数形结合与几何直观-(2012)
几何直观—与数轴相关的数形结合问题 教学设计

几何直观—与数轴相关的数形结合问题教学设计几何直观—与数轴相关的数形结合问题教学设计一、引言在数学教学中,几何直观的理解对学生的数学学习至关重要。
数轴作为数学中的重要工具,是帮助学生理解数学概念的重要手段之一。
本文将围绕几何直观与数轴的关系展开讨论,结合数形结合问题的教学设计,帮助学生更好地理解和应用数学知识。
二、数轴的基本概念1. 数轴的定义数轴是一条直线上按照一定的单位长度刻度的线段,通常用于表示实数。
数轴上将实数与坐标一一对应,帮助我们直观地理解数的大小和大小之间的关系。
2. 数轴的特点数轴上的任意一点都可以与实数一一对应,数轴上距离原点越远的点对应的实数值也越大。
通过数轴,我们可以直观地比较不同实数的大小,并且进行加减乘除运算。
三、数形结合的教学设计在教学中,我们可以结合数轴的几何直观,帮助学生更好地理解数学概念。
以下是针对数形结合问题的教学设计:1. 引入实际问题引入一个与学生生活相关的实际问题,例如买菜花了多少钱、走路花费了多少时间等等。
2. 绘制数轴让学生自己绘制数轴,并在数轴上标出相关的数值。
通过绘制数轴,让学生更直观地理解数值之间的大小关系。
3. 解决问题让学生通过数轴来解决实际问题,比如计算买菜花了多少钱、走路花费了多少时间等等。
通过解决问题,让学生对数轴的应用有更深刻的理解。
四、个人观点和理解数轴作为一种几何直观的工具,在数学教学中有着重要的作用。
通过数轴,学生可以更直观地理解数值之间的大小关系,并且解决实际问题。
在教学中,我们应该注重培养学生对几何直观的理解和应用能力,让他们在数学学习中更加自信和熟练。
五、总结通过本文的讨论,我们可以看到几何直观与数轴的关系对于数学教学的重要性,并且结合数形结合问题的教学设计,帮助学生更好地理解和应用数学知识。
在今后的教学中,我们应该注重培养学生的几何直观,让他们在数学学习中更加得心应手。
六、参考资料- 张三, 《数学教学研究》,2008年。
巧用数形结合优化几何直观——以“行程问题”教学为例

[摘要]在数学学习中,数形结合是重要的数学思想,也是最常用的解决问题方法之一。
数形结合可以将抽象的信息、复杂的数量关系用几何图形直观地呈现出来,使问题由抽象变具体、由复杂变简单,有利于培养学生解决问题的能力。
[关键词]数形结合;几何直观;行程问题;小学数学[中图分类号]G623.5[文献标识码]A[文章编号]1007-9068(2019)21-0030-02“行程问题”是小学数学的教学内容之一,一般以应用题的形式出现,有着丰富的变式。
下面,我就以“行程问题”的教学为例,谈谈如何巧用数形结合,优化几何直观,促进学生的数学学习,构建高效的数学课堂。
一、“行程问题”教学案例小学阶段,“行程问题”最早出现在人教版小学数学四年级上册教材,在人教版小学数学五年级上册第五单元中设计和编排了列方程解决“行程问题”的内容。
“行程问题”具体是指与速度、时间以及路程有关的数学问题,其中的数量关系式有“速度×时间=路程”“路程÷时间=速度”“路程÷速度=时间”。
在“行程问题”中,涉及的数有整数、小数和分数;设计的运动变化情况也很多,如单个物体运动、两个或两个以上的物体运动;运动方向有相向运动、同向运动以及背向运动。
在实际教学中,教师可先基于学生已有的知识经验,引导学生利用数形结合分析和理解题中的数量关系,找到未知数,再让学生依据等量关系列出正确的方程,最后解决问题。
为此,我对人教版小学数学五年级上册“行程问题”的教学进行改进,巧用数形结合,优化几何直观,引导学生解决问题。
教学片段1:(1)出示教材第79页的例5。
师:题中的已知条件和要求的问题是什么?生1:已知条件为“小林家和小云家相距4.5千米”“小林的骑车速度是0.25千米/分钟”“小云的骑车速度是0.2千米/分钟”,要求的问题是“两人何时相遇”。
师:求“两人何时相遇”是什么意思?(生答略)师(总结):这里的路程已经不是指一个人行驶的路程了,而是指两个人行驶的路程之和,那么相遇时间就是指两个人共同行驶完全程用的时间。
数形结合,建立几何直观意识

综合论坛93摘 要:数形结合可以将抽象的数学理论进行转化,将抽象的数学逻辑具体化,使学生可以在探究数量关系的时候,充分理解和掌握立体几何知识,从而帮助学生建立几何直观意识。
目前,许多小学数学课堂忽略了数形几何对于培养学生几何直观思想的重要作用。
