全国卷高考题汇编三角函数三角恒等变换

合集下载

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)【母题来源】2022年新高考I卷【母题题文】6.若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A. tan(α+β)=−1B. tan(α+β)=1C. tan(α−β)=−1D. tan(α−β)=1【答案】C【分析】本题考查三角恒等变换的应用法一:利用特殊值法,排除错误选项即可法二,利用三角恒等变换,求出正确选项【解答】解法一:设β=0则sinα+cosα=0,取α=34π,排除B,D再取α=0则sinβ+cosβ=2sinβ,取β=π4,排除A;选C.解法二:由sin(α+β)+cos(α+β)=√2sin(α+β+π4)=√2sin[(α+π4)+β]=√2sin(α+π4)cosβ+√2cos(α+π4)sinβ,故√2sin(α+π4)cosβ=√2cos(α+π4)sinβ故sin(α+π4)cosβ−cos(α+π4)sinβ=0,即sin(α+π4−β)=0,故sin(α−β+π4)=√22sin(α−β)+√22cos(α−β)=0,故sin(α−β)=−cos(α−β),故tan(α−β)=−1.【母题来源】2022年新高考II卷【母题题文】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图像关于点(3π2,2)中心对称,则f(π2)=()A. 1B. 32C. 52D. 3【答案】A【分析】本题主要考查三角函数的周期性和对称性,属于中档题.【解答】解:由题可知:T=2πω∈(2π3,π),所以ω∈(2,3).又因为y=f(x)的图像关于点(3π2,2)中心对称,所以b=2,且f(3π2)=sin(ω×3π2+π4)+b=2.所以ω=23(k−14),k∈Z,所以ω=52.所以f(x)=sin(52x+π4)+2.所以f(π2)=1.(多选)已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)对称,则()A. f(x)在(0,5π12)单调递减B. f(x)在(−π12,11π12)有两个极值点C. 直线x=7π6是曲线y=f(x)的一条对称轴D. 直线y=√32−x是曲线y=f(x)的一条切线【答案】AD【解析】【分析】解:由题意得:f(2π3)=sin(4π3+φ)=0,所以4π3+φ=kπ,即φ=−4π3+kπ,k∈Z,又0<φ<π,所以k=2时,φ=2π3,故f(x)=sin(2x+2π3).选项A:x∈(0,5π12)时,2x+2π3∈(2π3,3π2),由y=sinu图象知f(x)在(0,5π12)单调递减;选项B:x∈(−π12,11π12)时,2x+2π3∈(π2,5π2),由y=sin u图象知f(x)在(−π12,11π12)有1个极值点;选项C:由于f(7π6)=sin3π=0,故直线x=7π6不是f(x)的对称轴;选项D:令f′(x)=2cos(2x+2π3)=−1,得cos(2x+2π3)=−12,解得2x+2π3=2π3+2kπ或2x+2π3=4π3+2kπ,k∈Z,从而得x=kπ或x=π3+kπ,k∈Z,令 k =0 ,则 (0,√32) 是斜率为 −1 的直线与曲线的切点,从而切线方程为 y −√32=−(x −0) ,即 y =√32−x .【母题来源】2022年新高考II 卷.若实数x ,y 满足x 2+y 2−xy =1,则( ) A. x +y ≤1 B. x +y ≥−2C. x 2+y 2≥1D. x 2+y 2≤2【答案】BC 【解析】 【分析】本题考查三角恒等变换与正弦函数的值域利用正余弦函数表示 x , y ,代入到 x +y , x 2+y 2 ,再利用三角函数的性质判断选项即可 【解答】解: 由 x 2+y 2−xy =1 得 (x −y 2)2+(√32y)2=1令 {x −y2=cosθ√32y =sinθ⇒{x =√33sinθ+cosθy =2√33sinθ 故 x +y =√3sinθ+cosθ=2sin(θ+π6)∈[−2,2] ,故 A 错, B 对 ; x 2+y 2=(√33sinθ+cosθ)2+(2√33sinθ)2=√33sin2θ−13cos2θ+43=23sin(2θ−φ)+43∈[23,2]( 其中 tanφ=√33) ,故 C 对, D 错. 【命题意图】考察两角和与差的正弦、余弦公式,考察二倍角的正现有、余弦、正切应用。

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

全国卷高考题汇编—三角函数-三角恒等变换

全国卷高考题汇编—三角函数-三角恒等变换

2011年——2016年高考题专题汇编专题4 三角函数、三角恒等变换三角恒等变换1、(16年全国3 文)若31tan =θ,则cos2θ= (A )45-(B )15-(C )15(D )45 2、(16年全国3 理)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)16253、(16年全国2 文)函数的最大值为 (A )4(B )5(C )6 (D )7 4、(16年全国2 理)若cos(π4–α)= 35,则sin 2α= (A )725 (B )15 (C )–15 (D )–7255、(16年全国1 文)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= .6、(15年全国1 理)sin20°cos10°-con160°sin10°=(A)2-(B)2 (C )12- (D )127、(14年新课标3 文)已知角α的终边经过点(4,3)-,则cos α=( )A .45 B .35 C .35- D .45-8、(14年新课标3 文)函数cos 22sin y x x =+的最大值为 . π()cos 26cos()2f x x x =+-9、(14年新课标3 理)设0sin 33a =,0cos55b =,0tan 35c =,则( )A 、a b c >>B .b c a >>C .c b a >>D .c a b >>10、(14年新课标1 文)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α11、(14全国课标1理)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=12、(13年课标全国Ⅱ卷 文)已知sin 223α=, 则2cos 4πα⎛⎫+= ⎪⎝⎭(A) 16 (B) 13 (C) 12 (D) 2313、(13年课标全国Ⅱ卷 理)设θ为第二象限角,若tan (θ+)= ,则sin θ+con θ=_________.14、(11年课标全国Ⅱ卷 文)已知a ∈(3,2ππ),tan 2,cos αα=则=15、(11年课标全国Ⅱ卷 理)已知a ∈(2π,π),sinα=55,则tan2α=三角函数1、(16年全国3 文)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.2、(16年全国3 理)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)

五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)

