一水平圆盘可绕通过其中心的固定竖直轴转动

合集下载

物理习题3答案

物理习题3答案

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J+ (B) 02)(ωR m J J + (C)02ωmRJ(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ=,法向加速度a n=。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

南昌航空大学-大学物理D资料(含答案)

南昌航空大学-大学物理D资料(含答案)

大学物理D 复习资料(力学)选择题:1、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ ]D2、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ ]C3、 下列说法哪一条正确? (A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=. (D) 运动物体速率不变时,速度可以变化. [ ]D4、 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) td d v. (B) R 2v .(C) R t 2d d vv +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]D5、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ] Ca p6、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] C7、 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] C8、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ] B9、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA=βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] C10、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ] B11、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J+. (B) ()02ωR m J J +. (C) 02ωmRJ. (D) 0ω. [ ](A) 参考解:根据角动量守恒,有J ω0=(J +m 2R )ω02ωωmRJ J+=12、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ] B填空题:13、一质点作直线运动,其坐标x 与时间t的关系曲线如图所示.则该质点在第秒瞬时速度为零;在第 秒至第秒间速度与加速度同方向.3, 3 ,614、试说明质点作何种运动时,将出现下述各种情况)0(≠v :(1)0,0≠≠n t a a ;____________________________________(2)0≠t a ,a n =0;______________________________________a t 、a n 分别表示切向加速度和法向加速度.变速率曲线运动 变速率直线运动15、在半径为R 的圆周上运动的质点,其速率与时间关系为2ct =v (式中c 为常量),则从t = 0到t 时刻质点走过的路程S (t ) =________________________;t 时刻质点的切向加速度a t =_________________________________;t 时刻质点的法向加速度a n =________________________.331ct 2ct c 2t 4/R516、在xy 平面内有一运动质点,其运动学方程为:j t i t r5sin 105cos 10+=(SI )则t 时刻其速度=v;其切向加速度的大小a t ______________;该质点运动的轨迹是_______________________.)5cos 5sin (50j t i t+- m/s0 圆17、一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =_________________.4.0 rad/s18一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的角速度ω=-0ω,则0ω=________________.14 rad/s19、 如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J.若不计摩擦,飞轮的角加速度β =_______________.mr rJmg +20、如图所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m C R 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度a =________________________.`21C B A B m m m g m ++21、一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为ω=__________________. 0.4 rad ·s -122、一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________. 8 rad ·s -123、长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,_____________系统对转轴O的_______________守恒.杆和子弹 角动量24、如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.对O 轴的角动量 对该轴的合外力矩为零 机械能计算题:25、质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图. 2分mg -T 2 = ma 2 1分 T 1-mg = ma 1 1分 T 2 (2r )-T 1r = 9mr 2β / 2 2分 2r β = a 2 1分 r β = a 1 1分解上述5个联立方程,得:aa 1rg192=β 2分26、如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.解:作示力图.两重物加速度大小a 相同,方向如图. 示力图 2分 m 1g -T 1=m 1a 1分 T 2-m 2g =m 2a 1分 设滑轮的角加速度为β,则 (T 1-T 2)r =J β2分且有 a =r β1分 由以上四式消去T 1,T 2得:()()Jr m m grm m ++-=22121β 2分 开始时系统静止,故t 时刻滑轮的角速度.()()Jr m m grtm m t ++-==22121 βω 1分大学物理D 复习资料(电磁学)m选择题:1、真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ] C2、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷. [ ] C3、有两个电荷都是+q 的点电荷,相距为2a .今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面 . 在球面上取两块相等的小面积S 1和S 2,其位置如图所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为ΦS ,则 (A) Φ1>Φ2,ΦS =q /ε0. (B) Φ1<Φ2,ΦS =2q /ε0. (C) Φ1=Φ2,ΦS =q /ε0.(D) Φ1<Φ2,ΦS =q /ε0. [ ]D4、 已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定: (A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对. [ ] C5、半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A) 0εσ. (B) 02εσ. (C) 04εσ. (D) 08εσ. [ ]Cb a9、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I aB π=μ. [ ]C10、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ ] D11、如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为 (A) 0. (B) RI40μ.(C) R I420μ. (D) R I 0μ. (E)RI 820μ. [ ] A12、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ.(C) l IB π=0122μ,02=B . (D) l I B π=0122μ,lIB π=0222μ.[ ]C13、长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 (A) 绕I 2旋转. (B) 向左运动. (C) 向右运动. (D) 向上运动.(E) 不动. [ ]IaI Ib aa1C14、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大.(D)载流螺线管中插入铁芯.[ ] B16、用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为[ ] B17、尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同. [ ] D填空题:18、如图所示,一点电荷q 位于正立方体的A 角上,则通过侧面abcd 的电场强度通量Φe =________________.q / (24ε0)19、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_____________.0 3分(A)20、两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为_____________ .d 211λλλ+21、三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_______________,E D =_________________ (设方向向右为正).-3σ / (2ε0)-σ / (2ε0) σ / (2ε0)3σ / (2ε0)22、把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电势U 由 __________________________变为________________(选无穷远处为电势零点).Q / (4πε0R 2) 1分 0 1分 Q / (4πε0R ) 1分Q / (4πε0r 2) 24、一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1 和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是________________________.25、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值 为_________________.)4/(0a I μ+σ+σ+σA B C D26、如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小为________________________,方向___________________.3分 垂直纸面向内2分28、一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R .若此导线放在匀强磁场B 中,B的方向垂直图面向内.导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势E i =___________ ,电势最高的点是________________________.225R B ω 3分 O 点 2分29、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈.直导线中的电流由下向上,当线圈平行于导线向下运动时,线圈中的感应电动势______________________;当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势__________________.(填>0,<0或=0) (设顺时针方向的感应电动势为正).=0 1分 <0 2分计算题:30、 求半径为R 、带电量为Q 的均匀带电球体内外的场强分布。

