钢筋混凝土正常使用极限状态验算

合集下载

第八章钢筋混凝土构件正常使用极限状态验算

第八章钢筋混凝土构件正常使用极限状态验算

第八章钢筋混凝土构件正常使用极限状态验算钢筋混凝土构件正常使用极限状态验算,是指在使用过程中,构件受到工作荷载作用时,保证其安全可靠地工作的一种验算方法。

该验算方法主要涉及构件的强度验算和变形验算两个方面。

首先,对于强度验算,需要计算构件所受工作荷载产生的应力和变形,与构件的抗弯强度、抗压强度、抗剪强度等进行比较。

通常,构件的设计强度可以通过相应的设计规范中的计算公式来确定。

例如,在抗弯强度验算时,可以根据规范中的受拉区和受压区的计算公式,计算出构件的最大抗弯强度。

然后,将该抗弯强度与施加在构件上的工作荷载产生的弯矩进行比较,以确定构件是否能够满足强度要求。

另外,对于变形验算,主要考虑构件在受荷状态下的变形情况,以确保构件在使用过程中不会产生过大的变形,影响正常使用。

一般来说,变形验算主要包括挠度验算和裂缝宽度验算。

挠度验算需要计算构件在工作荷载下的挠度,与规范中所要求的挠度限值进行比较,以确定构件的变形是否满足要求。

裂缝宽度验算则需要计算构件在工作荷载下的裂缝宽度,与规范中规定的最大裂缝宽度进行比较,以确保构件在使用过程中不会出现过大的裂缝。

在进行正常使用极限状态验算时,需要结合实际工程情况,确定构件的荷载组合,并考虑不同荷载组合下的最不利情况。

同时,还需要注意构件的截面尺寸、钢筋配筋、混凝土等材料的性能参数等因素的准确性,以提高验算的准确性和可靠性。

最后,进行正常使用极限状态验算的目的是为了确保钢筋混凝土构件在使用过程中不会发生破坏或损坏,保证其安全、稳定和可靠地工作。

通过合理地进行验算,可以有效避免因工作荷载超过构件承载能力而引起的结构安全隐患,提高工程质量和使用寿命。

总之,钢筋混凝土构件正常使用极限状态验算是一项重要的设计工作,需要综合考虑构件的强度和变形特性,并利用相应的设计规范和计算方法进行验算。

只有通过科学、合理的验算,才能保证结构在使用过程中的安全可靠性。

建筑结构与建筑设备辅导--正常使用极限状态验算

建筑结构与建筑设备辅导--正常使用极限状态验算

三、正常使⽤极限状态验算钢筋混凝⼟构件,除了有可能由于承载⼒不⾜超过承载能⼒极限状态外,还有可能由于变形过⼤或裂缝宽度超过允许值,使构件超过正常使⽤极限状态⽽影响正常使⽤。

因此规范规定,根据使⽤要求,构件除进⾏承载⼒计算外,尚须进⾏正常使⽤极限状即变形及裂缝宽度的验算。

(⼀)规范中,对正常使⽤极限状态的验算及耐久性的规定1.对于正常使⽤极限状态,结构构件应分别按荷载效应的标准组合、准永久组合或标准组合并考虑长期作⽤影响,采⽤下列极限状态设计表达式:S≤C (7-111)式中 S--正常使⽤极限状态的荷载效应组合值;C——结构构件达到正常使⽤要求所规定的变形、裂缝宽度和应⼒等的限值。

荷载效应的标准组合和准永久组合应按《荷载规范》的规定进⾏计算。

2.受弯构件的挠度应按荷载效应的标准组合并考虑荷载长期作⽤影响进⾏计算,其计算值不应超过表7-24规定的挠度限值。

受弯构件的挠度限值表7-24构件类型挠度限值吊车梁:⼿动电动 l0/500l0/600屋盖、楼盖及楼梯构件:当l0<7m时当7m≤l0≤9m时当l0>9m时l0/200(l0/250)l0/250(l0/300)l0/300(l0/400)注:1.表中l0为构件的计算跨度;2.表中括号内的数值适⽤于使⽤上对挠度有较⾼要求的构件;3. 如果构件制作时预先起拱,且使⽤上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应⼒混凝⼟构件.尚可减去预加⼒所产⽣的反拱值;4.计算悬臂构件的挠度限值时,其计算跨度l0按实际息臂长度的2倍取⽤。