五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)一、单选题1.(2022·北京·统考高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增2.(2022·北京·统考高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( ) A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-3.(2022·全国·统考高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2021·北京·统考高考真题)函数()cos cos2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为985.(2021·全国·统考高考真题)22π5πcoscos 1212-=( )A .12B C 2D 6.(2021·浙江·统考高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .37.(2021·全国·高考真题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 8.(2021·全国·统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-约为(3 1.732≈)( )A .346B .373C .446D .4739.(2021·全国·统考高考真题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3π2B .3π和2C .6π2D .6π和210.(2021·全国·统考高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .6511.(2020·山东·统考高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3B .13-C .3或13- D .-3或1312.(2018·全国·高考真题)若1sin 3α=,则cos2α= A .89B .79C .79-D .89-13.(2018·全国·高考真题)函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2π C .πD .2π14.(2018·全国·高考真题)已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为415.(2018·全国·高考真题)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -= A .15BCD .116.(2019·全国·高考真题)已知α ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD二、多选题17.(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )AB .32CD18.(2021·全国·统考高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅三、填空题19.(2022·浙江·统考高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.20.(2020·北京·统考高考真题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.21.(2018·全国·高考真题)已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 22.(2018·全国·高考真题)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.23.(2019·江苏·高考真题)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.四、解答题24.(2022·天津·统考高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.25.(2022·北京·统考高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.26.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+27.(2021·天津·统考高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.28.(2021·浙江·统考高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.29.(2020·浙江·统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.30.(2018·北京·高考真题)在ABC 中,17,8,cos 7a b B ===-.(1)求A ∠;(2)求AC 边上的高.31.(2018·浙江·高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值.32.(2018·北京·高考真题)已知函数()2sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.33.(2018·江苏·高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值;(2)求tan()αβ-的值.34.(2019·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin()2B π+的值. 35.(2019·全国·高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .36.(2019·全国·统考高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 37.(2019·北京·高考真题)在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B –C )的值.38.(2019·天津·高考真题) 在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.五、双空题39.(2022·北京·统考高考真题)若函数()sin f x A x x =的一个零点为3π,则A =________;12f π⎛⎫= ⎪⎝⎭________.参考答案:1.C【分析】化简得出()cos2f x x =,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为()22cos sin cos2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错;对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错.故选:C. 2.D【分析】依题意建立平面直角坐标系,设()cos ,sin P θθ,表示出PA ,PB ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动, 设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=--,()cos ,4sin PB θθ=--, 所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈-; 故选:D3.C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【详解】[方法一]:直接法由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=, 即:()()sin cos 0αβαβ-+-= 所以()tan 1αβ-=- 故选:C[方法二]:特殊值排除法解法一:设β=0则sinα +cosα =0,取=2πα,排除A, B ;再取α=0则sinβ +cosβ= 2sinβ,取β=4π,排除D ;选C. [方法三]:三角恒等变换sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=+++++++=+(()()()()cos sin 44ππαβαβ+=+()() sin cos cos sin =044ππαβαβ+-+()()即sin=04παβ+-()sin =sin cos cos sin =0444πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1,故选:C. 4.D【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,()()()()cos cos 2cos cos2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98. 故选:D. 5.D【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解.【详解】由题意,2222225cos cos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D. 6.C【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向. 7.A【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴==sin tan cos ααα∴==故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出8.B【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB 为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.【分析】利用辅助角公式化简()f x,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,()sin cos3s3323234x x x xf xxπ=+=+⎛+⎫⎪⎝⎭,所以()f x的最小正周期为2613T故选:C.10.C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cosθθ=+),进行齐次化处理,化为正切的表达式,代入tan2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos2sin cossin1sin2sin sin cossin cos sin cosθθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan422sin cos1tan145θθθθθθθθ++-====+++.故选:C.【点睛】易错点睛:本题如果利用tan2θ=-,求出sin,cosθθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.11.A【分析】利用余弦定理求出tan2C=,并进一步判断4Cπ>,由正弦定理可得sin()sinA C B+==【详解】222sincos tan222a b c CC Cab+-==⇒=,4Cπ∴>,2sin sin sina b cRAB C===,sin sin cos sin sin cosA B C C B AB∴⋅⋅+⋅⋅=,sin()sin22A C B∴+=⇒=4Bπ∴=,tan1B∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 12.B【详解】分析:由公式2cos2α12sin α=-可得结果. 