一水平圆盘可绕通过其中心的固定竖直轴转动

一水平圆盘可绕通过其中心的固定竖直轴转动

思 考 题3-1 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统的什么物理量是守恒的? 答:此系统所受合外力矩为零,人与盘之间的力为内力,所以角动量守恒!机械能守恒的条件为外力与非保守内力不做功或作功之和为零,显然人与盘之间有磨擦力,即有非保守内力做功,机械能不守恒,动量守恒的条件为合外力为零,转轴不属于系统,转轴与盘之间有作用力,动量不守恒。

3-2 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统的哪种物理量守恒?答:在碰撞时,小球重力过转轴,杆的重力也过轴,外力矩为零,所以角动量守恒。

因碰撞时转轴与杆之间有作用力,所以动量不守恒。

碰撞是非弹性的,所以机械能也不守恒。

3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω如何变化?答:左边力的力矩比右边的大,所以刚体会被加速,其角加速度增大。

3-4 刚体角动量守恒的充分而必要的条件是什么?答:刚体所受的合外力矩为零。

习 题3-1 可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度是多大?[2.5 rad / s 2]解:绳子展开10m 时飞轮转过的角度为:∆ϕ=10/(1./2)=20rad 。

已知飞轮作匀角加速转动,所以:2021t t βωϕ+=∆ 把400==,t ω代入得 2/5.2s rad =β3-2 一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩是多大?[157 N ·m]解:s rad rev /20min /6000πω== (注:rev/min 意为转每分钟)作用在刚体上的一力矩在一段时间内的冲量矩等于刚体角动量的变化量。