下面,本文将从开展数形结合教学的几点途径入手谈一谈如何在小学课堂上培养学生的几何直观意识。
关键词:数形结合;几何直观;数量关系;多元化几何直观思想主要是指学生对于数学图形的分析能力和理解能力。
在小学数学教学过程中,由于学生的抽象思维不完善,对于一些抽象的数学问题,教师可以采取数形结合的教学方法,在抽象图形中分析数学概念和原理,使学生在探究数量关系、分析图形运动的过程中,对于抽象图形从数学逻辑的角度进行分析。
一、动手画图,梳理数量关系绘制简图是学生解决几何问题的一个良好的学习习惯。
对于一些比较复杂描述比较多的题目,教师可以鼓励学生绘制简图来梳理题目中的数量关系,帮助学生进行分析。
简图的绘制可以体现出学生的思维发展,在帮助学生理清数学思路的同时,使学生更好地进行数量关系的分析。
例如在学习“面积”这节课时,同学们除了需要掌握面积的计算公式以外,还需要了解到面积这个概念在生活中的作用,并学会利用面积来进行数量关系的分析。
例如在题目“将边长是8米的正方形花园篱笆进行拆除,如果改成一个宽为40分米且有一条长边靠墙的长方形,求围成的长方形的面积”在这个题目中,同学们可以绘制一个简图来分析数量关系。
同学们首先要明确边长8米的正方形的周长为32米。
这32米的篱笆是进行花园改造的基础。
也就是说长方形的一条长边和两条短边的长度加起来等于32米。
同学们可以发现其中的数量关系,然后可以得出长方形的长边b=24m,该长方形的面积为96平方米。
同学们还需要注意其中的单位转化问题,注意将分米转化成米再进行计算。
将数字标注在图形上,可以使学生快速地获得数量关系式,使学生准确地完成计算。
在绘制简图的时候,学生可以将自己的思路和数字标注在简图上,将题目转化成一个比较简单的图形关系进行分析。
数形结合 PPT课件

11
例、如图在 ABC 中,已知 AB AC, CF、BE 分别是AB、AC边上的高, 求证:AB CF AC BE
分析:要证AB CF AC BE
只需证AB ACsin A AC ABsin A 即证AB AC (AB AC)sin A
一、数形结合方法:就是在研究数学问题时,由数思形、 见形思数、数形结合考虑问题的一种思想方法。
1、解析几何就是数形结合的光辉典范。 2、三大几何问题:化圆为方、倍立方体、三等分任意角
二、数形结合方法的应用 1、构造几何图形解决代数问题
例1、已知 x, y, z, r 都是正数,并且x2 y2 z2 , z x2 r 2 x2 求证:rz xy
证明:考虑单位正方形ABCD,对角线AC BD 2
AO a 2 b 2 BO (1 b)2 a 2
Aa
D
CO (1 a)2 (1 b)2 DO (1 a)2 b 2 由于AO CO AC BO DO BD
b O
所以原不等式成立,当且仅当AC BD O 时
我国著名数学家华罗庚曾写过一首描写数形结合的诗
数形本是两依倚,焉能分作两边飞。
数缺形时少直观,形少数时难入微。
数形结合百般好,隔离分家万事休。
几何代数统一体,永远联系莫分离。
13
2019/9/13
14
由相交弦定理可得(b z)a b(x a)EF AB Q (b y)a b(z a)EF CD R
ax by(1) 即az bx(2)
ay z) b (x y z) 由x y z 0 得a b代入(1)(2)(3)得x y z 即PQR为等边三角形
几何直观与数形结合的联系与区别

几何直观与数形结合的联系与区别【几何直观与数形结合的联系与区别】1. 引言在数学领域中,几何直观和数形结合是两个重要的概念,它们在数学学习过程中都扮演着非常重要的角色。
在本文中,我们将探讨几何直观和数形结合的联系与区别,以帮助读者更好地理解这两个概念。
2. 几何直观的概念几何直观是指人们对几何空间、形状和位置关系的直观理解和感知。
它是一种非形式化的数学思维方式,通常通过观察、图像和实物来帮助我们理解几何问题。
几何直观在初等数学教育中占据着重要地位,它可以帮助学生更直观地理解几何概念,从而提高数学学习的效果。
3. 数形结合的概念数形结合是指在数学学习中将几何形状和数学概念相结合,通过数学方法来研究几何问题。
数形结合可以帮助我们更深入地理解几何形状的性质、特点和变化规律,从而在解决实际问题时能够运用数学方法进行分析和求解。
4. 几何直观与数形结合的联系几何直观和数形结合在数学学习中并不是孤立的概念,它们之间存在着密切的联系。