详解:227cos2α12199sin α=-=-= 故选B.点睛:本题主要考查二倍角公式,属于基础题. 13.C【详解】分析:将函数()2f 1tanxtan xx =+进行化简即可详解:由已知得()221f sin2,1221()sinxtanx cosx sinxcosx x x k k Z sinx tan x c x osxππ⎛⎫====≠+∈ ⎪+⎝⎭+ ()f x 的最小正周期2T π2π== 故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题 14.B【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为()35cos222f x x =+,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 【详解】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B. 【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 15.B【分析】首先根据两点都在角的终边上,得到2b a =,利用2cos23α=,利用倍角公式以及余弦函数的定义式,求得215a =,从而得到a =,再结合2b a =,从而得到2a b a a -=-,从而确定选项. 【详解】由,,O A B 三点共线,从而得到2b a =, 因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即a =所以2a b a a -=-=B. 【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 16.B【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉. 17.AC【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,利用正弦定理结合三角变换、双曲线的定义得到23b a =或2a b =,即可得解,注意就,M N 在双支上还是在单支上分类讨论.【详解】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B , 所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支, OB a =,1OF c =, 1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α, 235NA NF 22a a ==, 21NF NF 2a -=532222a a b a ⎛⎫--= ⎪⎝⎭, 52b e 2a =∴=, 选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支, 所以OB a =,1OF c =, 1FB b =,设12F NF α∠=, 由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α,235NA NF 22a a ==, 12NF NF 2a -= 352222a b a a +-=, 所以23b a =,即32b a =,所以双曲线的离心率c e a ==选C[方法二]:答案回代法A e =选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e =选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G , 若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支, 又OG a =,1OF c =,1GF b =, 设12F NF α∠=,21F F N β∠=, 在12F NF △中,有()212sin sin sin NF NF cβαβα==+, 故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin ac β=,cos b cβ=,故4sin 5α, 代入整理得到23b a =,即32b a =, 所以双曲线的离心率221312c b e a a ==+=若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bc β=-, 故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin ac β=,4sin 5α,整理得到:1424a b a , 故2a b =,故251b e a ⎛⎫=+= ⎪⎝⎭故选:AC. 18.AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+=,222||(cos )(sin )1OP ββ=+-=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC19.45【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β. 【详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=αα⎫=⎪⎪⎭sin θ=,cos θ=()αθ-∴22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 2k παθπθ⎛⎫=++== ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.45. [方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=, 则224cos 22cos 12sin 15ββα=-=-=.45.20.2π(2,2k k Z ππ+∈均可)【分析】根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+2,即可解出. 【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题. 21.32【分析】方法一:利用两角差的正切公式展开,解方程可得3tan 2α=. 【详解】[方法一]:直接使用两角差的正切公式展开因为5tantan tan 1444ππππ⎛⎫=+== ⎪⎝⎭,所以5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,解之得3tan 2α=. 故答案为:32.[方法二]:整体思想+两角和的正切公式551tan tan 1553445tan tan 15544211tan tan 544ππαππααππα⎛⎫-++ ⎪⎡⎤⎛⎫⎝⎭=-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦--- ⎪⎝⎭. 故答案为:32.[方法三]:换元法+两角和的正切公式 令54πθα=-,则1tan 5θ=,且54παθ=+.151tan tan5354tan tan 51421tan tan 145πθπαθπθ++⎛⎫=+=== ⎪⎝⎭--.故答案为:32.【整体点评】方法一:直接利用两角差的正切公式展开,解方程,思路直接; 方法二:利用整体思想利用两角和的正切公式求出;方法三:通过换元法结合两角和的正切公式求出,是给值求值问题的常用解决方式. 22.12-【分析】方法一:将两式平方相加即可解出. 【详解】[方法一]:【最优解】两式两边平方相加得22sin()1αβ++=,1in()s 2αβ+=-.[方法二]: 利用方程思想直接解出sin 1cos ,cos sin αβαβ=-=-,两式两边平方相加得1cos 2β=,则1sin 2α=.又cos sin αβ⎧=⎪⎪⎨⎪=⎪⎩或cos sin αβ⎧=⎪⎪⎨⎪=⎪⎩,所以1in()s 2αβ+=-.[方法三]: 诱导公式+二倍角公式由cos sin 0αβ+=,可得3sin cos sin 2πβαα⎛⎫=-=+ ⎪⎝⎭,则322k πβπα=++或32()2k k πβππα⎛⎫=+-+∈ ⎪⎝⎭Z .若32()2k k πβπα=++∈Z ,代入得sin cos 2sin 1αβα+==,即2131sin ,sin()sin 22cos22sin 1222k πααβπααα⎛⎫=+=++=-=-=- ⎪⎝⎭.若2()2k k πβπα=--∈Z ,代入得sin cos 0αβ+=,与题设矛盾.综上所述,1in()s 2αβ+=-.[方法四]:平方关系+诱导公式由2222cos sin (1sin )(cos )22sin 1ββααα+=-+-=-=,得1sin 2α=. 又sin 1cos tan tan tan cos sin 22αβββααβ-⎛⎫===-=- ⎪-⎝⎭,()2k k βαπ=-∈Z ,即22k απβ=-,则2()k k αβπα+=-∈Z .从而1sin()sin(2)sin 2k αβπαα+=-=-=-.[方法五]:和差化积公式的应用由已知得1(sin cos )(cos sin )(sin 2sin 2)cos()2αβαβαβαβ++=++-sin()cos()cos()0αβαβαβ=+-+-=,则cos()0αβ-=或sin()1αβ+=-.若cos()0αβ-=,则()2k k παβπ-=+∈Z ,即()2k k παβπ=++∈Z .当k 为偶数时,sin cos αβ=,由sin cos 1αβ+=,得1sin cos 2αβ==,又23cos sin 0,cos sin sin 4αβαββ+==-=-,所以131sin()sin cos cos sin 442αβαβαβ+=+=-=-.当k 为奇数时,sin cos αβ=-,得sin cos 0αβ+=,这与已知矛盾. 若sin()1αβ+=-,则2()2k k παβπ+=-∈Z .则sin sin 2cos 2k παπββ⎛⎫=--=- ⎪⎝⎭,得sin cos 0αβ+=,这与已知矛盾.综上所述,1in()s 2αβ+=-.【整体点评】方法一:结合两角和的正弦公式,将两式两边平方相加解出,是该题的最优解; 方法二:通过平方关系利用方程思想直接求出四个三角函数值,进而解出; 方法三:利用诱导公式寻求角度之间的关系,从而解出; 方法四:基本原理同方法三,只是寻找角度关系的方式不同;方法五:将两式相乘,利用和差化积公式找出角度关系,再一一验证即可解出,该法稍显麻烦. 23. 【分析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2sin cos αααααααα⎫+-+⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式22221221⎫⨯+-⎪+⎝⎭ 当1tan 3α=-时,上式22112133113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+=⎪⎝⎭【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题. 24.(1)1c =(2)sin B =(3)sin(2)A B -=【分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出; (2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出.【详解】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以sin A =sin sin a b A B =,所以2sin sin b A B a===.(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A =,所以1sin 22sin cos 24A A A ⎛⎫==⨯-= ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-=+= ⎝⎭. 