生化~名词解释~简答题

合集下载

生化名词解释及简答题

生化名词解释及简答题

生化简答题一、蛋白质1、蛋白的结构的层次性怎么理解?(1)蛋白质的一级结构是氨基酸序列;(2)二级结构是肽链结构,包括α-螺旋,β-折叠等;(3)超二级结构是二级结构单元相互聚集形成更高一级有规律的结构;(4)结构域是相对独立的紧密球状实体;(5)三级结构是二级结构组合成的多肽链;(6)四级结构是两条或两条以上有独立三级结构的多肽链的四聚体.2、常用的蛋白质分离纯化方法有哪几种?各自的作用原理是什么?(1)盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。

凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。

(2)电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。

电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。

(3)透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。

(4)层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。

(5)凝胶过滤法:蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离。

(6)超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。

3、蛋白质的两性解离与等电点(1)两性解离:蛋白质分子中带有可解离的氨基和羧基,这些基团在不同的pH溶液中可解离成正离子或负离子,因此蛋白质分子即可带有正电荷又可带有负电荷,这种性质称为蛋白质的两性解离。

根据蛋白质的两性解离性质,可采取电泳法和离子交换层析法分离纯化蛋白质。

(2)等电点:氨基酸分子所带净电荷为零时,溶液的PH值即为氨基酸的等电点.4、为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的?因为蛋白质中氮的含量一般比较恒定,平均为16%,这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础.蛋白质含量的计算为:每克样品中含氮克数 *6.25*100即为100克样品中蛋白质含量.5、氨基酸的分类非极性氨基酸(疏水氨基酸)8种丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)极性氨基酸(亲水氨基酸):1)极性不带电荷:7种甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)2)极性带正电荷的氨基酸(碱性氨基酸)3种赖氨酸(Lys)精氨酸(Arg)组氨酸(His) 3)极性带负电荷的氨基酸(酸性氨基酸)2种天冬氨酸(Asp)谷氨酸(Glu)二、酶1、酶的必需基团有哪几种,各有什么作用?酶的必需基团有活性中心的必需基团和非活性中心的必需基团,活性中心的必需基团有催化基团和结合基团,催化基团改变底物中某些化学键的稳定性,使底物发生反应生成产物,结合基团与底物相结合,使底物和一定构象的酶形成中间产物.非活性中心的必需基团为维持酶活性中心的空间构象所必需.2、酶蛋白与辅助因子的相互关系如何?(1)酶蛋白与辅助因子组成全酶,单独哪一种都没有催化活性;(2)一种酶蛋白只能结合一种辅助因子形成全酶,催化一定的化学反应;(3)一种辅助因子可与不同酶蛋白结合成不同的全酶,催化不同的化学反应;(4)酶蛋白决定反应的特异性,而辅助因子具体参加化学反应,决定酶促反应的性质。

生化名词解释简答

生化名词解释简答

生化重点名词解释1、★肽键(peptide bond):指由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合形成的酰胺键。

2、GSH:谷胱甘肽,是人体内重要的抗氧化剂,能保护蛋白质中的巯基3、★蛋白质变性:在某些理化因素(高温、高压、超声波、紫外线、强酸、强碱、尿素等)的作用下,蛋白质的空间结构发生改变,导致生物活性的丧失,以及理化因素发生改变。

4、α—螺旋:蛋白质分子中多个肽单位通过氨基酸α—碳原子的旋转,使多肽链的主链围绕中心轴呈有规律的上升。

5、β—转角:伸展的肽链形成180°回折,即U形转角结构6、肽链:多个氨基酸通过肽键连接而成7、基序(模体):在有些蛋白质分子中,可见一个或多个具有二级结构的肽段,在空间上相互接近,形成一个二级结构的聚集体称为基序。

8、结构域:分子质量大的蛋白质三级结构,常常由两个或多个球状或纤维状的区域组成,每个区域的结构和功能相对独立,称为结构域。

9、氨基酸残基:肽链中的氨基酸分子通过脱水缩合而集团不全,称为氨基酸残基10、变构效应(别构效应):配体与蛋白质结合后,蛋白质的空间结构发生改变,使其适合于功能需要,这个变化称变构效应,也叫别构调节。

