a+b+c)是 ma+mb+mc 除以 m 所得的商.像这种分解因式的方法叫做提公因式法. 2. 公式法 (1)两个数的平方差,等于这两个数的和与这两个数的差的积.即 a2-b2=(a+b) (a-b) . (2)两个数的平方和加上(或减去)这两个数的积的 2 倍,等于这两个数的和(或差)的平方.即 a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
一. 选择题 1. (2007 年广州)下列计算中,正确的是 ( ) A. x·x3=x3 B. x3-x=x C. x3÷x=x2 D. x3+x3=x6 2. (2007 年中山)因式分解 1-4x2-4y2+8xy,正确的分组是 ( ) 2 2 2 2 A. (1-4x )+(8xy-4y ) B. (1-4x -4y )+8xy 2 2 C. (1+8xy)-(4x +4y ) D. 1-(4x2+4y2-8xy) 3. 4. 下列计算正确的是 ( ) 2 3 A. (-4x) (2x +3x-1)=-8x -12x2-4x B. (x+y) (x2+y2)=x3+y3 C. (-4a-1) (4a-1)=1-16a2 D. (x-2y)2=x2-2xy+4y2 5. (2008 年安徽)下列多项式中,能用公式法分解因式的是( ) A. x2-xy B. x2+xy C. x2-y2 D. x2+y2 6. 整数 N=215×510 的位数是 ( ) A. 10 位 B. 11 位 C. 12 位 D. 13 位 *7. 若 a、b 互为相反数,且 a、b 均不为 0,n 为正整数,则下列结论正确的是 ( ) A. a2n 和 b2n 也一定互为相反数 B. an 与 bn 一定互为相反数 + + 2n 2n C. -a 与-b 也一定互为相反数 D. a2n 1 与 b2n 1 也一定互为相反数 8. (2008 年全国数学竞赛广东初赛)化简: (a+1)2-(a-1)2= ( ) A. 2 B. 4 C. 4a D. 2a2+2 二. 填空题 9. (2006 年河北)计算: (a2 )3 =__________. 1 1 *10. 已知 y= x-1,那么 x2-2xy+3y2-2 的值是__________. 3 3 *11. 若 2·8n·16n=222,则 n=__________;若(81)n=38,则 n=__________. *12. (2008 年全国数学竞赛海南预赛)已知 a-b=1,a2-b2=-1,则 a2008-b2008=_________. **13. 如图所示,是用 4 张同样的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示 方法写出一个关于 a、b 的恒等式:__________.
1、平方差公式: (a+b) (a-b)=a2-b2 两个数的和与两个数的差的积,等于这两个数的平方差. 注意: (1)公式的左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数. (2)右边是左边因式中的两项的平方差(相同项的平方减去相反项的平方) . (3)公式中的 a 与 b 可以是单个的数,也可以是单项式或多项式. (4)只有对于形如两数的和与这两数的差相乘时,才可以用平方差公式. 2、完全平方公式: (a±b)2=a2±2ab+b2 两数和(或差)的平方,等于它们的平方和加(或减)它们的积的 2 倍. 注意: (1) (a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2 都叫做完全平方公式.为了区别,我们 把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. (2)公式的特点:两个公式的左边都是一个二项式的完全平方,二者仅一个“符号”的不同; 右边都是二次三项式,当中有两项是公式左边二项中每一项的平方,第三项是左边二项式中两项乘积 的 2 倍,二者也仅是一个“符号”的不同. (3)公式中的 a 与 b 可以是数,也可以是单项式或多项式. (4)在运用公式时要注意保持前后“符号”的一致性. 3、乘法公式和面积之间的关系 如图(1) , (a+b) (a-b)=__________; 如图(2) , (a+b)2=__________; 如图(3) , (a-b)2=__________.
例 4. 计算: (1)5.4×298.6+6.4×298.6-1.8×298.6;
(2)542+462+108×46;