3.结构构件正截⾯的裂缝控制等级分为三级。

裂缝控制等级的划分应符合下列规定:⼀级——严格要求不出现裂缝的构件,按荷载效应标准组合计算时,构件受拉边缘混凝⼟不应产⽣拉应⼒。

⼆级——⼀般要求不出现裂缝的构件,按荷载效应标准组合计算时,构件受拉边缘混凝⼟拉应⼒不应⼤于混凝⼟轴⼼抗拉强度标准值;按荷载效应准永久组合计算时,构件受拉边缘混凝⼟不宜产⽣拉应⼒,当有可靠经验时可适当放松。

混凝土结构原理第9章 正常使用极限状态验算

混凝土结构原理第9章 正常使用极限状态验算

混凝土的徐变、收缩造成梁截面弯曲刚度降低,挠度随时 间增长。计算挠度时必须采用按荷载效应的标准组合并考虑荷 载效应的长期作用影响的刚度B。
1.荷载长期作用下刚度降低的原因
(1)混凝土的徐变 裂缝间受拉混凝土的应力松弛以及 混凝土和钢筋的徐变滑移,使受拉钢筋的平均应变和平均应力 随时间而增大;裂缝的发展,受拉混凝土退出工作;受压混凝 土的塑性发展,内力臂减小。
刚度是反映力与变形之间的关系:
s Ee 应力-应变: M EI ×f 弯矩-曲率: EI P 48 × 3 × f 荷载-挠度: (集中荷载) l EI V 12 3 d(两端刚接) 水平力-侧移: h
9.3.1
截面弯曲刚度的概念及定义
对于弹性均质材料截面,EI为常数,M-f 关系为直线。 钢筋混凝土是不均质的非弹性材料,因此受弯过程中EI不 是常数。
9.3.2
钢筋混凝土受弯构件的短期刚度Bs
2.物理关系
e sq
s sq
Es

s cq e ck Ec
x h0
sc wsc
C
3.平衡关系
M q C h h0 ws cq x h0 b hh0 M q T hh0 s sq As hh0
ssAs
hh0
9.3.2
“扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力 混凝土的应力松弛、滑移徐变导致裂缝间受拉混凝土不断退 出工作,采用扩大系数tl。
9.2.4
最大裂缝宽度及其验算
最大裂缝宽度的计算
wmax t l ws ,max
s sk t t l wm 0.77 t t l y lm Es

正常使用极限状态验算

正常使用极限状态验算

弯矩、轴拉、偏拉(压) 剪力(扭矩)和弯矩共同作用
垂直裂缝或正截面裂缝
斜裂缝
由荷载引起的裂缝主要通过合理的配筋来控制正常 使用条件下的裂缝不致过宽。
13
2、由非荷载因素引起的裂缝
温度变化 混凝土收缩 基础不均匀沉降
冰冻 钢筋锈蚀 ……….
二、裂缝宽度计算理论概述 1、半经验半理论公式 粘结滑移理论、无滑移理论、综合理论,为我国规范采用。
6
为满足目标可靠指标要求,引进拉应力限制系数αct, ft 改用ftk
Nk ct ftk A0
Nk ——由荷载标准值计算的轴向力; ftk ——砼轴心抗拉强度标准值; αct ——砼拉应力限制系数, αct =0.85; A0 ——换算截面面积,A0=Ac + α EAs, αE ——钢筋和砼的弹性模量比,αE= Es /Ec;
长期刚度。
θ值为荷载长期作用的挠度与即时产生的挠度的比值。
34
我国水工规范采用第二种方法。根据对受弯构件长期
挠度观测结果
2.0 0.4
e0——轴向拉力的偏心距, e0
Mk Nk
四、偏心受压构件
Mk W0
-
Nk A0
mact ftk
Nk
mct ftk A0W0
e0 A0 W0
12
§8.2 裂缝开展宽度验算
一、裂缝的成因和对策 拉应力超过了混凝土的抗拉强度 1、由荷载引起的裂缝
裂缝
一般总是与主拉应力方向大致垂直,最先发 生在荷载效应较大和混凝土抗拉能力最薄弱处。
Mk W0
Nk A0
偏拉 ct ftk
偏拉
为偏心受拉构件的截面抵抗矩塑性系数。
Mk W0
-
Nk A0