11、亚基:在含有两条或多条肽链的蛋白质分子中,每一条多肽链都有其完整的三级结构,称为亚基。

12、蛋白质等电点:当蛋白质溶液在某一pH时,蛋白质解离称阴阳离子的趋势相等,称为兼性离子,静电荷为零,此时溶液的pH称为蛋白质等电点。

13、★蛋白质一级结构(Primary structure):指蛋白质肽链中氨基酸残基的排列顺序,即氨基酸序列。

14、★蛋白质二级结构(Secondary structure):指蛋白质多肽链的主链中某一段肽链的局部空间构象,即指该段肽链主链骨架原子的相对空间排列顺序,不涉及侧链基团。

15、★蛋白质三级结构(Tertiary structure):指整条肽链所有原子在空间中的整体排布位置。

生化名词解释与简答题

生化名词解释与简答题

第一章蛋白质的结构与功能(一)名词解释1. 肽键2. 结构域 3. 蛋白质的等电点4. 蛋白质的沉淀5. 蛋白质的凝固(三)问答题1. 何谓蛋白质变性?影响变性的因素有哪些?2. 蛋白质变性后,为什么水溶性会降低?3. 举例说明一级结构决定构象。

答案(一)1.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合所形成的结合键,称为肽键。

2.构域:蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。

3.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。

4.蛋白质的沉淀:蛋白质分子从溶液中析出的现象称为蛋白质的沉淀。

5.蛋白质的凝固:蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱中,若将pH调至等电点,则蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸或强碱中。

如再加热则絮状物可变成比较坚固的凝块,此凝块不再溶于强酸或强(三)问答题1. 蛋白质在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。

蛋白质变性的实质是维系蛋白质分子空间结构的次级键断开,使其空间结构松解,但肽键并未断开。

引起蛋白质变性的因素有两方面:一是物理因素,如紫外线照射等,一是化学因素如强酸、强碱、重金属盐、有机溶剂等。

2. 三级结构以上的蛋白质的空间结构稳定主要靠疏水键和其它副键,当蛋白质在某些理化因素作用下变性后,维持蛋白质空间结构稳定的疏水键、二硫键以及其它次级键断裂,空间结构松解,蛋白质分子变为伸展的长肽链,大量的疏水基团外露,导致蛋白质水溶性降低。

3. 牛胰核糖核酸酶溶液加入尿素和巯基乙醇后变性失活,其一级结构没有改变。

当用透析法去除尿素和巯基乙醇后,牛胰核糖核酸酶自发恢复原有的空间结构与功能,此例充分说明一级结构决定构象。

碱中,这种现象称为蛋白质的凝固作用。

生化名词解释简答

生化名词解释简答

生化名词解释简答生化名词解释、简答名词解释:1.蛋白质的一级、二级结构p87、89蛋白质一级结构是指蛋白质多肽链中氨基酸残基的排列顺序,也称化学结构;蛋白质二级结构是指多肽主链骨架有规则的盘曲折叠形成的构象,不涉及侧链基团的空间排布。

2.蛋白质的变(别)二重效应别构效应又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。

别构效应(allostericeffect)某种不直接涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其他部位(别构部位),引起蛋白质分子的构象变化,而导致蛋白质活性改变的现象。

(底物或效应物和酶分子上的适当部位融合后,可以引发酶分子构象发生改变从而影响酶的催化活性的效应。

)3.等电点p102对某一蛋白质来说,在某一ph溶液中,它所带的正电荷与负电荷数恰好成正比,即为净电荷为0时,在电场中它既不向阳极也不向阴极移动,这时溶液的ph就称作蛋白质的等电点(pi)4.酶的活性中心p153通过肽链的卷曲、螺旋或织成构成了多种活性空间――酶的活性部位(或表示活性中心)5.酶的比活力p163比活力就是所指每毫克酶蛋白含有的酶活力单位数,即为比活力=活力单位数/每毫克酶蛋白6.核酸的增色效应核酸的光吸收值为各核苷酸光吸收值的和太少30-40%,当核酸变性或水解时光稀释值明显减少。

(将dna的叶唇柱盐溶液冷却至80~100℃时,双螺旋结构解体,两条链分离构成单链,由于双螺旋分子内部的碱基曝露,260nm紫外稀释值增高的现象。

)7.核酸的变复性p133-134核酸的变性指dna分子中的双螺旋结构解链为无规则线性结构的现象。

变性dna在适度条件下,又可以并使两条彼此分离的链再次键合称作双螺旋结构,此过程表示复性。

8.生物氧化p175有机物质在生物体内的氧化作用(充斥着还原作用)泛称为生物水解。

9.呼吸链p177一系列具备水解还原成特性的酶与辅酶做为氢和电子的传达体。

寄氢体和寄电子体按一定顺序排列在线粒体内膜上所形成的连锁氧化还原体系称为电子传递链。

生化名词解释及问答题

生化名词解释及问答题

生化名词解释及问答题一.名词解释1. Tm(解链温度):当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加,当紫外吸收达到最大变化的半数值时,此时对应的温度称为溶解温度,用Tm表示。