大学物理AⅠ刚体定轴转动习题答案及解法

大学物理AⅠ刚体定轴转动习题答案及解法

《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。

1环的质量分布均匀。

2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。

长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。

(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。

(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。

(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。

大学物理学习指导详细答案

大学物理学习指导详细答案

第五章 刚体【例题精选】例5-1 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ C ]例5-2 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度增大,角加速度减小. (B) 角速度增大,角加速度增大.(C) 角速度减小,角加速度减小.(D) 角速度减小,角加速度增大.[ A]例5-3 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ C 例5-4 光滑的水平面上,有一长为2L 、质量为m 的细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2/3,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)L 32v . (B) L 54v . (C) L 76v . (D) L98v . [ C ] 例5-5 一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J = ,物体初态的转动动能为 .0.25 kg ·m 2 12.5 J 例5-6 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J +. (B) ()02ωRm J J+. (C) 02ωmR J . (D) 0ω. [ A ] 例5-7 质量m 、长l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内转动(转动惯量J =m l 2/12).开始时棒静止,有一质量m 的子弹在水平面内以速度v 0垂直射入棒端并嵌在其中. 则子弹嵌入后棒的角速度为 ;子弹嵌入后系统的转动动能为 .3v 0 / (2l ) 3m v 02 / 32O v俯视图m0v俯视图例5-8 如图,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图. m 1g -T 1=m 1a T 2-m 2g =m 2a设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β由以上四式消去T 1,T 2得:()()Jr m m gr m m ++-=22121β开始时系统静止,故t 时刻滑轮的角速度()()Jr m m grt m m t ++-==22121βω例5-9 质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图.mg -T 2 = ma 2 T 1-mg = ma 1T 2 (2r )-T 1r = 9mr 2β/ 22r β = a 2 r β =a 1解上述5个联立方程,得: rg192=β 例5-10 一轻绳跨过两个质量均为m 、半径均为r 端分别挂着质量为m 和2m 滑.两个定滑轮的转动惯量均为2/2mr 的重物组成的系统从静止释放,求两滑轮之间绳内的张力. 解:受受力分析如图所示.2mg -T 1=2ma T 2-mg =maT 1 -T r =β221mr T r -T 2 r =β221mra =r β解上述5个联立方程得: T =11mg / 8例5-11 一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块碰撞前后的速度分别为1v 和2v,如图.求碰撞后细棒从开始转动到停止所需的时间.(棒绕O 点的转动惯量3/21l m J =)解:对棒和滑块系统,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.aa 1Am 1 ,l1v2俯视图m因而系统的角动量守恒: m 2v 1l =-m 2v 2l +ω2131l m ① 碰后棒在转动过程中所受的摩擦力矩为 gl m x x l m gM lf 10121d μμ-=⋅-=⎰② 由角动量定理ω210310l m dt Mtf-=⎰ ③由①、②和③解得 gm m t 12122μv v +=例5-12 一轻绳绕过一轴光滑的定滑轮,滑轮半径为R ,质量为M /4,均匀分布在其边缘上.绳子的A 端有一质量M 的人抓住了绳端,而在另一端B 系了一质量M /2的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2/4 ) 解:受力分析如图所示. 设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.根据牛顿第二定律可得:对人:Mg -T 2=Ma ①对重物:T 1-21Mg =21Ma ②根据转动定律,对滑轮有 (T 2-T 1)R =J β=MR 2β / 4 ③因绳与滑轮无相对滑动, a =βR ④ ①、②、③、④四式联立解得 a =2g / 72【练习题】5-1 转动着的飞轮的转动惯量为J ,在t =0时角速度为ω 0.此后飞轮经历制动过程.阻力矩M 的大小与角速度ω 的平方成正比,比例系数为k (k >0常量).当ω=ω0/3时,飞轮的角加速度β = .从开始制动到ω=ω0/3所经过的时间t = .Jk 920ω- 02ωk J5-2 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ A ] 5-3 一长为l ,质量可以忽略的直杆,绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量m 的小球,如图.将杆由水平位置无初转速地释放.杆刚释放时的角加速度为 , 杆与水平方向夹角为60°时的角加速度为 .g / l g / (2l )*5-4 如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳 端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J 。