混凝土结构原理第9章 正常使用极限状态验算

混凝土结构原理第9章 正常使用极限状态验算
平均裂缝宽度
wm a cy
s sq
Es
l m 0.85 y
s sq
Es
lm
9.2.3
平均裂缝宽度
裂缝截面处的钢筋应力ssk
ssk是指按荷载效应的标准组合计算的混凝土构件裂缝截面处
纵向受力钢筋的应力.
受弯构件:
s sq
Mq
轴心受拉构件: s sq
0.87 As h0 Nq As
偏心受拉构件: s sq
cs——最外层纵向受拉钢筋外边缘到受拉区底边的距离(mm), 当c<20mm时,取c=20mm; d——钢筋直径(mm),当用不同直径的钢筋时,d改用换算直 径4As/u,u为纵向钢筋的总周长。
9.2.3
平均裂缝宽度
裂缝宽度是指受拉钢筋截面重心水平处构件侧表面的裂缝 宽度。裂缝宽度的离散性比裂缝间距更大些。 平均裂缝宽度计算式 平均裂缝宽度wm等于构件裂缝区段内钢筋的平均伸长与相 应水平处构件侧表面混凝土平均伸长的差值。
“扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力 混凝土的应力松弛、滑移徐变导致裂缝间受拉混凝土不断退 出工作,采用扩大系数tl。
9.2.4
最大裂缝宽度及其验算
最大裂缝宽度的计算
wmax t l ws ,max
s sk t t l wm 0.77 t t l y lm Es
1) 在裂缝出现前,应变均匀分布。 2) 即将出现裂缝的状态Ⅰa阶段。 3)当达到极限拉应变e0ct后,出现第一条(批)裂缝。 4) 裂缝出现瞬间,混凝土应力降低为零,而钢筋的拉力突然增 加,由ss,cr增至ss1。 5)裂缝出现后,混凝土向裂缝两侧回缩,但非自由,受到钢筋 的约束。混凝土与钢筋之间有相对滑移,产生粘结应力t。达 到l后,粘结应力消失,混凝土中又重新建立起拉应力sct。

混凝土结构设计规范--正常使用极限状态验算

混凝土结构设计规范--正常使用极限状态验算

正常使用极限状态验算8.1 裂缝控制验算第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算:1一级--严格要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤0(8.1.1-1)2二级--一般要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定:σcq-σpc≤0(8.1.1-3)3三级--允许出现裂缝的构件按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定;ωmax≤ω1im(8.1.1-4) 式中σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力;σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算;f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用;ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算;ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。

注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。

第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并考虑长期作用影响的最大裂缝宽度(mm)可按下列公式计算:(8.1.2-1)(8.1.2-2)d eq=Σn i d2i/Σn i v i d i(8.1.2-3)(8.1.2-4)式中αcr--构件受力特征系数,按表8.1.2-1采用;ψ--裂缝间纵向受拉钢筋应变不均匀系数:当ψ<0.2时,取ψ=0.2;当ψ>1时,取ψ=1;对直接承受重复荷载的构件,取ψ=1;σsk--按荷载效应的标准组合计算的钢筋混凝土构件纵向受拉钢筋的应力或预应力混凝土构件纵向受拉钢筋的等效应力,按本规范第8.1.3条计算;E s--钢筋弹性模量,按本规范表4.2.4采用;c--最外层纵向受拉钢筋外边缘至受拉区底边的距离(mm):当c<20时,取c=20;当c>65时,取c=65;ρte--按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率;在最大裂缝宽度计算中,当ρte<0.01时,取ρte=0.01;A te--有效受拉混凝土截面面积:对轴心受拉构件,取构件截面面积;对受弯、偏心受压和偏心受拉构件,取A te=0.5bh+(b f-b)h f,此处,b f、h f为受拉翼缘的宽度、高度;A s--受拉区纵向非预应力钢筋截面面积;A p--受拉区纵向预应力钢筋截面面积;d eq--受拉区纵向钢筋的等效直径(mm);d i--受拉区第i种纵向钢筋的公称直径(mm);n i--受拉区第i种纵向钢筋的根数;v i--受拉区第i种纵向钢筋的相对粘结特性系数,按表8.1.2-2采用。