热变性的DNA解链到50%时的温度。

2. 增色效应:DNA变性时,其溶液A260增高的现象。

3. 退火:热变性的DNA经缓慢冷却后即可复性,这一过程称为~。

4. 核酸分子杂交:这种杂化双链可以在不同的DNA单链之间形成,也可以在不同的RNA单链形成,甚至还可以在DNA单链和RNA单链之间形成,这一现象叫做核酸分杂交。

5. DNA复性:当变性条件缓慢去除后,两条解链的互补链可以重新配对,恢复到原来的双螺旋结构。

这一现象称为DNA复性。

6. Chargaff规则:包括 [A] = [T],[G] = [C];不同生物种属的DNA的碱基组成不同;同一个体的不同器官或组织的DNA碱基组成相同。

7. DNA的变性: 在某些理化因素作用下,DNA双链解开成两条单链的过程。

8. 核酸酶:所有可以水解核酸的酶。

9. 糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(glycol sis),亦称糖的无氧氧化10. 糖异生:是指从非糖化合物转变为葡萄糖或糖原的过程。

11. 丙酮酸羧化支路:糖异生过程中为绕过糖酵解途径中丙酮酸激酶所催化的不可逆反应,丙酮酸需经丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶作用而生成丙酮酸的过程称为~。

12. 乳酸循环(Cori循环):肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。

肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。

葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为~,也称Cori循环。

13. 糖原合成:指由葡萄糖合成糖原的过程。

14. 糖原分解:习惯上指肝糖原分解成为葡萄糖的过程。

15. 血糖:血液中的葡萄糖。

16. 脂肪动员:储存在脂肪细胞中的脂肪,经脂肪酶逐步水解为甘油和脂肪酸,并释放入血供全身组织氧化利用的过程称为脂肪动员。

生化名词解释简答

生化名词解释简答

脂类代谢作业一、名词解释1、脂肪动员:是指储存在脂肪细胞中的脂肪,经常有一部分被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。

(甘油三酯脂肪酶是关键酶)2、脂肪酸 -氧化:脂肪酸在体内氧化时在羧基端的β-碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位,即乙酰CoA,该过程称作β-氧化。

1、酮体:乙酰乙酸(acetoacetate) 、β-羟丁酸(β-hydroxybutyrate)、丙酮(acetone)三者总称为酮体(ketone bodies)。

2、必需脂肪酸:是指这类氨基酸对人体功能是必不可少的,但人体自身不能合成必须由膳食提供,因此被称为必需氨基酸3、脂解激素:能激活脂肪酶、促进脂肪动员的激素,如胰高血糖素、去甲肾上腺素、肾上腺素等。

4、抗脂解激素:能降低HSL活性、抑制脂肪动员,如胰岛素、前列腺素E2、烟酸等。

5、丙酮酸柠檬酸循环:乙酰CoA在线粒体内,与草酰乙酸所合生成柠檬酸,通过线粒体上的载体,将柠檬酸转运到细胞质。

在胞质ATP柠檬酸裂解酶的作用下,使柠檬酸裂解释放乙酰CoA以及草酰乙酸,草酰乙酸在苹果酸脱氢酶的作用下还原生成苹果酸,L-苹果酸在苹果酸酶的作用下,分解成丙酮酸,被转运进入线粒体,最终形成线粒体内的草酰乙酸。

6、脂蛋白:是脂类在血浆中的存在形式,也是脂类在血液中的运输形式。

二、问答题1、简述体内乙酰辅酶A的来源和去路。

来源:糖的氧化分解,脂肪酸的氧化分解,氨基酸的分解,酮体氧化分解去路:进入三羧酸循环、合成胆固醇、合成脂肪酸、生成酮体;2、何为酮体?酮体在体内是如何生成和氧化利用的?(只有肝脏能生成酮体,但是肝脏里氧化酮体的酶活性差,不能氧化酮体)乙酰乙酸(acetoacetate) 、β-羟丁酸(β-hydroxybutyrate)、丙酮(acetone)三者总称为酮体(ketone bodies)。