几何直观为数形结合提供了直观的感受和图像化的理解,而数形结合则为几何问题的深入研究和分析提供了数学化的手段和方法。
通过几何直观和数形结合的联系,学生可以更全面地理解几何概念,并通过数学方法对几何问题进行更深入的探究。
5. 几何直观与数形结合的区别尽管几何直观和数形结合在数学学习中有着密切的联系,但它们又有着一定的区别。
几何直观更强调直观感受和视觉化的理解,注重学生对几何空间和形状的感知;而数形结合更注重数学方法和理论知识的应用,强调数学工具在解决几何问题中的作用。
几何直观和数形结合在数学学习过程中各自发挥着不同的作用,相辅相成,共同促进着学生对几何问题的全面理解。
6. 个人观点和理解就个人而言,我认为几何直观和数形结合在数学学习中都非常重要。
几何直观可以帮助我们更直观地理解几何概念,激发学生对数学的兴趣;而数形结合可以帮助我们深入研究几何问题,提高数学问题的解决能力。
我认为教学中应该注重几何直观的培养,同时也要注重数形结合的训练,以帮助学生全面、深刻地理解几何概念。
多维观察,形象直观——谈小学数学第二学段几何直观解决问题的教学策略

多维观察,形象直观——谈小学数学第二学段几何直观解决问题的教学策略摘要:几何直观能力是小学数学核心素养的重要组成部分,对小学生的数学发展有重要价值。
小学第二学段学生具备一定的形象思维能力,有助于发展几何直观能力。
在小学数学第二学段教学中,教师引导学生采用几何直观方法解决问题,可以帮助学生深度理解问题,形成高效的问题解决策略。
教师可以采用的基本方法是引导学生转换视角、动态观察、数形结合。
关键词:小学数学;第二学段;几何直观;解决问题;教学策略小学数学教学重视思想方法的渗透,这是发展学生数学核心素养的基本策略。
几何直观能力是小学数学核心素养的重要组成部分,也是用来解决问题的有效策略。
几何直观能力是指学生通过思维构建几何模型,进而寻找出解决问题方法的一种能力。
由于小学生几何直观能力比较薄弱,教师需要借助针对性的教学策略来调动学生的相关思维,从而顺利地解决问题。
小学第二学段是指三、四年级。
此学段的学生已经具备初步的观察能力,可以学习多维观察的方法。
下面结合具体实例,从三个方面探讨小学数学第二学段几何直观解决问题的教学策略。
一、转换视角,全面认知视角是指观察事物的角度。
如果仅用一个视角来观察事物,会遗漏到物体的许多细节,也就无法全面地认识事物。
因此,观察事物要多视角。
在小学数学教学中,教师往往只将问题的一个侧面或者少数几个侧面展示给学生,导致学生观察问题的视角受限,无法挖掘出解决问题的方法。
面对这一问题,教师可以采用转换视角的教学策略:一方面,教师主动地将问题的各个侧面展示给学生,引导学生全面观察;另一方面,教师引导学生自主寻找观察问题的角度,构建对事物的全面认知。
比如,进行北师大版小学数学四年级下册“图形的分类”教学时,教师可以引导学生转换视角,全面地观察各种图形,科学地对各种图形进行分类。
首先,教师使用3D课件展示一个圆柱体和一个球体,圆柱体的顶部对着学生。
教师提出问题:“你们观察到的各是什么图形?”几乎所有学生认为他们观察到的是“圆形”。
2025年中考数学思想方法复习系列 【数形结合】几何图形中的数形结合思想(解析版)

几何图形中的数形结合思想知识方法精讲1.完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)2.平方差公式的几何背景(1)常见验证平方差公式的几何图形(利用图形的面积和作为相等关系列出等式即可验证平方差公式).(2)运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.3.七巧板(1)七巧板是由下面七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边形.(2)用这七块板可以拼搭成几何图形,如三角形、平行四边形、不规则的多角形等;也可以拼成各种具体的人物形象,或者动物或者是一些中、英文字符号.(3)制作七巧板的方法:①首先,在纸上画一个正方形,把它分为十六个小方格.②再从左上角到右下角画一条线.③在上面的中间连一条线到右面的中间.④再在左下角到右上角画一条线,碰到第二条线就可以停了.⑤从刚才的那条线的尾端开始一条线,画到最下面四份之三的位置,从左边开始数,碰到线就可停.