混凝土结构正常使用极限状态验算

混凝土结构正常使用极限状态验算

混凝土结构正常使用极限状态验算1、混凝土结构构件应根据其使用功能及外观要求,按下列规定进行正常使用极限状态验算:1对需要控制变形的构件,应进行变形验算;2对不允许出现裂缝的构件,应进行混凝土拉应力验算;3对允许出现裂缝的构件,应进行受力裂缝宽度验算;4对舒适度有要求的楼盖结构,应进行竖向自振频率验算。

2、对于正常使用极限状态,钢筋混凝土构件、预应力混凝土构件应分别按荷载的准永久组合并考虑长期作用的影响或标准组合并考虑长期作用的影响,采用下列极限状态设计表达式进行验算:S≤C(3.4.2)式中:S-正常使用极限状态荷载组合的效应设计值;C——结构构件达到正常使用要求所规定的变形、应力、裂缝宽度和自振频率等的限值。

3、钢筋混凝土受弯构件的最大挠度应按荷载的准永久组合,预应力混凝土受弯构件的最大挠度应按荷载的标准组合,并均应考虑荷载长期作用的影响进行计算,其计算值不应超过表3.4.3规定的挠度限值。

表3 4.3受弯构件的挠度限值注:1表中Io为构件的计算跨度;计算悬臂构件的挠度限值时,其计算跨度Io 按实际悬臂长度的2倍取用;2表中括号内的数值适用于使用上对挠度有较高要求的构件;3如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值;4构件制作时的起拱值和预加力所产生的反拱值,不宜超过构件在相应荷载组合作用下的计算挠度值。

4、结构构件正截面的受力裂缝控制等级分为三级,等级划分及要求应符合下列规定:一级——严格要求不出现裂绛的构件,按荷载标准组合计算时,构件受拉边缘混凝土不应产生拉应力。