生成:1. 2分子乙酰CoA在肝脏线粒体乙酰乙酰CoA硫解酶的作用下,所合成乙酰乙酰CoA,并释放出一分子CoASH。

52个生化重点名词解释

52个生化重点名词解释

52个生化重点名词解释1.蛋白质变性:当天然蛋白质受到某些物理因素和化学因素的影响,其分子内部原有的高级结构构象发生变化,蛋白质的理化性质和生物学功能都随之改变或丧失,但并未导致其一级结构的变化。

2.酶的活性部位:酶分子直接与底物结合并与酶催化直接相关的部位,即包括结合部位和催化部位。

3.内含子:大多数真核生物结构基因的居间序列或不编码序列,不在mRNA中出现。

4.外显子:真核生物中多肽编码的基因片段。

5.稀有碱基:含量较少的碱基,多数为主要碱基的修饰物。

(tRNA中大约有10%为稀有碱基)6.联合脱氨:是生物体主要的脱氨基方式,是转氨基作用和氧化脱氨基作用的结合,人体内转氨基时的氨基受体主要是α-酮戊二酸生成的谷氨酸,在L-谷氨酸脱氢酶的作用下脱下氨基,这种方式叫做联合脱氨基作用。

7.抗代谢物:即抗代谢抑制剂,都是与代谢物在结构上的类似物,他们在代谢反应中跟正常的代谢物拮抗,以减少正常代谢物参加反应的机会,从而影响正常代谢。

8.限制性核酸内切酶:是细菌细胞内存在的一类识别并水解外源DNA的核酸内切酶,用于特异切割DNA,是一种工具酶。

9.α螺旋:蛋白质分子中多个肽单元通过氨基酸α-C的旋转,使多肽链的主链围绕中心轴呈有规律的螺旋上升成稳定的螺旋构象。

(一般为右手螺旋)10.半保留复制:DNA在复制时,每一条DNA单链在新链合成中充当模板,按碱基配对方式形成两个新的DNA分子,每一个分子都有一条新链一条旧链,这种配对方式就叫做半保留复制。

11.糖酵解:葡萄糖经过酶促降解为丙酮酸,并伴随生成ATP的过程为糖酵解,此过程于胞液中进行,是动物,植物,微生物细胞中葡萄糖分解的共用代谢途径。

12.断裂基因:真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,这些基因称为断裂基因。

13.解链温度Tm:DNA的热变性是一个突变过程,类似于结晶的熔解,将紫外线吸收量(260nm)的增加量达到最大增加量的一半时的温度称为解链温度。

生化简答题与名词解释(新)

生化简答题与名词解释(新)

针推生物化学(仅供参考)一、名词解释:1、肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。

2、电泳:带点粒子在电场中泳动时的现象。

3、蛋白质的变性:蛋白质变性是指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。

4、亚基:是指在四级结构中具有独立三级结构的多肽链。

5、等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。

6、退火:退火是变性的逆转过程,它受温度、时间、DNA浓度、DNA顺序的复杂性等因素的影响。

7、Tm值:DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度,亦即DNA 变性过程中,紫外吸收值达到最大值的50%时的温度称为DNA 的解链温度(Tm) 。

8、同工酶:催化同一化学反应而化学组成不同的一组酶。

它们彼此在氨基酸序列、底物的亲和性等方面都存在着差异。

9、酶原:通过有限蛋白水解能够由无活性变成具有催化活性的酶前体。

10、酶原的激活:酶原在某些因素的作用下向酶转化的过程,酶原的激活实际是酶的活性中心形成或暴露的过程。

11、化学修饰调节:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性的改变,这种调节称为酶的化学修饰。

(填空)12、别构调节:当小分子变构剂与酶活性中心的调节亚基结合后,使酶的空间构象发生改变,从而影响酶的活性。

(填空)13、酶的竞争性抑制作用:通过增加底物浓度可以逆转的一种酶抑制类型。

一个竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。

这种抑制使得Km增大,而Vmax不变。

14、呼吸链:是电子传递链,是定位于线粒体内膜,由一组排列有序的H+和电子传递体构成的功能单位。

15、底物水平磷酸化:底物水平磷酸化指在分解代谢过程中,底物因脱氢、脱水等作用而使能量在分子内部重新分布,形成高能磷酸化合物,然后将高能磷酸基团转移到ADP形成ATP的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释:
A卷
1.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质解离成正负离子的
趋势相等,即成为兼性离子,净电荷为零,此时溶液的PH称为蛋白质的等电点。