大学物理习题册及解答 第二版 刚体的定轴转动


Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
(2)由垂直轴定理有: J J 1 J MR2
由平行轴定理有:
J
xC
J
yC
2
MR2
zC
3
2 MR 2
PP
xC
(3)复摆的摆动周期为 T 2π J
2
mgl
T 2 2R T 2 3R
T1 4 1.1547
2.力矩的定义式为_M_____r__F_.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1 (B) 1
分析:
2as
2 0
2 02
a r
0 r0
s
r
N
2
13.3圈
02 0.024rad / s2 2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力

力学习题课

h
H H'
S u2t , H gt2 2 S u2 2H g 2 v2 碰撞为弹性碰撞, mu12 2 mu2 2 u1 u2
S 2 H H H H
S
取最大值时, H H 2
牛顿定律计算题
1.有一条单位长度质量为l的匀质细绳,开始时盘绕在 光滑的水平桌面上。现以一恒定的加速度竖直向上提绳, 当提起的高度为 y 时,作用在绳端的力为多少?若以一 恒定速度竖直向上提绳时,仍提到 y 高度,此时作用在 绳端的力又是多少? 解:此题为变质量问题
2 1
3. 在一水平放置的质量为m、长度为l的均匀细杆上, 套着一质量也为m的套管B(可看作质点),套管用细线 拉住,它到竖直的光滑固定轴OO'的距离为l/2,杆和 套管所组成的系统以角速度w0绕OO'轴转动,如图. 若 在转动过程中细线被拉断,套管将沿着杆滑动.在套管 滑动过程中,该系统转动的角速度w与套管离轴的距离 x的函数关系为_______________.(已知杆本身对OO' 轴的转动惯量为ml2/3)
2 解: 过程I,发射m1,机械能守恒。 kx2 2 mu10 2
过程II,弹性碰撞,动量守恒、机械能守恒。
m1 m2 m u20 u10
过程III,轨道运动。遵循牛 顿运动定律和机械能守恒。
m1 x
A 60° O
N
m2
G
2 2 过程I, kx2 2 mu10
过程II,
过程III,
1 2 1 1 2 kx 0 (m M )u k ( x0 x) 2 (m M ) gx 2 2 2
mg 2kh (1 1 ) 四式联立有, x k (M m) g

《大学物理AI》作业 No.03 角动量、角动量守恒定律


lv 12
(B)
2v 3l
(C)
3v 4l
(D)
3v l
解:小球与细杆碰撞过程中对 o 点的合外力矩为零,根据角动量守恒定律有:
⎛1 ⎞ mvl = ⎜ ml 2 + ml 2 ⎟ω ⎝3 ⎠ 3v ω = 碰撞后的转动角速度为 4l
选C
3. 质量为 m 的小孩站在转动,转动惯量为 J。平台和小孩开始时静止。当小孩突然以相对于地面为 v 的速率在台边缘沿逆时针转向走动时,此平台相对地面旋转的角速度和旋转方向分别为 2 2 v⎞ v ⎞ [ ] (A) ω = mR ⎛ (B) ω = mR ⎛ ⎜ ⎟ ,顺时针 ⎜ ⎟ ,逆时针 J ⎝R⎠ J ⎝R⎠
2r
2m r m
m
β
m
mg − T2 = ma 2 T1 − mg = ma1
T 2 × 2 r − T1 × r =
绳和圆盘间无相对滑动有
9 mr 2 β 2
v a2
v T2
v T1
a 2 = 2rβ a1 = rβ
β=
2g 19r
v a1
v mg v mg
联立以上方程,可以解出盘的角加速度的大小:
选A
v
R
m
O
J
4.一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处 于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 [ ] (A) 动量守恒 (B) 机械能守恒 (C) 对转轴的角动量守恒 (D) 动量、机械能和角动量都守恒 (E) 动量、机械能和角动量都不守恒 解:此系统所受的合外力矩为零,故对转轴的角动量守恒。 选C 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量 (2) 作用力和反作用力对同一轴的力矩之和必为零 (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等 在上述说法中, [ ] (A) 只有(2)是正确的 (B) (1)、(2)是正确的 (C) (2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的 解:内力成对出现,对同一轴,一对内力的力矩大小相等,方向相反,内力矩之和为零, 不会改变刚体的角动量。质量相等,形状和大小不同的两个物体,转动惯量不同,在相 同力矩作用下,角加速度大小不等。 选B 二、填空题 1.如图所示,一轻绳绕于半径为 r 的飞轮边缘,并以质量为 m 的物体