二级——一般要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土拉应力不应大于混凝土抗拉强度的标准值。

三级——允许出现裂缝的构件:对钢筋混凝土构件,按荷载准永久组合并考虑长期作用影响计算时,构件的最大裂缝宽度不应超过本规范表3.4.5规定的最大裂缝宽度限值。

钢筋混凝土构件正常使用极限状态验算极限状态验算的类型

钢筋混凝土构件正常使用极限状态验算极限状态验算的类型
8.2 抗裂验算
第八章 钢筋砼构件正常使用极限状态验算
❖更方便的是在保持Mcr相等的条件下,将受拉区梯形
应力图折换成直线分布应力图。
❖受拉边缘应力为γmft 。γm为截面抵抗矩的塑性系数。 ❖换算后可直接用弹性体的材料力学公式进行计算。
8.2 抗裂验算
第八章 钢筋砼构件正常使用极限状态验算
❖把钢筋换算为同位置的砼截面面积αEAs:
使用期间的裂缝----荷载裂缝
斜裂缝!!
拉、弯、剪、扭、粘结等引起的裂缝
垂直裂缝!
目前,只有在拉、弯状态下混凝土 横向裂缝宽度的计算理论比较成熟。 这也是下面所要介绍的主要内容
纵向裂缝!!!
8.1 概述
第八章 钢筋砼构件正常使用极限状态验算
(3)变形验算
➢范围:针对使用上需要控制挠度的结构而进行的验算。 ➢在水工建筑物中,构件的截面尺寸设计得都比较大,
8.1 概述
第八章 钢筋砼构件正常使用极限状态验算
4、验算内容:抗裂验算、裂缝宽度验算及变形验算。一 般只对持久状况进行验算。 (1)抗裂验算
➢范围:针对使用上不允许出现裂缝构件的而进行的验算。
规范要求在荷载效应的短期组合和长期组合两种情况下, 对构件进行验算。按《水工规范》的规定,应对承受水压 的轴拉、小偏拉及发生裂缝后引起严重渗漏构件。
Ao——换算截面面积,Ao=Ac + αEAs, 面积。靠增加钢αE筋= E提s 高/Ec抗;裂As能为钢力筋是截不面经面济积,;不A合c为理砼的截。面
8.2 抗裂验算
第八章 钢筋砼构件正常使用极限状态验算
二.受弯构件 ❖受弯构件正截面即将开裂时,应力处于第I阶段末。 ❖受拉区近似假定为梯形,塑化区占受拉区高度的一半。 ❖利用平截面假定,根据力和力矩的平衡,求出Mcr。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
As为钢筋截面面积;Ac为砼截面面积。
靠增加钢筋提高抗裂能力是不经济,不合理的。
二、受弯构件
受弯构件正截面即将开裂时,应力处于第I阶段末(Ia)。 受拉区近似假定为梯形,塑化区占受拉区高度的一半。 利用平截面假定,根据力和力矩的平衡,求出Mcr。
更方便的是在保持Mcr相等的条件下,将受拉区梯形应 力图 折换成直线分布应力图。
Ncr ftAc sAsftAc EftAs ft(AcEAs)ftA0
为满足目标可靠指标要求,引进拉应力限制系数αct, ft 改用ftk :
Nk ct ftkA0
Nk ——由荷载标准值计算的轴向力; ftk ——砼轴心抗拉强度标准值; αct——砼拉应力限制系数,αct=0.85; A0 ——换算截面面积,A0=Ac + αEAs, αE ——钢筋和砼的弹性模量比,αE= Es /Ec;
7)碱-骨料化学反应引起的裂缝
❖砼孔隙中水泥的碱性溶液与活性骨料(含活性SiO2)化学反
应生成碱-硅酸凝胶,遇水膨胀,使砼胀裂。
❖对策:选择低含碱量的水泥,限制活性骨料含量,高砼
4)砼塑性坍落引起的裂缝
❖对策:控制水灰比,采用适量减水剂,不漏振,不过振,避免
泌水现象,在砼终凝前抹面压光。
5)冰冻引起的裂缝
❖水在结冰时体积增加,孔道中水结冰会使砼胀裂。
6)钢筋锈蚀引起的裂缝
❖钢筋锈蚀是电化学反应,钢筋生锈体积膨胀,产生顺筋
裂缝,导致砼保护层剥落,影响结构耐久性。
❖对策:提高砼密实度和抗渗性,适当加大保护层厚度。
三、偏心受拉构件
把钢筋换算为砼截面面积,将应力折换成直线分布,引 入γ偏拉,采用迭加原理,用材料力学公式进行计算 :
Mk W0
Nk A0
偏拉ct
ftk
γ偏拉为偏心受拉构件的截面抵抗矩塑性系数。
tu
tu
tu
tu
轴拉构件应变梯度为零,γ轴拉=1 随应变梯度加大,塑性影响系数加大。
tu
tu
I0——换算截面对其重心轴的惯性矩。
为满足目标可靠指标的要求,引用拉应力限制系数ct ,
荷载和材料强度均取用标准值。
Mk m ct ftkW 0
γm是受拉区为梯形的应力图形,按抗裂弯矩相等的原则, 折算成直线应力图形时,相应受拉边缘应力比值。
γm值与截面形状有关;
γm值与假定的受拉区应力图形有关; 各种截面的γm值见附录5表4。 γm值还与截面高度h, γm值随h值的增大而减小。 乘以考虑截面高度影响的修正系数 0.7 300 ,其值不大于 1.1。h以mm计,当h>3000mm,取h=3000mm。h
受拉边缘应力为γmft 。γm为截面抵抗矩的塑性系数。 换算后可直接用弹性体的材料力学公式进行计算。
把钢筋换算为同位置的砼截面面积E As和E As’:
A0=Ac + E As + E As ’
M cr m f tW 0
W0
I0 h y0
W0——换算截面A0对受拉边缘的弹性抵抗矩;
y0——换算截面重心轴至受压边缘的距离;
Nk A0
偏拉ct
ftk
偏拉m(m1) A0Nckt ftk
Mk W0
mNk
A0
mct
ftk
e0
Mk Nk
Nk
mct ftkA0W0 e0A0 mW0
e0——轴向拉力的偏心距;
四、偏心受压构件
tu
tu
tu
tu
γ偏压大于γm,为简化计算并偏于安全取γ偏压=γm:
Mk W0
-
Nk A0
mact
tu
tu
近似:γ偏拉随平均拉应力σ=Nk/A0的大小,按线性规律在1与 γm之间变化:
σ =0时(受弯),γ偏拉=γm; σ=αctftk时(轴拉),γ偏拉=1
偏 拉 m (m 1 )c tftkm (m 1 ) A 0N c k tftk
偏心受拉构件抗裂验算公式:
Mk W0
裂缝控制等级
一级 严格不出现裂缝 二级 一般不出现裂缝
无拉应力
拉应力小于允许 值
一般为压力容器、 水池、管道、核工 作室等,以及预应 力混凝土构件
允许开裂,裂缝 三级 宽度不超出允许