P25
2.DNA的变性:在某些理化因素(温度、PH、离子强度等)作用下;DNA双链
的互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,成为单链的现象即为DNA的变性。

P48
3.糖元的合成:指由葡萄糖合成糖原的过程。

课件
4.脂肪动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油
并释放入血以供其他组织氧化利用,该过程称为脂肪的动员。

P110
5.氧化磷酸化:是细胞内ATP形成的主要方式,即在呼吸链电子传递过程中偶
联ADP磷酸化,生成ATP,因此又称为偶联磷酸化。

P146
6.营养必须氨基酸:人体内有8种氨基酸不能合成,这些体内需要而又不能自
身合成,必须由食物供应的氨基酸,称为必须氨基酸。

P161
7.DNA的半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为
模板按碱基配对规律,合成与模板互补的子链。

子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全重新合成,两个子细胞的DNA都和亲代DNA碱基序列一致,这种复制方式称为半保留复制。

P217
8.不对称转录:在庞大的基因组中,按细胞的不同发育时序,生存条件和生理
需要,只有少部分的基因发生转录,转录的这种选择性行为不对称转录p244
9.遗传学的中心法则:p215 中间式子
10.DNA克隆技术:应用酶学的方法,在体外将各种来源的遗传物质――同源的
或异源的、原核的或真核的、天然的或人工的DNA与载体DNA结合成一具有自我复制能力的DNA分子――复制者,继而通过转化或转染宿主细胞、筛选出含有目的基因的转化子细胞,在进行扩增、提取获得大量同一DNA分子,即DNA克隆。

P314
B卷:
1.蛋白质的二级结构:是指蛋白质分子中某一段肽链的局部空间结构,也就
是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

p13 (其他一三四级结构――了解)
2.DNA的复性:变性DNA在适当条件下,两条互补链可重新配对,恢复天然的
双螺旋构象,这一现象称为蛋白质的复性。

P49
3.糖酵解:在缺氧情况下,葡萄糖生成乳酸的过程称之为糖酵解。

P78
4.必须脂肪酸:来源系食物脂肪供给,特别是某些多不饱和脂酸,动物机体自
身不能合成,需从从植物油摄取。

它们是动物不可缺少的营养素。

P106
5.呼吸链:代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反
应逐步传递,最终与氧结合生成水。

由于此过程与细胞呼吸有关,所以将此传递链称为呼吸链。

P141
6.转氨基作用:在转氨酶(transaminase)的作用下,某一氨基酸去掉α-氨基
生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程。

课件
7.半不连续性复制:领头链连续复制而随从链不连续复制,就是复制的半不连
续性。

课件(DNA复制时,因为复制的方向必须是从5'到3',一条链可以连续复制,而它的反义链复制则是不连续的,会产生冈崎片断,所以成为半不连续复制。


8.逆转录:信息流动方向(RNA→DNA)与转录过程(DNA→RNA)相反,也可称
为反转录。

RNA→逆转录酶
DNA . P235
9.起始氨基酰-tRNA:真核细胞起始相应的氨基酰-tRNA,即Met-tRNAiMet
识别起始密码AUG。

可被起始过程的酶,因子识别,原核起始为N-甲酰硫氨酸,起始氨基酰-tRNA为fMet-tRNAifmet
10.限制性核酸内切酶:有的核酸酶可以在DNA或RNA分子内部切断磷酸二酯键,
称为核酸内切酶。

在核酸内切酶中,有的只水解双链分子,有的只水解单链分子,有的要求序列特异性,称为限制性核酸内切酶。

P50
问答题;
A卷
一.酶的可逆性抑制作用有哪些类型?作用机制?p62
答:1.竞争性抑制作用
机理:抑制剂与酶的底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶与底物结合成中间产物,是酶的活性降低。

2.非竞争性抑制作用
机理:有些抑制剂与酶活性中心外的必需基团结合,不影响酶与底物的结合。

底物与抑制剂之间无竞争关系,但酶-底物-抑制剂复合物(ESI)不能进一步释放出产物。

3,反竞争性抑制作用
机理:酶和底物形成的中间产物(ES)结合,使中间产物ES的量下降,即减少从中间产物转化为产物的量,也同时减少从中间产物解离出游离酶和底物的量。