⑥最后,把它们涂上不同的颜色并跟著黑线条剪开,你就有一副全新的七巧板了.4.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.5.坐标与图形变化-对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.(2)关于y轴对称纵坐标相等,横坐标互为相反数.(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m﹣a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n﹣b)6.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.7.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)8.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.9.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.10.数形结合思想1.数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
2012届新课标数学考点预测(26)数形结合的思想方法

2012届新课标数学考点预测(26)数形结合的思想方法《2009年新课标考试大纲》明确指出“数学知识是指《普通高中数学课程标准(实验)》中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法”。
其中数学思想方法包括: 函数与方程的思想方法、 数形结合的思想方法 、 分类整合的思想方法、 特殊与一般的思想方法、 转化与化归的思想方法、 必然与或然的思想方法。
数学思想方法是对数学知识内容和方法的本质认识,是对数学的规律性的理性认识。
高考通过对数学思想方法的考查,能够最有效地检测学生对数学知识的理解和掌握程度,能够最有效地反映出学生对数学各部分内容的衔接、综合和渗透的能力。
《考试大纲》对数学考查的要求是“数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构” 。
而数学思想方法起着重要桥梁连接和支称作用,“对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度” 。
“ 数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。
” 数学的思想方法渗透到数学的各个角落,无处不在,有些题目还要考查多个数学思想。
在高考复习时,要充分认识数学思想在提高解题能力的重要性,在复习中要有意识地渗透这些数学思想,提升数学思想。
数形结合的思想方法数形结合思想是一种很重要的数学思想,是数学研究的对象是数量关系和空间形式,即数与形两个方面,把数量关系的研究转化为图形性质的研究,或者把 图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4只脚
2只脚
8个头
无论什么策略都有培养的过程。
• 线段图是一种重要的解题策略; • 新加坡的模型法与此类似,从小培养学生 标准画图,找到“标准量”为突破口;
线段图典型题
• 明明和佳佳共520元,明明花去自己钱的 2/5,佳佳花去40元,他们所剩的钱一样多, 明明原来有多少钱? • 8个单位=520—40=480
0.01
1 100
÷10
1 1000
0.001
运算中的直观
数轴上直观表示
• •
加法就是往右移,减法就是往左移。 乘法就是往右移动相同的格数;
分数四则运算
• 分数的运算与整数 的运算结合起来。 • 分数是分数单位的 累加,分数的运算 也就是分数单位相 同后整数的运算。
分数四则运算
• 借助直观模型。
பைடு நூலகம்位数乘两位数
竖式计算 28 ×15 140 28 420
竖式计算 28 ×15 240 18 420
横式计算: 28×15 = 20×10 + 20×5 + 10×8+ 5×8 = 200 + 100 + 80 + 40 = 420。
• 中国古代算法:铺地锦
问题
• 67×98,66×99,哪个乘积大?
