有关现值汉密尔顿函数的注解

合集下载

经济数学 CH7 动态最优化:最大值原理

经济数学 CH7 动态最优化:最大值原理
汉密尔顿函数: H(c,k,t,μ)=e-ρtlog(c)+μ(kα-c-δk)
2016/10/31
10
最优化的一阶条件为: (1)H c e- t (1/ c)- =0和(2)H k ( k 1 ) 横截性条件为: lim[ () t ( k )] t 0
t
2016/10/31
如果令ρ=0.06,δ=0且α=0.3,那么这个系统就是以前研 究过的非线性系统。
11
四、多变量的动态最优化

现在考虑一个具有n个控制变量和m个状态变量的 更一般的动态问题。选择控制变量最大化:

T
0
u[k1 (t ),..., km (t ); c1 (t ),..., cn (t ); t ]dt , 受约束于
0 0
是一个不变的贴现率,e t 是贴现因子。
在现值汉密尔顿函 数中,影子价格μ t H e u (k , c) g (k , c, t ) 表示以0时的效用单 位来衡量t时资本存 量的价值。 2016/10/31
构造现值汉密尔顿函数
8




2、当期汉密尔顿函数 为了方便,有时也会从当期值价格(current-value price) 来重构这个问题。 当期值价格:以t时的效用单位来衡量t时的资本存量的价 格。 把现值汉密尔顿函数改写为: H=e-ρt[u(k,c)+q(t)g(k,c,t)] 其中,q(t)=μ· eρt,为当期影子价格。定义H*=Heρt为当期 汉密尔顿函数:H*=u(k,c)+q(t)g(k,c,t)
2016/10/31 13
五、离散模型的最大值原理
问题: max V (0) v(kt , ct )

索罗模型

索罗模型
根据丹尼森的研究,1909-1957年间美国的实际产出的年增长率为2.9%, 工时数的增长率为1.3%,资本存量的增长率为2.4%。这些数据的显著特 征是长期稳定性。即使我们以大萧条的谷底(1933年)为起点,那么到 1957年,这段时间的平均增长率也仅有5%。如果以任何一种合理方式 (即使用峰期到峰期的增长率)剔除商业周期的影响,在任何一个我们 有数据的足够长的随后时期中,美国的产出增长都围绕3%波动,且波动 幅度不超过0.5个百分点。
那么,储蓄率是否越高越好呢?
N(t) c(t) K(t)
+
K ( K(
t t
) )
=
A(t)
K(t)β−1
N(
)t 1−β
=
ρ
+σκ β
.
(7)
根据平衡增长路径定义,K (t) / K (t)是常数,所以方程(7)意味着
N (t)c(t) / K (t)也是常数,令 D = 1 Nc, 求全微分,得:
K
0
=
K K
(t) (t)
设人均消费的增长率 c(t) / c(t) = κ
1)资本价格增长率 ( −σκ )
由方程(3)得到:
c−σ = θ ⇒ − σ ln c = lnθ θ(t) /θ = −σκ
⇒ θ = −σ c
θ
c
可见,沿着平衡增长路径资本价格增长率为常数。
19
2)资本的边际产出( ρ + σκ )
从方程(4)我们得到:
θ = ρ − βA(t)N (t)1−β K (t)β −1 θ
将 θ(t) /θ = −σκ 代入上式,资本的边际产出为:
β A(t)N (t)1−β K (t)β −1 = ρ + σκ

第十章_具有约束的最优控制问题

第十章_具有约束的最优控制问题

G ( t , y , u ) [ 的运动方程
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为:T 最优控制问题: 最大化 0 F ( t , y , u ) dt
T
例2 解以下最优控制问题:

最大化 0 1 dt y yu 满足
y (0) 5 y ( T ) 11 T 自由
T


u ( t ) [ 1,1]
它具有一个受约束的控制变量,该控制集合可视为 两个不等式约束:
1 u (t ) 和 u (t ) 1
汉密尔顿函数: H 拉格朗日函数:
u
对于所有 t [ 0 , T ]
]
H y [ 的运动方程 ]
y
H
[ y 的运动方程
(t ) 常数
( T ) 0 [ 横截条件 ]
四、不等式积分约束 T 最优控制问题: 最大化 0 F ( t , y , u ) dt y f (t, y , u ) 满足
y H H
u
F (t, y , u ) f (t, y , u ) G (t, y , u )
[ y 的运动方程
[ 的运动方程
]