一般钢筋混凝土结 构
一、轴心受拉构件 钢筋与混凝土变形协调,即将开裂时,
c=ft ; s=sEs = tuEs =Es ft / Ec = E ft
差大,引起温度裂缝。
❖减小温度差:分层分块浇筑,采用低热水泥,
埋置块石,预冷骨料,预埋冷却水管等。
2)砼收缩引起的裂缝
❖砼在空气中结硬产生收缩变形,产生收缩裂缝。 ❖对策:设伸缩缝,降低水灰比,配筋率不过高,设置构
造钢筋使收缩裂缝分布均匀,加强潮湿养护。
3)基础不均匀沉降引起的裂缝
❖对策:构造措施及设沉降缝等。
➢水工钢筋砼结构中,大部分裂缝由非荷载因素引起。
1、由荷载引起的裂缝
弯曲裂缝 剪切裂缝 (a) 竖ห้องสมุดไป่ตู้荷载下的裂缝
❖裂缝宽度计算限于由弯矩、轴心
拉力、偏心拉(压)力等引起的垂直 裂缝(正截面裂缝)。
剪切裂缝
❖剪力或扭矩引起的斜裂缝计算没
有在规(b)范地中震作反用映下的。裂缝
板底裂缝 (c) 板在竖向荷载下的裂缝
ftk
e0
Mk Nk
Nk
mct ftkA0W0
e0A0 W0
§8.2 裂缝开展宽度验算
一、裂缝的成因和对策
➢砼结构中存在拉应力是产生裂缝的必要条件。 ➢当混凝土拉应变达到极限拉应变tu 时出现裂缝。 ➢裂缝分荷载和非荷载因素引起的两类 。 ➢非荷载因素如温度变化、砼收缩、基础不均匀沉降、
塑性坍落、冰冻、钢筋锈蚀及碱一骨料化学反应等都能 引起裂缝。
❖对策:合理配筋,控制钢筋应力
不过高,钢筋直径不过粗。
(d) 剪力墙在地震作用下的裂缝
2、由非荷载因素引起的裂缝
温度变化 混凝土收缩 基础不均匀沉降
冰冻 钢筋锈蚀 ……….
1)温度变化引起的裂缝
❖ 温度变化产生变形即热胀冷缩。变形受到约束
,就产生裂缝。
❖对策:设伸缩缝,减小约束,允许自由变形。 ❖大体积砼,内部温度大,外周温度低,内外温
第8章 钢筋混凝土构件正常使用极限状态验算

3 4
结构的功能要求:
5
6
7
安全性

适用性

8 章
耐久性
结构的极限状态:
承载能力极限状态
正常使用极限状态
§8.1 抗裂验算
一般混凝土结构都是带裂缝工作的,裂缝对混凝土结构 有以下不利影响:
影响外观,产生不安全感 缩短混凝土碳化到达钢筋的时间,钢筋提早锈蚀 侵蚀环境中,加速钢筋锈蚀 水头较大时,产生水力劈裂现象
相关文档
最新文档