明明
520
佳佳 40
重视利用线段图
• 在解决问题的过程中才能发现问题; • 在画线段的过程中才能学会画线段图; • 简单的问题为了解决这个问题可以不画线 段图,但是将来为了能用线段图来解决复 杂的问题,可能就需要开始学习画线段图;
几何直观:归一问题
综合实践中的直观策略
★逻辑思维能力
数独
二维和三维之间的转换
• 策略4:假设全是鸡,也可以假设全是兔, 也可以假设一半是鸡一半是兔;
• 策略5:方程思路:用□表示鸡的只数,用 ○表示兔的只数,根据已知条件可以发现 □+○=8,2□+4○=22;由此可以得到 2(□+○)+2○=22,2○=22-16,○ =3。
• 策略6:面积图,利用长方形面积公式来计 算组合图形的面积。
例谈数形结合与几何直观
LITAN SHUXINGJIEHE YU JIHEZHIGUAN
唐彩斌
tangcaibin@
课程标准2011版
从双基到四基
• 双基:基础知识,基本技能。 • 四基:基础知识、基本技能、 基本活动经验,基本思想;
数学课程标准 2011版
从两能到四能
• • • • 分析问题; 解决问题; 发现问题; 提出问题;
乘法分配律的直观模型。
7
2
3
9 8 7 6 5 4 3 2 1
4+9=13
8+5=13
0 1 2 3 4 5 6 78 9
20以内进位加法 :
• 分数的大小比较
坐标与图形 :
y
4 3 2 1
D
A
B
o
1
2
3
4
5
6
7
x
• 用数对表示C点的位置;并画出这个长方形 的另外两条边。 • 如果以BC所在的直线为对称轴作出这个长 方形的轴对称图形,请用数对表示A点所对 应的点的位置。 • 将这个长方形向上平移一格,用数对表示 出移动后长方形四个顶点的位置。
最后的画与最后的话:
这是一棵什么树? 这是一棵勾股树。也称智慧树。
Thanks。
欢迎访问新思维数学网
http:
唐彩斌
备注:“义务教育数学课程标准”2011版,北京师范大学出版社。
提纲
• • • • • 数与形的结合 数概念的直观; 运算的直观; 运算规律的直观; 解决问题中的直观;
数概念中的直观
从数到运算
单位“1”
1 3 0
1 1
1
2 5 0 5 8 0
怎么找3.1415?
÷10
1 10
÷10
1
0.1
解决问题中的直观策略
• 欧拉解决哥尼斯堡“七桥问题”。
怎样让学生学会?
• 有一桶油,第一次取出这桶油的20%, 第二次取出12千克,两次共取出这桶油 的1/2,这桶油共多少千克? • 画线段图: • 画草图:
12千克
这桶油的20%, 这桶油的1/2
鸡兔共8只,有22只脚,鸡兔各有多少 只?
策略1:尝试与猜想:1只鸡,7只兔,腿 的总条数是30,腿多了,减少兔子的数量, 再尝试; 策略2:列表尝试:鸡兔各4只,那么腿24 只,腿少了,增加鸡的数量,再尝试; 策略3:用画图的方法,先按照都是鸡画 好,再在此基础上添上腿,添上2只腿就 表明多了1只兔。
四棵树,怎样栽,使得任两棵树之间距 离相等?
怎样用形来帮助思考?
5个朋友参加完聚会,一一道别,如果每 两人都握一次手,一共要握多少次手?
A
B
C
D
E
数形结合诗
华罗庚
数形本是相依偎, 焉能纷作两边飞. 数缺形时少直观, 形少数时难入微. 数形结合百般好, 割裂分家万事休. 几何代数统一体, 永远联系莫分离.
数学课程标准 2011版
从6大核心到10大核心
应用意识
数感
符号感
推理能力
统计观念
空间观念
10大核心素养
应用意识 创新意识
数感
符号意识
推理能力
模型思想
数据分析 观念 几何直观
运算能力
空间观念
几何直观
• 几何直观是指利用图形描述和分析问题。 • 借助几何直观可以把复杂的数学问题变得 简明、形象,有助于探索解决问题的思路, 预测结果。 • 几何直观可以帮助学生直观地理解数学, 在整个数学学习过程中都发挥着重要作用。
运算规律中的直观
加法交换律
• • • • • • 感受不完全归纳 列出算式; 计算结果; 提出猜测; 举例验证; 得出结论。
加法结合律
情境的现实性 与数学的规律 性很一致。
乘法分配律
• 从计算长方形周长的过程中,长×2+宽×2=(长 +宽)×2;引出乘法分配律; • 用乘法分配律解释两位数乘两位数的原理;