[ 的运动方程
]
[ 的运动方程
]
( T ) 0 [ 横截条件 ]
上页的最大值原理可简化为:
Max H
]
]
( T ) 0 , ( T ) k 0 , ( T )[ ( T ) k ] 0 [ 的横截条件

第十章_具有约束的最优控制问题

第十章_具有约束的最优控制问题

对于给定的 ,或者 关于( y , u ) 对所有t [ 0 , T ] 是凹 的,或者 H 0 关于 y 对于所有t [ 0 , T ] 是凹的。
如果是无限水平问题,充分性定理仍然适用,但是要 加上一个补充性条件:
T
lim ( t )[ y ( t ) y ( t )] 0
G ( t , y , u ) [ 的运动方程
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为:T 最优控制问题: 最大化 0 F ( t , y , u ) dt
]
H y [ 的运动方程 ]
y
H
[ y 的运动方程
( T ) 0 [ y 的横截条件
( t ) 常数 0

]
k
G ( t , y , u ) dt
0
T
0
k
G ( t , y , u ) dt 0 0
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为: 最优控制问题: 最大化 F ( t , y , u ) dt 0 y f (t, y , u ) 满足
(10 . 43 ) (10 . 44 ) (10 . 45 ) (10 . 47 )

动态最优化第10讲 具有约束的最优控制问题

动态最优化第10讲 具有约束的最优控制问题

最大值原理条件:
0 对于所有的t 0,T
u
c g 0, 0, 0
dy dt
d
dt y
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(5)现值哈密尔顿函数和拉格朗日函数
引入新的乘子: m et (隐含 met)
n et (隐含 net)
汉密尔顿函数和拉格朗日函数:
Gt,
y, u dt
0
Γ
T
T
0
Gt,
y,
u
dt
k
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(4)不等式积分约束
问题重新表述为:
(2个状态变量的无约束问题,新变量具有截断终结线)
Max
T
0
F
t,
y,
u
dt
S.T. dy f t, y,u
dt
dΓ Gt, y,u
dt
y0 y0 yT 自由 (y0 ,T给定)
dt
又由于:汉密尔顿函数H独立于Γ ,
所以有:d H 0 t 常数
dt Γ 最大值原理条件重新表述为:
Max H u
dy H
dt
对于所有的t 0,T
d H t 常数
dt y
T 0
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(3)等周问题
等周问题简便解法:
构造拉格朗日函数(增广汉密尔顿函数):
u1
0
u1
3
0
0 0 0
u2
u2
0 i
0,i
0,i
0 i
0
i
0,i
0,i

第八章_对最优控制的进一步讨论

第八章_对最优控制的进一步讨论


T
0
* [ f ( t , y , u ) f ( t , y * , u * ) f y ( t , y * , u * )( y y * ) f u ( t , y * , u * )( u u * )] dt 0
*
V V 0
b)若 f 关于 y 和 u 线性,那么 (t ) 无须不等式约束。
0
f u ( t , y , u )( u u )] dt
* * *
( 8 .3 1)
以上推导得到:
[ f ( t , y , u ) f ( t , y , u ) f y ( t , y , u )( y y ) (8 .3 1) 0 * * * f u ( t , y , u )( u u )] dt * * * * * * * * f ( t , y , u ) f ( t , y , u ) f y ( t , y , u )( y y ) f u ( t , y , u )( u u ) (8 .3 0)
f ( t , y , u ) f ( t , y , u ) f y ( t , y , u )( y y ) f u ( t , y , u )( u u ) 0 (8 .3 0)
* * * * * * * *
V V 0
*
曼加萨林充分性定理不但适用于垂直终结线问题, 也适用于固定端点或截断垂直终结线问题。
*
(8.29)
以上推导得到: Fu ( t , y , u ) f u ( t , y , u ) * * * * f ( t , y * , u * ) Fy (t , y , u ) y