25.(1)6π(2)663【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABCS ab C a ===,解得a =由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=. 26.(1)5π8; (2)证明见解析.【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.【详解】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =.(2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.27.(I )(II )34;(III【分析】(I )由正弦定理可得::2a b c = (II )由余弦定理即可计算;(III )利用二倍角公式求出2C 的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为sin :sin :sin 2A B C =::2a b c =2b =,2a c ∴==;(II )由余弦定理可得2223cos24a b c C ab +-===;(III )3cos 4C =,sin C ∴=,3sin 22sin cos 24C C C ∴===,291cos 22cos 121168C C =-=⨯-=,所以sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=.28.(1)π;(2)1. 【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 24y x π⎛⎫=- ⎪⎝⎭,再由三角函数的图象与性质即可得解.【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎪⎭⎦⎝, 所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin cos x x x x x x ⎫=⋅+=⎪⎪⎝⎭1cos 2222sin 224x x x x x π-⎛⎫=- ⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值129.(I )3B π=;(II )32⎤⎥⎝⎦ 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I ) [方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=, 即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a cb B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II ) [方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知a cb+=而ABC为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 622A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是313,22⎛⎤+ ⎥ ⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 30.(1)∠A =π3;(2)AC 边上的高为332.【分析】(1)方法一:先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠; (2)方法一:利用诱导公式以及两角和正弦公式求sin C ,即可解得AC 边上的高. 【详解】(1)[方法一]:平方关系+正弦定理在ABC 中,∵21π43cos ,,π,sin 1cos 727B B B B ⎛⎫=-∴∈∴=-=⎪⎝⎭.由正弦定理得 783ππ,sin .,π,0,,.sin sin sin 2223437a b A B A A A B A π⎛⎫⎛⎫=⇒=∴=∈∴∈∴∠= ⎪ ⎪⎝⎭⎝⎭[方法二]:余弦定理的应用由余弦定理知2222cos b a c ac B =+-.因为17,8,cos 7a b B ===-,代入上式可得3c =或5c =-(舍).所以2221cos 22b c a A bc +-==,又(0,π)A ∈,所以π3A =. (2)[方法一]:两角和的正弦公式+锐角三角函数的定义 在△ABC 中,∵sin sin()sin cos sin cos C A B A B B A =+=+=311432727⎛⎫⨯-+⨯ ⎪⎝⎭=3314.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=, ∴AC 边上的高为332.[方法二]:解直角三角形+锐角三角函数的定义如图1,由(1)得1cos 842AD AC A =∠=⨯=,则14737AB =-⨯=.作BE AC ⊥,垂足为E ,则333sin 322BE AB A =∠=⨯=,故AC 边上的高为332.[方法三]:等面积法由(1)得60A ∠=︒,易求43CD =1,作CD AB ⊥,易得4=AD ,即3AB =.所以根据等积法有11sin 22AC BE AB AC A ⋅⋅=⋅⋅⋅,即33BE =所以AC 33【整体点评】(1)方法一:已知两边及一边对角,利用正弦定理求出;方法二:已知两边及一边对角,先利用余弦定理求出第三边,再根据余弦定理求出角; (2)方法一:利用两角和的正弦公式求出第三个角,再根据锐角三角函数的定义求出; 方法二:利用初中平面几何知识,通过锐角三角函数定义解直角三角形求出; 方法三:利用初中平面几何知识,通过等面积法求出. 31.(Ⅰ)45;(Ⅱ)5665- 或1665.【分析】分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-,所以()4sin πsin 5αα+=-=.(Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±.由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=. 点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 32.(Ⅰ)π ;(Ⅱ)π3.【分析】(I )将()f x 化简整理成()sin()f x A x ωϕ=+的形式,利用公式2||T πω=可求最小正周期;(II )根据[,]3x m π∈-,可求26x π-的范围,结合函数图象的性质,可得参数m 的取值范围.【详解】(Ⅰ)()1cos211π1cos2sin 222262x f x x x x x -⎛⎫==-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦.要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1.所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负. 33.(1)725-;(2)211-【详解】分析:先根据同角三角函数关系得2cos α,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得tan2α,再利用两角差的正切公式得结果.详解:解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以()0,παβ+∈.又因为()cos αβ+=()sin αβ+==因此()tan 2αβ+=-. 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+. 点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.34.(1)c =(2. 【分析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以c =(2)因为sin cos 2A Ba b=, 由正弦定理sin sin a bA B=,得cos sin 2B B b b =,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+= ⎪⎝⎭【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.35.(1)3A π=;(2)sin C =【分析】(1)利用正弦定理化简已知边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;(2)[方法一]由题意利用正弦定理边化角,然后结合三角形内角和可得1cos 2C C -=,然后结合辅助角公式可得64ππC =+,据此由两角和差正余弦公式可得sin C =【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=-, 即:222sin sin sin sin sin B C A B C +-=, 由正弦定理可得:222b c a bc +-=, 2221cos 22b c a A bc +-∴==,()0,A π∈,3A π∴=.(2)[方法一]正弦定理+两角和差正余弦由(1)知,23B C π+=2b c +=,2sin 2sin 3πA C C ⎛⎫+-= ⎪⎝⎭,1cos 2C C -sin 6C π⎛⎫-= ⎪⎝⎭. 又20,,,3662C C ππππ⎛⎫⎛⎫∈-∈- ⎪ ⎪⎝⎭⎝⎭,所以64C ππ-=,即64ππC =+,则sin sin 64ππC ⎛⎫=+= ⎪⎝⎭[方法二]正弦定理+方程思想2b c +=,得sin 2sin B C A ==2sin C , 代入22(sin sin )sin sin sin B C A B C -=-,得23sin 2sin sin 4C C C ⎛⎛=- ⎝⎭⎝⎭,整理得24sin 10C C -+=,则sin C =由sin 2sin 0B C =>,得sin C >,所以sin C =[方法三]余弦定理令c t a=.由2,b c b c a =+>,得t >将2b c =代入222b c a bc +-=中,可得2230c a -+=,即2310t -+=,解得t =t =.所以sin sin c C t a A ===,从而sin C =[方法四]摄影定理因为2c b =+,所以1cos 45cos 602c b a b ︒=+=+︒, 由射影定理得()180456075C ∠=︒-︒+︒=︒,所以sin sin 75C ︒=. 【整体点评】方法一:首先由正弦定理边化角,然后由两角和差正余弦公式求解sin C 的值; 方法二:首先由正弦定理边化角,然后结合题意列方程,求解方程可得sin C 的值; 方法三:利用余弦定理求得ct a=的值,然后结合正弦定理可得sin C 的值; 方法四:利用摄影定理求得C ∠的值,然后由两角和差正余弦公式求解sin C 的值; 【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.36.(1) 3B π=;(2). 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCS ac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCSC 的值域.【详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2B A A B =,即cos sin 2BB =, 再由二倍角的正弦公式得sin2sin cos 222B B B =,解得3B π=.[方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A C B +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sinsin 2A CB +=.。