大学物理A(1)章节练习题

大学物理A (1)章节练习题第一章 质点运动学1.关于质点的概念下列理解正确的是( )A.研究地球公转时,因为地球直径太大,不能把地球看成质点来研究B.质点是一个理想化的模型,并且是真实存在的C.如果一个物体可以被看成质点,那么我们在研究问题时就可以忽略这个物体的形状和大小D.只有质量小的物体才能被看成质点,质量大的物体则不能被看成质点2.关于质点的概念下列理解错误的是( )A.只有很小的物体才能看成质点B.质点是为了方便研究物体运动而提出的一个理想化的模型,实际并不存在C.质点忽略了物体的形状和大小,看成一个有质量的点D.质点不同于数学中的几何点3. 下列关于速度和速率的说法,正确的是()A.瞬时速度是矢量,而平均速度是平均值,是个标量B.瞬时速率不是平均速率的极限值C.瞬时速率和瞬时速度的大小相等D.瞬时速度可以描述物体运动的快慢,而平均速度不能描述物体运动的快慢4.一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小的表示有四种意见,即(1)t d d r ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是( )A. 只有(1)(2)正确B. 只有(2)正确C. 只有(2)(3)正确D. 只有(3)(4)正确5.质点作圆周运动时,下列说表述中正确的是( )A.速度方向一定指向切向,加速度方向一定指向圆心B.切向加速度仅由速率的变化引起C.由于法向分速度为零,所以法向加速度也一定为零D.速度方向一定指向切向,加速度方向也一般指向切向6.(判断)质点是一个理想化的模型,所以质点没有大小,形状和质量.7.(判断)物体在做单向直线运动时,位移的大小等于路程.8.(判断)当质点的位矢和速度被同时确定时,其运动状态也就被确定.9.(判断)匀速圆周运动的物体,速度方向一直沿着切线方向.10.(判断)匀加速运动时,速度方向总是与加速度方向在一条直线上.11.(判断)变速圆周运动中,其加速度的方向始终指向圆心.12.(判断)相对地面做匀速直线运动的火车车厢可以看做是惯性参考系.13.(判断)路程和位移是两个不同的概念,在时间趋于零时,位移的大小等于路程.14.一质点在半径为2m 的圆周上运动,其角位置为32t =θ,式中θ的单位为rad ,t 单位是s .(1)质点在任意时刻的角速度=ω .(2)t=1s 时质点的法向加速度 .切向加速度为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思 考 题
3-1 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统的什么物理量是守恒的? 答:此系统所受合外力矩为零,人与盘之间的力为内力,所以角动量守恒!机械能守恒的条件为外力与非保守内力不做功或作功之和为零,显然人与盘之间有磨擦力,即有非保守内力做功,机械能不守恒,动量守恒的条件为合外力为零,转轴不属于系统,转轴与盘之间有作用力,动量不守恒。

3-2 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑
固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打
击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆
与小球这一系统的哪种物理量守恒?
答:在碰撞时,小球重力过转轴,杆的重力也过轴,外力矩为
零,所以角动量守恒。

因碰撞时转轴与杆之间有作用力,所以动量不守恒。

碰撞是非弹性的,所以机械能也不守恒。

3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度ω如何变化?
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
度增大。