利率变动的储蓄效应分析

利率变动的储蓄效应分析
-4-
(2003),认为有四个原因,一储蓄首先是收入的函数,其次才是利 率的函数。人们在取得收入后首先必须满足消费。在收入较少时,主 要满足自身的基本消费,利率再高,也不能增加储蓄。只有当收入较 高的条件下,利率的变动才会对储蓄产生一定的影响。二储蓄利率可 能存在同方向变动关系和反方向变动关系。两种变动关系共同作用交 织在一起,导致利率变动对储蓄的影响不显著。三人们对未来收入与 支出的预期不明确。在未来充满不确定的情况下,利率很低,甚至实 际利率为负,人们也必须进行预防性储蓄。四投资机会的缺乏是我国 储蓄存款缺乏利率弹性的又一重要原因。
凯恩斯(Keynes)没有直接论及利率与储蓄之间的关系。在凯恩 斯的理论中,将人们持有货币的动机分为三类:交易动机、谨慎动机 和投机动机。凯恩斯认为交易动机和谨慎动机,“主要取决于经济体 系发展水平以及货币所得之大小。”4凯恩斯认为利率的重要性主要体 现在对货币投机需求的作用上。在投机需求上,凯恩斯将资产分为货 币和债券两类,人们会根据两类资产的预期收益进行选择。关于凯恩 斯的理论,Baumol,Tobin,Warren 等经济学家分别对这三种动机的 货币需求理论进行了发展。Baumol 提出了交易需求的利率弹性的平 方根公式。Tobin 从资产选择理论出发,讨论了利率与交易货币需求 的关系。Warren 提出了谨慎需求的利率弹性的立方根公式。Tobin 在 凯恩斯货币需求理论的基础上建立了他的投机性货币需求模型。在他 们的理论中,虽然没有直接提及储蓄,但是持有货币一定程度上是一 种储蓄行为。他们的研究对于现代金融体系下的居民货币资产安排, 具有很大的理论意义。
2. 利率储蓄弹性:财富安全线模型
我们来描述这样的现象:对于一个存款 10 万元的居民来说,提 高 1%的存款利率,意味着一年增加 1000 元的收入。如果年收入为 5 万元,相较于年收入利息增长很小,居民不会因为利率的提高而增加 当前消费减少储蓄,利率与储蓄呈现正相关变化。但如果对于一个存 款 500 万元的居民来说,提高 1%的利率,意味着一年能增加 5 万元 的利息收入。对比同样为 5 万元的年工资收入。这种比较可观的收入 增长会让居民认为自己在当前可以进行更加宽裕的消费,从而减少储 蓄。

卢卡斯文论经济增长的机制

卢卡斯文论经济增长的机制

罗伯特·卢卡斯论经济增长的机制*1988I.作者简介罗伯特·卢卡斯(Robert E. Lucas, Jr.)1937年,卢卡斯生于华盛顿的雅奇马。

1955年,卢卡斯从西雅图的罗斯福公立学校高中毕业。

1959年,卢卡斯在芝加哥大学本科毕业,获得历史学学士学位。

于1964年获得芝加哥大学的经济学博士学位。

1963年,于卡内基工学院(现卡内基——梅隆大学)任教,在此期间,卢卡斯的经济动力学的全部观点逐渐成形。

卢卡斯于1970年完成、1972年发表代表作《预期和货币中性》,货币中性是他获得诺贝尔奖的演讲主题之一。

1974年卢卡斯回芝加哥教书。

1980年成为芝加哥的约翰·杜威有优异贡献教授。

1995年卢卡斯以其对“理性预期假说的应用和发展”所作的贡献而获得了诺贝尔经济学奖。

卢卡斯首要的理论贡献是开创并领导一个新的宏观经济学派——理性预期学派(又称新古典宏观经济学派),倡导和发展了理性预期与宏观经济学研究的运用理论,深化了人们对经济政策的理解。