二.三羧酸循环的特点及生理意义p84~87 课件
答:特点:
经过一次三羧酸循环,
1.消耗一分子乙酰CoA,
2.经四次脱氢,二次脱羧,一次底物水平磷酸化。

3.生成1分子FADH2,3分子NADH + H+,2分子CO2, 1分子GTP。

4.关键酶有:
柠檬酸合酶
α-酮戊二酸脱氢酶复合体
异柠檬酸脱氢酶
三羧酸循环的生理意义
1.是三大营养物质氧化分解的共同途径;
2.是三大营养物质代谢联系的枢纽;
3.为其它物质代谢提供小分子前体;
4.为呼吸链提供H+ + e。

三.一段DNA 序列为模板,经转录以后RNA为 5‘UCG CAA AUG CCA````UAG AAUCCG3‘
回答:①写出该RNA序列的DNA 模板合成碱基序列
②标出该mRNA序列的起始密码子,这段mRNA的UAG 可否终止mRNA的
翻译,为什么?
答:①3‘AGC GTT TAC GGT````ATCTTAGGC5’
②起始密码为AUG
这里的UAG不能作为终止密码判断方法:密码子以3个碱基为序列,进行翻译,由起始密码子算起(方向肯定是由5'到3'的)当到UAG
时,该密码子并不是连续的3个碱基序列,因此。

(如果
UAG刚好在一起就可以)
B卷
一.酶促反应特点
答: (一)酶促反应具有极高的效率
酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107~1013倍。

(二)酶促反应具有高度的特异性
1.绝对特异性:只能作用于特定结构的底物,进行一种专一的反应,生成
一种特定结构的产物。

2.相对特异性:作用于一类化合物或一种化学键。

3.立体结构特异性:作用于立体异构体中的一种。

(三)酶促反应的可调节性
酶促反应受多种因素的调控,以适应机体对不断变化的内外环境和生命活动的需要。

其中包括对酶生成与降解量的调节、酶催化效力的调节、通过改变底物浓度对酶进行调节等三方面的调节。

二.什么是遗传学的中心法则?遗传密码在遗传信息中的作用?遗传密码的特点?
答:中心法则:P215 中间式子
遗传密码特点:
(一)遗传密码的连续性
编码蛋白质氨基酸序列的各个三联体密码连续阅读,密码间既无间断也无交叉。

(二)简并性
遗传密码中,除色氨酸和甲硫氨酸仅有一个密码子外,其余氨基酸有2、
3、4个或多至6个三联体为其编码。

(三)通用性
蛋白质生物合成的整套密码,从原核生物到人类都通用。

(四)摆动性
转运氨基酸的tRNA的反密码需要通过碱基互补与mRNA上的遗传密码反向配对结合,但反密码与密码间不严格遵守常见的碱基配对规律,称为摆动配对。

三.人体丙氨酸彻底氧化成最终产物过程(要求写出分解过程所涉及的反应途径,名称及功能)p88
答:丙氨酸(可逆箭头:箭头上为转氨基;箭头下为联合脱氨基)丙酮酸――>(箭头上为有氧氧化,箭头下为线粒体)乙酰CoA――>TAC
1.脱氨基作用――》丙酮酸
2.有氧氧化:生成乙酰CoA → 3NADH + H+
3.进入呼吸链(氧化磷酸化):呼吸链→生成大量ATP
4.氨的去路:进入鸟氨酸循环合成尿素,最终产物:ATP,H2O,CO2,尿素
这是网上关于这道题的一些相关资料~大家也可以参考再组织一下答案
1. 丙氨酸脱氨生成丙酮酸;
2.丙酮酸氧化脱羧生成乙酰CoA,此反应脱下一对H进入呼吸链产生3个ATP;
3.乙酰CoA进入三羧酸循环彻底氧化生成CO2和H2O,并产生12分子
ATP,其中经过4次脱氢,生成3分子NADH+H和1分子FADH2,一次底物水平磷酸化。

所以1分子丙氨酸完全氧化共可以产生15分子ATP。

2.丙酮酸进入线粒体,由丙酮酸脱氢酶复合体催化,经氧化脱羧基转化成乙酰
CoA。

丙酮酸脱氧酶复合体由3个酶和5个辅酶组成,三个酶是丙酮酸脱氢酶、转乙酰化酶、二氢硫辛酸脱氢酶。

5种辅酶是TPP、CoASH、硫辛酸、FAD及NAD+。

反应结果丙酮酸脱氢并脱羧,生成CO2、NADH+H+和乙酰CoA。

红色为不确定~大家要是知道正确答案~或发现有错的~请记得告诉大家一起纠正啊~~~。

相关文档
最新文档