3-4 刚体角动量守恒的充分而必要的条件是什么?
答:刚体所受的合外力矩为零。

习 题
3-1 可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度是多大?[2.5 rad / s 2]
解:绳子展开10m 时飞轮转过的角度为:∆ϕ=10/(1./2)=20rad 。

已知飞轮作匀角加速转动,所以:2021t t βωϕ+
=∆ 把400==,t ω代入得 2/5.2s rad =β
3-2 一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩是多大?[157 N ·m]
解:s rad rev /20min /6000πω== (注:rev/min 意为转每分钟)
作用在刚体上的一力矩在一段时间内的冲量矩等于刚体角动量的变化量。

思考题3-3图
思考题3-2图
3-3 光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为23
1ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,
以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.求:这一系统碰撞后的转动角速度.[ l
4v 3 ] 解:碰撞过程中角动量守恒:
ω)31
(22ml ml mvl +=,解得l
v 43=ω 3-4 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2
1,则此时棒的角速度是多大? [ ML
m 23v ] 解:此过程角动量守恒:
l v m ML mvL 2
312+=ω,解得:ML mv 23=ω 3-5 如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖
直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,
则A 端对墙壁的压力是多大? [ θmgtg 2
1 ] 解:以B 点为支点,则过B 点的力其力矩均为零,杆所受的其他
的两个力如图,依力矩平衡可得:
3-6 一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴 在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球.现将杆由水平位置无初转速地释放.求:
(1)杆刚被释放时的角加速度0β;(2)杆与水平方向夹角为60°时的角加速度β . [g / l ;g / (2l )]
解:在杆与水平面成任意角度时,其所受的合外力矩即重力矩:M=mglcos θ,则:
(1)刚被释放时:l
g ml mgl I M ===20cos β
习题3-3图
俯视图 v
习题3-4 习题3-5图
(2)与水平面成60度角时:l
g ml mgl I M 260cos 20===β 3-7 一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N · m ,轮子对固定轴的转动惯量为J =15 kg · m 2.在t =10 s 内,轮子的角速度由ω=0增大到ω=10 rad/s ,求摩擦力矩M r . [5.0 N ·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。

其角加速度为: 合外力矩为:)(0.5)(15115m N M M M m N J M r r 合⋅=⇒-=⋅=⨯==β 3-8 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度0ω=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过的角度θ∆是多大? [4.0 rad ] 解:根据刚体定轴转动的动量定理:2022
1210ωωϕϕ
ϕJ J d M A z -==
⎰ A=M∆ϕ=-12⨯∆ϕ=0.5⨯3⨯2⨯2-0.5⨯3⨯6⨯6⇒∆ϕ=4 rad.
3-9 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为0ω.然后她将两臂收回,使转动惯量减少为
31J 0.这时她转动的角速度变为多大?[30ω] 解:此过程角动量守恒0033
1ωωωω=⇒=J J 3-10 一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为J =
22
1MR ,其初角速度0ω=10.0 rad/s ,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向;
(2) 定滑轮的角速度变化到ω=0时,物体上升的高度;
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向. [ 81.7 rad/s 2 ,垂直纸面向外; 6.12×10-
2 m ;=ω10.0 rad/s ,垂直纸面向外] 解:(1)设在任意时刻定滑轮的角速度为ω,物体的速度大小为v ,则有v=R ω. 则物体与定滑轮的总角动量为:ωωω2mR J mvR J L +=+=
根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率: dt
dL M =,该系统所受的合外力矩即物体的重力矩:M=mgR 习题3-10图
所以:22/7.81s rad mR
J mgR dt d =+==ωβ (2)该系统只有重力矩做功(物体的重力),所以机械能守恒。

(3) 由械机能守恒可知,当系统转回到初时位置时,势能与初时时刻一样,所以角速度大小与初始时一样,方向相反。

相关文档
最新文档