2023年高考数学真题分训练 三角函数定义与三角函数恒等变换(含答案含解析)

2023年高考数学真题分训练  三角函数定义与三角函数恒等变换(含答案含解析)

专题 11 三角函数定义与三角函数恒等变换十年大数据x 全景展示年份题号考点 考查内容理 5 三角函数定义 文 7 三角恒等变换2011课标三角函数定义与二倍角正弦公式同角三角函数根本关系与诱导公式同角三角函数根本关系式、三角函数在各象限 的符号及两角和的正切公式 卷 2理 15三角恒等变换 2023同角三角函数根本关系与诱导公式 三角恒等变换卷 2文 6理 8二倍角公式及诱导公式同角三角函数根本关系与诱导公式三角恒等变换 此题两角和与差的三角公式公式、诱导公式、 三角函数性质等根底知识 卷 12023卷 1文 2 三角函数定义同角三角函数根本关系与诱导公式 三角函数在各象限的符号 2023卷 1理 2 诱导公式及两角和与差的三角公式三角恒等变换 三角恒等变换两角差的正切公式、同角三角函数根本关系、 卷 2 理 9二倍角公式二倍角正弦公式、同角三角函数根本关系、三卷 3理 5 同角三角函数根本关系与诱导公式角函数式求值.2023诱导公式、同角三角函数根本关系、三角函数卷 1文 14 同角三角函数根本关系与诱导公式求值利用二倍角公式及同角三角函数根本关系求卷 3 文 6 同角三角函数根本关系与诱导公式 值三角恒等变换同角三角函数根本关系、两角和公式及化归与 转化思想卷 1文 14同角三角函数根本关系与诱导公式 三角恒等变换2023卷 3文 4二倍角的正弦公式与同角三角函数根本关系. 同角三角函数根本关系与诱导公式 三角恒等变换同角三角函数根本关系、两角和公式及化归 与转化思想卷 2 理 15 同角三角函数根本关系与诱导公式 理 4 三角恒等变换2023 卷 3 二倍角余弦公式,运算求解能力文 4卷 三角函数定义三角函数定义、同角三角函数根本关系,转化 与化归思想与运算求解能力文 111同角三角函数根本关系与诱导公式同角三角函数根本关系与诱导公式三角恒等变换诱导公式、两角和与差的正切公式,转化与化 归思想与运算求解能力卷 2文 15二倍角公式及同角三角函数根本关系,运算求解能力卷 2 理 10 三角恒等变换三角恒等变换卷 3卷 1文 5文 7二倍角公式,已知函数值求角及函数零点.诱导公式,两角和的正切公式函数零点2023同角三角函数根本关系与诱导公式三角恒等变换同角三角函数根本关系与诱导公式三角恒等变换 同角三角函数根本关系、二倍角公式、已知函 数值求角,运算求解能力 二倍角公式,平方关系 二倍角公式,三角函数的符号 二倍角公式 卷 2 文 11 卷 1 卷 2理 9 三角恒等变换 理 2三角恒等变换2023文 13 三角恒等变换 理 9 三角恒等变换 文 5三角恒等变换卷 3 卷 3两角和的正切公式 两角和的正弦公式大数据分析x 预测高考考 点出现频率2023 年预测三角函数定义4/232023 年高考仍将重点考查同角三角函数根本关系及三 角恒等变换,同时要注意三角函数定义的复习,题型仍 为选择题或填空题,难度为根底题或中档题.同角三角函数根本关系与诱导公式 16/23 三角恒等变换13/23十年真题分类x 探求规律考点 36 三角函数定义1.(2023•新课标Ⅰ,文 11)已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) ,2B (2,b ),且cos 2 ,则| a b | ()3 1 55 2 5 5A .B .C .D .15(答案)B2(解析) 角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) ,B (2,b ) ,且cos 2 , 3 2 3 5630 630 36 6 cos 2 2 c os 2 1, 解 得 cos 2, | cos | , | sin | 1,66b a 2 1 | s in | | cos | 56 30 6 | tan | | | | a b | ,应选 B .52.(2023 新课标 I ,文 2)假设 tan 0,则 A. sin 2 0 B . cos 0C . sin 0D . cos 2 0(答案)A(解析)由tan 0知, 在第—、第三象限,即k k 即2 在第—、第二象限,故只有sin 2 0,应选 A .(k Z ),∴2k 2 2k,23.(2011 全国课标理 5 文 7)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线 y 2x 上,则cos 2 =4 53 53 5 45(A)(B)(C)(D) (答案)By 2 5(解析)在直线 y 2x 取一点 P(1,2),则r = 5 ,则sin ==, r 53∴cos2=1 2 s in 2 = ,应选 B . 53 4 4.(2023 浙江)已知角 的顶点与原点O 重合,始边与 x 轴的非负半轴重合,它的终边过点 P ( , ) .5 5(1)求sin( )的值; 5(2)假设角 满足sin( ),求cos 的值. 133 4 (解析)(1)由角 的终边过点P ( , ) 得sin ,5 545 45 所以sin() sin . 3 4 3 (2)由角 的终边过点P ( , ) 得cos ,5 555 得cos( ) 12 由sin( ) . 13 13由 ( ) 得cos cos( ) c os sin( ) s in ,56 或cos 16 所以cos.65 65考点 37 同角三角函数根本关系与诱导公式1.(2023•新课标Ⅱ,文 11)已知 (0, ),2sin 2 cos 2 1,则sin ()2 1 55 3 2 5 5A .B .C .D .53(答案)B(解析) 2sin 2 cos 2 1 , 可得: 4sin cos 2 c os2, (0, ) , sin 0 , cos 0 ,25cos 2sin , sin 2 cos 2 sin 2 (2sin ) 2 5sin21, 解得:sin ,应选 B . 53 4 tan,则cos 2sin 222.(2023 新课标卷 3,理 5)假设 6448 25 16 25(A)(B)(C) 1(D)25(答案)A 3 4 3 4 5 3 45 (解析)由tan,得 sin , c os 或 sin , c os ,所以 5 5 16 2512 64cos22sin 2 4 ,应选 A .25 25 1 3.(2023 全国课标卷 3,文 6)假设tan ,则cos2 ( )3451 5 15 4 5(A) (B)(C) (D) (答案)D104.(2023 浙江)已知R ,sin 2costan 2 ,则( )2 43 34 3 4 A . B .C .D .43(答案)C10 2sin 2 4c os 2 4 s in cos 10 (解析)由 (sin 2 c os )( ) 可得 ,进一步整理可得 22 sin cos 4 2 212 t an 33 t an 2 8 t an 3 0,解得 tan 3或tan ,于是 tan 2,应选 C .31 tan2 4sin cos 1sin cos 25.(2023 江西)假设,则 tan2α=( )3 34 4 3A .−B .C .−D .4 43(答案)B(解析)分子分母同除cos 得: sin cos tan 1 1,∴ tan 3,sin cos tan 1 22 t an 3∴tan 24 1 tan25 1 5 6.(2023 广东)已知sin( ) ,那么 cos22 5B . 151 25A .C .D .5(答案)C 5 215 (解析)sin( ) sin(2 + ) sin cos ,选 C .2 2 37.(2023•新课标Ⅰ,文 14)已知 是第四象限角,且sin( ) ,则 tan( ).4 5 4 43(答案)(解析) 是第四象限角, 2k 2k ,则 2k2k ,k Z , 2 4 4 43533 45 又 sin( ) , cos( ) 1 sin2( ) 1 ( ) 2 , ∴ cos() = sin( ) =, 4 5 44 5 4 44sin( )4 44 5 3 sin( ) cos( ) ,则tan( ) = tan( ) = = = .4 45 4 43 cos( )4 51 28.