此外,他在经济周期理论、宏观经济模型构造、计量方法、动态经济分析以及国际资本流动分析等方面都做出了卓越的贡献。

主要著作有:《理性预期与经济计量实践》(Rational Expectations and Econometric Practice,与T.J.萨金特合著,University Minnesota Press,1981年)《经济周期理论研究》(Studies in Business-Cycle Theory, MIT Press,1981年)《经济周期模型》(Models of Business Cycles, Wiley-Blackwell, 1991年)《经济动态学中的递归法》(Recursive Methods in Economic Dynamics, Harvard University Press, 1989年)II.论著摘要罗伯特·卢卡斯创作了《论经济发展的机制》一文并于1988年发表于《货币经济学杂志》上,这被认为是他的人力资本内生增长理论的经典文章。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Part 3. The Essentials of Dynamic OptimisationIn macroeconomics the majority of problems involve optimisation over time. Typically a representative agent chooses optimal magnitudes of choice variables from an initial time until infinitely far into the future. There are a number of methods to solve these problems. In discrete time the problem can often be solved using a Lagrangean function. However in other cases it becomes necessary to use the more sophisticated techniques of Optimal Control Theory or Dynamic Programming . This handout provides an introduction to optimal control theory.Special Aspects of Optimisation over Time• Stock - Flow variable relationship.All dynamic problems have a stock-flow structure. Mathematically the flow variables are referred to as control variables and the stock variables as state variables. Not surprisingly the control variables are used to affect (or steer) the state variables. For example in any one period the amount of investment and the amount of money growth are flow variables that affect the stock of output and the level of prices which are state variables.• The objective function is additively seperable. This assumption makes the problem analytically tractable. In essence it allows us to separate the dynamic problem into a sequence of separate (in the objective function) one period optimisation problems. Don't be confused, the optimisation problems are not separate because of the stock-flow relationships, but the elements of the objective function are. To be more precise the objective function is expressed as a sum of functions (i.e. integral or sigma form) each of which depends only on the variables in that period. For example utility in a given period is independent of utility in the previous period.1. Lagrangean TechniqueWe can apply the Lagrangean technique in the usual way.Notationt y = State variable(s) =t μControl variable(s)The control and state variables are related according to some dynamic equation,()t y f y y t t t t ,,1μ=-+ (1)Choosing t μ allows us to alter the change in t y . If the above is a production function we choose =t μ investment to alter t t y y -+1 the change in output over the period. Why does time enter on its own? This would represent the trend growth rate of output.We might also have constraints that apply in each single period such as,()0,,≤t y G t t μ(2)The objective function in discrete time is of the form,()∑=Tt ttt y F 0,,μ(3)The first order conditions with respect to t y are,1. Optimal Control TheorySuppose that our objective is maximise the discounted utility from the use of an exhaustible resource over a given time interval. In order to optimise we would have to choose the optimal rate of extraction. That is we would solve the following problem,()()dt e E S U Max t TEρ-⎰0subject to,()t E dtdS-= )0(S S =()free T S =Where ()t S denotes the stock of a raw material and ()t E the rate of extraction. By choosing the optimal rate of extraction we can choose the optimal stock of oil at each period of time and so maximise utility. The rate of extraction is called the control variable and the stock of the raw material the state variable. By finding the optimal path for the control variable we can find the optimal path for the state variable. This is how optimal control theory works.The relationship between the stock and the extraction rate is defined by a differential equation (otherwise it would not be a dynamic problem). This differential equation is called the equation of motion . The last two are conditions are boundary conditions. The first tells us the current stock, the last tells us we are free to choose the stock at the end of the period. If utility is always increased by using the raw material this must be zero. Notice that the time period is fixed. This is called a fixed terminal time problem.The Maximum PrincipleIn general our prototype problem is to solve,()dt u y t F V Max Tu⎰=0,,()u y t f ty,,=∂∂ ()00y y =To find the first order conditions that define the extreme values we apply a set of condition known as the maximum principle.Step 1. Form the Hamiltonian function defined as,()()()()u y t f t u y t F u y t H ,,,,,,,λλ+=Step 2. Find,),,,(λu y t H Max uOr if as is usual you are looking for an interior solution, apply the weaker condition,0),,,(=∂∂uu y t H λAlong with,()•=∂∂y u y t H λλ,,,()•=∂∂λλy u y t H ,,,()0=T λStep 3. Analyse these conditions.Heuristic Proof of the Maximum PrincipleIn this section we can derive the maximum principle , a set of first order conditions that characterise extreme values of the problem under consideration.The basic problem is defined by,()dt u y t F V Max Tu⎰=0,,()u y t f ty,,=∂∂()00y y =To derive the maximum principle we use attempt to solve the problem using the 'Calculus of Variations'. Essentially the approach is as follows. The dynamic problem is to find the optimal time path for ()t y , although that we can use ()t u to steer ()t y . It ought to be obvious that,()()0=∂∂t u t VWill not do. This simply finds the best choice in any one period without regard to any future periods. Think of the trade off between consumption and saving. We need to choose the paths of the control (state) variable that gives us the highest value of the integral subject to the constraints. So we need to optimise in every time period, given the linkages across periods and the constraints. The Calculus of Variations is a way to transform this into a static optimisation problem.To do this let ()*t u denote the optimal path of the control variable and consider each possible path as variations about the optimal path.()()()t P t u t u ε+=*(3)In this case ε is a small number (the maths sense) and ()t P is a perturbing curve. It simply means all paths can be written as variations about the optimal path. Since we can write the control path this way we can also (must) write the path of the state variable and boundary points in the same way.()()()t q t y t y ε+=*(4)T T T ∆+=*ε (5)T T T y y y ∆+=*ε(6)The trick is that all of the possible choice variables that define the integral path are now functions of .ε As ε varies we can vary the whole path including the endpoints so this trick essentially allows us to solve the dynamic problem as a function of ε as a static problem. That is to find the optimum (extreme value) path we choose the value of ε that satisfies,0=∂∂εV(7) given (3) to (6).Since every variable has been written as a function of ε, (7) is the only necessary condition for an optimum that we need. When this condition is applied it yields the various conditions that are referred to as the maximum principle .In order to show this we first rewrite the problem in a way that allows us to include the Hamiltonian function,()()()dt y u y t f t u y t F V Max T u ⎪⎪⎭⎫ ⎝⎛-+=•⎰,,,, 0λWe can do this because the term inside the brackets is always zero provided the equation of motion is satisfied. Alternatively as,()()dt y t u y t H V Max Tu•-=⎰λ0,,(1)Integrating (by parts)1 the second term in the integral we obtain,()()()()()T T u y T y dt t y t u y t H V Max λλλ-+⎭⎬⎫⎩⎨⎧+=⎰•000,,(2)Now we apply the necessary condition (7) given (3) to (6).Recall that to differentiate an Integral by a Parameter we use Leibniz's rule, (page 9). After simplification this yields,()()()()[]()0,,,0=∆-∆+⎭⎬⎫⎩⎨⎧∂∂+⎥⎦⎤⎢⎣⎡+∂∂=∂∂=•⎰T T t T y T T u y t H dt t p u H t q y H V λλλεε (3)The 3 components of this integral provide the conditions defining the optimum. In particular,()()()⎰=⎭⎬⎫⎩⎨⎧∂∂+⎥⎦⎤⎢⎣⎡+∂∂•ελT dt t p u Ht q y H 00requires that,•-=∂∂λyHand 0=∂∂u HWhich is a key part of the maximum principle.The Transversality Condition1Just letdt y ydt y T TT⎰⎰••-=0λλλTo derive the transversality condition we have to analyse the two terms,()[]()0,,,=∆-∆=T T t y T T u y t H λλFor out prototype problem (fixed terminal time) we must have .0=∆T Therefore the transversality condition is simply that,()0=T λThe first two conditions always apply for 'interior' solutions but the transversality condition has to be defined by the problem at hand. For more on this see Chiang pages 181-184.The Current Value HamiltonianIt is very common in economics to encounter problems in which the objective function includes the following function t e ρ-. It is usually easier to solve these problems using the current value Hamiltonian. For example an optimal consumption problem may have an objective function looking something like,()()dt et C U tρ-∞⎰0Where ρ represents the rate of time discount. In general the Hamiltonian for such problems will be of the form,()()()()u y t f t e u y t F u y t H t ,,,,,,,λλρ+=-The current value Hamiltonian is defined by,()()()u y t f t m u y t F H CV ,,,,+=(1)Where ()()t e t t m ρλ-=. The advantage of the current value Hamiltonian is that the system defined by the first order equations is usually easier to solve. In addition to (1) an alternative is to write,()()()t t CV e u y t f t m e u y t F H ρρ--+=,,,,(2)The Maximum ConditionsWith regard to (2) the first two conditions are unchanged. That is,μμ∂∂=∂∂CV H H and λλ∂∂=∂∂CVH H (3)The third condition is also essentially the same since,•=∂∂=∂∂λyH y H CVHowever it is usual to write this in terms of •m . Since,t t me e m ρρρλ--••-=We can write the third condition as,m yH m CV ρ+∂∂-=•(4)The endpoint can similarly be stated in terms of m since t e m ρλ= the condition ()0=T λmeans that,()()0==T e T T m ρλOr,()0=-T e T m ρ(5)Ramsey model of optimal savingIn the macroeconomics class you have the following problem,Choose consumption to maximise,()()dt t c u e B U t t ⎰∞=-=0βWhere ()g θηρβ---=1 subject to the following constraint,()()()()()()t k g t c t k f t k +--=•ηIn this example ()t c u =, ()t k y =. The Hamiltonian is,()()()()()()()[]g n t c t k f t t C u Be H t +--+=-λβThe basic conditions give us,()()()()0=-'=∂∂-t t c u Be t c Ht λβ (1)()()()()()[]()t g n t k f t t k H λλ&=+-'-=∂∂ (2)Plus,()()()()()()t k g t c t k f t k +--=•η(3)Now we must solve these. Differentiate the right-hand side of (1) with respect to time.This gives you ()t λ& which can then be eliminated from (2). The combined condition can then be rewritten as,()()()()()()[]g t r t c u t c u t cθρ--'''-=&This is the Euler equation. If you assume the instantaneous utility function is CRRA as in class and you calculate the derivatives you should get the same expression.。

相关文档
最新文档