(2023 新课标Ⅱ,理 15)假设 为第二象限角,tan( ,则sin cos.) 4 (答案)1 2 tan 1,即cos 3sin ,∵sin (解析)(法 1)由 tan() 得,= 2cos 2 1,为第二4 310 3 10 10105象限角,∴sin =,cos = ,∴sin cos . 1059.(2023 江苏)已知 ( , ) ,sin. 25(1)求sin( ) 的值;45(2)求cos( 2 ) 的值.65 52 55 (解析)(1)∵, ,sin ,∴cos 1 sin 2 24 4 2 2 10 10sin sin cos cos sin(cos sin ) ; 4 4 5 35(2)∵sin 2 2sin cos ,cos 2 cos sin 2 26 63 3 1 43 34 ∴cos 2 cos cos 2 sin sin 2 . 6 25 2 5 10 考点 38 三角恒等变换1.(2023 全国Ⅰ理 9)已知 0,π ,且3cos2 8cos 5,则sin ()52 31 35 A .B .C .D .39(答案)A(思路导引)用二倍角的余弦公式,将已知方程转化为关于cos的一元二次方程,求解得出cos,再用同角间的三角函数关系,即可得出结论. (解析)3cos 28cos 5,得6cos 2 8cos 8 0,即3cos 4 c os4 0,解得225cos 或cos 2(舍去),又 1 cos 20,, sin ,应选 A . 332.(2023 全国Ⅱ理 2)假设 为第四象限角,则 ()A .cos 2 0 (答案)DB .cos 2 0C .sin 2 0D .sin 2 0(思路导引)由题意结合二倍角公式确定所给的选项是否正确即可.0,选项 B 错误;当2时,cos2 cos 3(解析)当 时,cos2 cos 0,6 3sin 0, c os 3 0 ,则sin2 2sin cos 0 选项 A 错误;由 在第四象限可得: ,选项 C 错误,选项 D 正确,应选 D .363.(2023 全国Ⅲ文 5)已知sin sin 1,则sin( )1 23 2 3 2 A .B .C .D .32(答案)B(思路导引)将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 1 23 3 3 3 13 (解析)由题意可得:sinsin cos 1,则: sin cos 1, sin cos,2 2 2 2 2 3从而有:sin coscos sin3 ,即6 3 .应选 B .sin6 63 34.(2023 全国Ⅲ理 9)已知2 t an tan 7 ,则 tan4()A . 2B . 1C .1D .2(答案)D(思路导引)利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.4tan 1 1 t 2 t an tan7, 2tan 1 tan 7,令t tan ,t 1,则2t 1 t 7,整(解析) 理得t 24t 4 0 ,解得t 2,即 tan 2.应选 D .5.(2023•新课标Ⅱ,理 10)已知 (0, ),2sin 2 cos 2 1,则sin ()2 1 55 3 2 55A .B .C .D .53(答 案)B(解析) 2sin 2 cos 2 1, 4sin cos 2 c os2, (0, ) ,sin 0,cos 0 , cos 2sin ,25sin 2 cos 2 sin 2 (2sin ) 2 5sin21, sin ,应选 B . 56.(2023•新课标Ⅲ,文 5)函数 f (x ) 2sin x sin 2x 在0 ,2 ]的零点个数为( )A .2B .3C .4D .5(答案)B(解析)函数 f (x ) 2sin x sin 2x 在0 ,2 ]的零点个数,即:2sin x sin 2x 0在区间0 ,2 ]的根个数, 即2sin x sin 2x ,即sin x (1 cos x ) 0,即sin x 0或cos x 1,∵ x 0 ,2 ],∴ x 0, ,2 ,应选B .7.(2023•新课标Ⅰ,文 7) tan 255 ( )A . 2 3 (答案)DB . 2 3C .2 3D .2 3(解析)∵tan 255 tan(180 75 ) tan 75 tan(45 30 )31tan 45 tan 30 1 tan 45 tan 30 3 3 (3 3) 2 12 6 3 3 2 3 ,应选 D . 3 3 36 6 1 1318.(2023•新课标Ⅲ,理 4 文 4)假设sin ,则cos 2 ()3 8 97 97 98 A .B .C .D .9(答案)B11 71 2 ,应选 B .9 9(解析) sin , cos 2 1 2sin2349.(2023 新课标卷 3,文 4)已知sin cos ,则sin 2 = 37 92 92 97 9A .B .C .D .(答案)Acos 21 sin 79(解析)因为sin 2 2sin cos,应选 A .1 310.(2023•新课标Ⅱ,理 9)假设cos( ) ,则sin 2 ()4 5 715C . 17 A .B .D .25 525(答案)D3(解析)法1 : cos( ) ,4 59 7sin 2 cos( 2 ) cos 2( ) 2 c os 2 ( ) 1 2 125 25 , 2 4 4 法2 : cos( ) 2(sin cos ) , (1 sin 2 ) 3 1 9 , sin 2 2 1259 7, 4 2 5 2 25 25 应选 D .11.(2023 新课标Ⅰ,理 2)sin20°cos10°-con160°sin10°=3 3 1 2 1 2A .B .C .D .22(答案)D1 (解析)原式=sin20°cos10°+cos20°sin10°=sin30°= ,应选 D . 21 sincos 12.(2023 新课标Ⅰ,理 8)设 (0, ), (0, ) ,且 tan,则2 2 A .3(答案)BB .2C .3D .22222sin 1 sin(解析)∵tan,∴sin cos cos cos sin cos cos2sin cos ,0 sin , 2 2 2 2 ∴,即2 ,选 B 2 22 313.(2023 新课标Ⅱ,文 6)已知sin 2 ,则cos 2( ) ()4 161 3 1 22 3(A)(B)(C)(D)(答案)A2 1 1 1 (解析)因为sin 2,所以cos 2( ) 1 cos 2( )]= (1 sin 2 ) = ,应选 A ., 3 4 2 4 2 63cos()10 14.(2023 重庆)假设tan 2 t an ,则=( ) 5 sin( ) 5A .1B .2C .3D .4(答案)C3 3 3 3 3 cos() cos cos sin sin cos tan sin 10 10 10 10 10(解析)sin( ) sin cos cos sin tan cos sin5 5 5 5 53 3 3 3cos 2 t an sin cos cos 2s in sin 10 5 10 5 10 5 102 t an cos sin sin cos5 5 5 5 51 2(cos 5cos 5 cos ) (cos ) 3cos cos 10 10 1 10 10 10 = 3,选 C . 22sin5 104 23 7 8 15.(2023 山东)假设, ,sin 2 ,则sin ( ) 34 57 43 A .B .C .D .5 4(答案)D 4 2 2 1, (解析)由2 , cos 2 1 sin , 2, 可得 2 81 cos2 34sin,应选 D . 21 316.(2011 浙江)假设0< < ,- < <0,cos( ) ,cos( ),则cos( ) 22434 2 3 233 5 3 96 A . B .C .D .339(答案)C) cos((解析)cos() ( )] ) cos( ) c os( )2 4 4 2 4 4 23sin( ) s in( ) ( , ( , ),,而 , 4 4 2 4 4 4 4 2 4 2 2 2 3 ,sin( ) 4 26因此sin( ), 4 31 32 26 5 3 则cos( )3 3. 2 3 3 9 217.(2023 全国Ⅱ文 13)设sin x ,则cos 2x.3 1 9(答案)(思路导引)直接利用余弦的二倍角公式进行运算求解即可. 2 8 1 1 (解析)cos2x 1 2sin 2x 1 2 ( ) 1 2.故答案为:.3 9 992 18.(2023 江苏 8)已知sin 2 ( ) ,则sin 2 的值是________.4 31(答案)32 1 1 21 3(解析)∵sin2( ) ,由sin 2 ( ) (1 cos( 2 )) (1 sin 2 ) ,解得sin 2 . 4 3 4 2 2 2 3π419.(2023 浙江 13)已知tan 2,则cos2 ; tan .3 1(答案); 5 3(思路导引)利用二倍角余弦公式以及弦化切得cos2 ,依据两角差正切公式得 tan( )4cos cos 2 2 sin sin 2 2 1 tan 1 tan 2 2 3tan 1 14 1 tan 3 (解析) cos 2 cos 2sin 2, tan ,故 5 3 1答案为: ;.5 320.(2023 北京 14)假设函数 f (x ) sin(x ) cos x 的最大值为2,则常数 的一个取值为 .(答案)2(解析)∵ f (x ) sin(x ) cos x sin x cos cos x sin cos x sin x cos cos x (sin 1)cos (sin 1) sin(x ),(sin 1) 4,cos sin 2 2则cos 2 2 22 2sin 1 1 2sin 1 4,∴sin 1,∴. 221.(2023•新课标Ⅱ,理 15)已知sin cos 1,cos sin 0 ,则sin( ) .1 (答案)2(解析)sin cos 1,两边平方可得:sin 22sin cos cos 2 1,①,cos sin 0 , 两 边 平 方 可 得 : cos22cos sin sin 2 0 , ② , 由 ① ② 得 :1 2 2(sin cos cos sin ) 1 ,即2 2sin( ) 1, 2sin( ) 1, sin( ) . 25 122.(2023•新课标Ⅱ,文 15)已知 tan( ) ,则 tan .4 53 2 (答案) 5 1 515(解析)tan() ,tan( ), 则4 4 15 tan( ) tan1 1 5 6 3 .4 4 tan tan( ) 15 1 4 2 4 4 1 tan( ) t an 1 14 45 ππcos ( ) 23.(2023 新课标卷,文 14)已知a (0,) ,tan α=2,则=__________.243 10 10(答案)1(解析)由tan 2得sin 2cos ,又sin2cos 2 1,所以cos 2 ,因为 (0, ),所5 2 5 2 55以cos,sin ,因为. cos( ) cos cos sin sin,所以5 4 4 45 2 2 5 2 3 10cos( )4 5 2 5 2 10f (x ) sin2x 的最小正周期是 ________. 2 24.(2023 北京 9)函数(答案)21 cos 4x 1 12π πf x 〕 sin 〔22x 〕cos 4x ,所以 f x 的最小正周期T 2 2 (解析)因为 . 2 4 2tan 23π4 π 4 sin 2 ,则25.(2023 江苏 13)已知 的值是_________. tan2(答案)10tan 2 tan 2 3 (解析)由,得 ,3 tan( ) tan tan 1 tan tan4 44tan (1 tan ) 2 1所以,解得 tan 2或 tan .1 tan 3 32tan 4 1 tan 2 3 5当tan 2时,sin2 5 ,cos2 , 1 tan 2 1 tan 2 4 2 3 2 2sin(2 ) sin2 cos cos2 sin. 4 4 4 5 2 5 2 101 tan2 4 1时,sin2 2tan,cos2 3 当tan , 3 1 tan 2 51 tan 5 23 24 22 所以sin(2 ) sin2 cos cos2 sin. 4 4 4 5 2 5 2 102 综上,sin(2 )的值是. 4 1026.(2023 北京)在平面直角坐标系 中,角与角 均以Ox为始边,它们的终边关于 轴对称.假设yxOy1 3 sin cos( ) =___________.,则 7 (答案)9y 2k, 所 以( 解 析 ) ∵ 角与 角 的 终 边 关 于 轴 对 称 , 所 以 ;1sin sin(2k ) sin ,cos cos31 2 379cos( ) cos cos sin sin cos 2 sin 2 2sin 2 1 2 ( ) 1 .127.(2023 江苏)假设tan( ) ,则tan =. 4 67 5(答案)tan( ) tan7 4 4 (解析) tan tan( ). 4451 tan( ) tan4 428.(2023 四川)sin15sin75.6(答案)26(解析)sin15 sin 75 sin15 cos15 2 s in(15 45 ). 2129.(2023 江苏)已知 tan 2, tan(答案)3,则 tan 的值为_______. 71 2tan( ) tan 1 tan( ) t an 7 (解析) tan tan( )3. 21 730.(2023 四川)设sin 2 sin , ( , ),则 tan 2 的值是_____. 2(答案) 31(解析) sin 2 2sin cos sin ,则cos,又 ( , ) ,2 22 t an 2 31 3 则tan 3,tan 23.1 tan 24 6 531.(2023 江苏)设 为锐角,假设cossin 2 ,则 .的值为1217 2 50(答案)4 324 7(解析) 因为 为锐角,cos( )= ,∴sin( )= ,∴sin2( ) cos2( ), 6 5 6 5 625,6 25 2 17 17 2 所以 sin(2) sin2( ) ] .12 6 4 2 25 5045 32.(2023 江苏)已知 , 为锐角, tan,cos( ) . 3 5(1)求cos 2 的值; (2)求 tan( )的值. 4sin cos 4(解析)(1)因为 tan ,tan,所以 , sin cos . 33 9因为sin 2 cos 2 1 ,所以cos 2257因此,cos 2 2c os 1 2. 25(2)因为 , 为锐角,所以 (0, π) . 5 2 55又因为cos( ) ,所以sin( ) 1 cos 2 ( ), 5 因此 tan( ) 2 .4 2 t an 247 因为 tan ,所以 tan 2 ,3 1 tan 2 tan 2 tan( ) 1+ t an 2 tan( ) 2因此,tan( ) tan2 ( ).11f x a 2cos 2 x cos 2x 为奇函数 ,且 f 0 33.(2023江西)已知函数 (1)求a , 的值;,其中a R , 0, . 44 2 23(2)假设 f ,, ,求sin 的值. 5 (解析)(1)因为 f x a 2 c os2x cos 2x 是奇函数,而 y a 2c os x 为偶函数,所以 21y 2 cos(2x )为奇函数,又 0, ,得. 2f 0,得 (a 1) 0 ,即a 1. f x = sin 2x a 2 c os x由 2 所以 〔 44 1 25 1 4(2)由(1)得: f x f sinsin , ,得 sin 4x , 因为 2 2 5 235 又 , ,所以cos ,3 4 3 3 sin sin cos sin cos 因此. 3 3 1012f (x ) 2 cos x,x R 34.(2023 广东)已知函数 . 3 f (1) 求 的值; 33 2cos , ,2 f ,求 (2) 假设. 65(解析)(1) f () 2 cos 1. 3 12 43 3 94 (2)由于cos ,<θ<2π,所以sin 1 cos 21 , 5 225 5 66 12因此 f 2 cos43 24 2 21 2 cos 2 cos cos 2 sin sin 2 .4 45 2 5 2 5。

(完整word)三角函数恒等变换含答案及高考题,推荐文档

(完整word)三角函数恒等变换含答案及高考题,推荐文档

2,三角函数恒等变形的基本策略。

(1 )常值代换:特别是用"1”的代换,如 仁cos 2 0 +sin 2 0 =tanx • cotx=tan45 °等。

2 2 2 2 2 2(2)项的分拆与角的配凑。

如分拆项: sin x+2cos x=(sin x+cos x)+cos x=1+cos x ;配凑角:a = (a+3)_3,3 =—2 (3)降次与升次。

(4)引入辅助角。

2 (4)化弦(切)法。

asin 0 +bcos 0 = • a b sin( 0 + ),这里辅助角 所在象限由a 、b 的符号确定, 角的值由tan=—确定。

a1.已知 tanx=2,求 sinx , cosx 的值.解:因为tan xsin x ,又 sin x + cos x=1 ,cosxsinx 2 cosx联立得Ex Ex 1解这个方程组2亦.sinxsin x5J5, cosx cosx 5 2.55 .5~5tan( 120 )cos(210 )sin( 480 )2.求——的值.tan( 690 ) sin( 150 ) cos(330 )解:原式tan( 120 180 ) cos(180 30 )sin( 360 120 ) tan( 720 30o )sin( 150 )cos(36030 )tan 60 ( cos30 )( sin 120 ) tan30 ( sin 150 )cos302,解:法一:因为 sinx cosx 2, si nx cosx所以 sinx — cosx=2(sinx + cosx),得到sinx= — 3cosx ,又sin 2x + cos 2x=1,联立方程组,解得所以 sinx — cosx=2(sinx + cosx),sin x3 .10 sinx 3.10 10 1010,-.10, cosx 10 cosx 10所以 sin xcosx310法 因为卄 sin x cosx 3.若sin x cosx2,,求 sinxcosx 的值.sin x cosx sin x cosxf(x)取最小值为 2 所以(sinx — cosx)2=4(si nx+ cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,所以有 sin x cosx 4.求证: 证明:法二: 10tan x sin x=tan x — sin x . 法 :右边一 tan 2x — sinknan 2x — (tan 2x cos 2x)=tan 2x(1 — cos 2x)=tan 々 sin 2x , 冋题得证.左边 =tan 2x sin 2x=tan 2x(1 — cos 2x)=tan 2x — tan 2x c os 2x=tan 2x — sin 2x ,问题得证. x n 5.求函数y 2sin( )在区间[0, 2 ]上的值域.2 6解:(1)y=sin 2x — cosx + 2 = 1 — cos 2x — cosx + 2= — (cos 2x + cosx) + 3,利用二次函数的图象得到 y [1 d].,4(2)y = 2sinxcosx — (sinx + cosx)=(sinx + cosx)2— 1 — (sinx + cosx),令 t=sinx + cosx 、. 2 , sin(x J ,则4t [2, 2 ]则,y t 2 t 1,利用二次函数的图象得到y [ —,1.2].47.若函数y=Asin@x 妨(3>0, $>0)的图象的一个最高点为(2^. 2),它到其相邻的最低点之间的图 象与x 轴交于(6, 0),求这个函数的一个解析式.1 解:由最高点为(2,、、2),得到A ,2,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是 14个周期,这样求得T 4 , T=16,所以 n48又由血 於sin(上2),得到可以取-.y J2sin(-x -).848 48.已知函数 f(x)=cos 4x — 2sinxcosx — sin 4x .n(i )求f(x)的最小正周期;(n )若x [0,—],求f(x)的最大值、最小值.21 sin x数y的值域.3 cosx解:(I )因为 f(x)=cos 4x — 2sinxcosx — sin4x = (cos 2x — sin 2x)(cos 2x + sin 2x) — sin2x (cos 2 x sin 2 x) sin 2x cos2x解: 因为O W x < 2 n,所以 n xn-6 2nin 由正弦函数的图象,6 6si n (x £ [2 6 y €[ — 1, 2]. 6.求下列函数的值域. (1)y = sin 2x — cosx+2;得到 所以 討,(2)y = 2sin xcosx — (sinx + cosx).令 t=cosx ,则 t [ 1,1], y (t 2t) 3(t A 213(t1)213sin 2x 2s in(n2x) 、2s in (2x —)4 4所以最小正周期为n(n )若x [0,丄],则(2x )[,-],所以当x=0时,f(x)取最大值为'• 2 sin( ) 1;当x —时,2 4 4 4 4 8f(x)取最小值为 2说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过o 3 .已知函数 f (x) 4sin x 2sin 2x(1 )求f (x)的最小正周期、f (x)的最大值及此时x 的集合; (2)证明:函数f (x)的图像关于直线x 卫对称。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
y tan(2x ) 中,最小正周期为 的所有函数为
4
A.①②③B.①③④C.②④D.①③
11、(13 年课标全国Ⅱ卷理)函数 y cos(2x )( ) 的图象向右平移 个单位后,与
2
函数
y
sin
2x
3
的图象重合,则
.
12、(11 年课标全国Ⅱ卷文理)设函数 f (x) cosx(>0) ,将 y f (x) 的图像向右平移 个
11、(14 全国课标 1 理)设 (0, ) , (0, ) ,且 tan 1 sin ,则
2
2
cos
A . 3 B . 2 C . 3 D . 2
2
2
2
2
12、(13
年课标全国Ⅱ卷文)已知
sin
2
2 3
,则
cos2
4
(A) 1
6
(B) 1
3
45
4
6、(15 年全国 1 理)sin20°cos10°-con160°sin10°=
(A) 3 (B) 3 (C) 1 (D) 1
2
2
2
2
7、(14 年新课标 3 文)已知角 的终边经过点 (4,3) ,则 cos ()
A. 4
5
B. 3 C. 3 D. 4
5
5
5
8、(14 年新课标 3 文)函数 y cos 2x 2sin x 的最大值为.
(A) (k 1 , k 3), k Z
4
4
(B) (2k 1 , 2k 3), k Z
4
4
(C) (k 1 , k 3), k Z 44
(D) (2k 1 , 2k 3), k Z
4
4
7、(14 年新课标 3 理)若函数 f (x) cos 2x asin x 在区间 ( , ) 是减函数,则 a 的取值
3
单位长度后,所得的图像与原图像重合,则 的最小值等于
A. 1
3
B. 3
C. 6
D. 9
(C) 1
2
(D) 2
3
13、(13 年课标全国Ⅱ卷理)设θ为第二象限角,若 tan(θ+ )=,则 sinθ+conθ
=_________.
14、(11 年课标全国Ⅱ卷文)已知 a∈( , 3 ), tan 2,则cos =
2
15、(11 年课标全国Ⅱ卷理)已知 a∈( , ),sinα= 5 ,则 tan2α=
9、(14 年新课标 3 理)设 a sin 330 , b cos550 , c tan 350 ,则()
A、 a b c B. b c a C. c b a D. c a b
10、(14 年新课标 1 文)若 tan 0,则
A. sin 0B. cos 0 C. sin 2 0 D. cos2 0
5、(16 年全国 1 文)若将函数 y=2sin(2x+)的图像向右平移个周期后,所得图像对应
的函数为
(A)y=2sin(2x+)(B)y=2sin(2x+)(C)y=2sin(2x–)(D)y=2sin(2x–)
6、(15 年全国 1 文理)函数 f (x) cos(x ) 的部分图像如图所示,则 f (x) 的单调递减区间为
2
5
三角函数
1、(16 年全国 3 文)函数 y=sinx–cosx 的图像可由函数 y=2sinx 的图像至少向右平移
______个单位长度得到.
2、(16 年全国 3 理)函数
的图像可由函数
的图像至少
向右平移_____________个单位长度得到。
3、(16 年全国 2 文)函数 y=Asin(x ) 的部分图像如图所示,则
25 25
25
3、(16 年全国 2 文)函数 f (x) cos 2x 6cos( π x) 的最大值为
2
(A)4(B)5
(C)6 (D)7
4、(16 年全国 2 理)若 cos(–α)=,则 sin2α=
(A)(B)(C)–(D)–
5、(16 年全国 1 文)已知 θ 是第四象限角,且 sin(θ+ π )= 3 ,则 tan(θ– π )=.
62
范围是.
8、(14 年新课标 2 文)函数 f (x) sin(x ) 2sin cos x 的最大值为_________.
9、(14 年新课标 2 理)函数 f x sinx 2 2sin cosx 的最大值为_________.
10、(14 年新课标 1 文)在函数① y cos| 2x |,② y | cosx | ,③ y cos(2x ) ,④
2011 年——2016 年高考题专题汇编
专题 4 三角函数、三角恒等变换
三角恒等变换
1、(16 年全国 3 文)若tan
1 3
,则
cos2θ=41源自14(A) 5 (B) 5 (C) 5 (D) 5
2、(16 年全国 3 理)若 tan 3 ,则 cos2 2sin 2
4
(A) 64 (B) 48 (C)1(D) 16
(A) y 2sin(2x )
6
(B) y 2sin(2x )
3
(C) y 2sin(2x+ )
6
(D) y 2sin(2x+ )
3
4、(16 年全国 2 理)若将函数 y=2sin2x 的图像向左平移个单位长度,则评议后图象
的对称轴为
(A)x=–(k∈Z)(B)x=+(k∈Z)(C)x=–(k∈Z)(D)x=+(k∈Z)
相关文档
最新文档