九年级上册数学:锐角三角函数

合集下载

初三数学锐角三角函数

初三数学锐角三角函数

初三数学锐角三角函数中考要求中考要求模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=.(2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:①正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数a A这些特殊角的三角函数值一定要牢牢记住! 三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A= 2.互余角三角函数关系:(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B <【例1】 已知在ABC △中,A B ∠∠、是锐角,且5sin tan 22913A B AB cm ===,,,则ABC S =△ .【巩固】如图,点A 在半径为R 的O 上,以A 为圆心,r 为半径作A ,设O 的弦PQ 与A 相切,求证PA QA ⋅为定值.【例2】 求tan1tan2tan3tan89︒⋅︒⋅︒⋅⋅︒的值【巩固】化简:22sin cos sin 1tan sin cos αααααα++--【例3】已知tan α1)221cos sin cos 1sin cos sin a ααααα-+-+,(2090α︒<<︒).【巩固】已知tan 2α=,求4sin 2cos 5cos 3sin αααα-+.【例4】 已知α为锐角,且22sin 5cos 10αα-+=,求α的度数. OQPA【巩固】若α为锐角,且22cos 7sin 50αα+-=,求α的度数.【例5】 已知sin cos αα+(α为锐角),求作以1sin α和1cos α为两根的一元二次方程.【巩固】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-.【巩固】已知:ABC △中,方程2(sin sin )(sin sin )(sin sin )0B A x A C x C B -+-+-=的两根相等,求证60B <︒.【巩固】在ABC △中,60A =︒,最大边与最小边的边长分别是方程2327320x x -+=的两个根,求ABC △的外接圆半径和内切圆的面积.【例6】 若0°<θ<30°,且1sin 3km θ=+(k 为常数,且k <0),则m 的取值范是 .模块二 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题. 六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来cb aC BA(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等. 七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.【例7】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD(用含a αβθ,,,的代数式表示)图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线【例8】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.(1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?【例9】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A 北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.DC BA【巩固】海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)课堂检测1. (辽宁竞赛)如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.(1)请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n 表示,角用α,β表示,测倾器高度忽略不计);(2)根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).2. 化简:222tan1tan 2....tan89sin 1sin 2...sin 89︒⋅︒︒︒+︒++︒3. 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)课后作业1. 化简求值:1sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎛⎫⎛⎫-+-+-- ⎪⎪ ⎪⎪+-+-⎝⎭⎝⎭(090α︒<<︒)2. 若045α︒<<︒,且3sin cos 716αα=,求sin α的值. 图3图2C MAA'P BB'HDH'H'DHB'BPA'A(图1)3. (2011甘肃兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在ABC △中,AB AC =,顶角A 的正对记作sadA ,这时=BCsadA AB=底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)60sad ︒= .(2)对于0180A ︒<<︒,∠A 的正对值sadA 的取值范围是 . (3)如图②,已知3sin 5A =,其中A ∠为锐角,试求sadA 的值.图②图①C BAC B A。

沪科版九年级数学上册2锐角的三角函数(第3课时特殊角的三角函数值)课件

沪科版九年级数学上册2锐角的三角函数(第3课时特殊角的三角函数值)课件

B
2a
a
45.0
A
C
a
Sin45°=
A 的 对 边 斜边
2 2
cos45°=
A的邻边 2
斜边
2
tan45°=
A的对边 1 A 的邻边
归纳
特殊角的三角函数值
30o
45o
sinα
1 2
2 2
cosα
3 2
2 2
3
tanα
3
1
60o
3 2
1 2
3
讨论:
30o
45o
sinα
1 2
2 2
cosα
3
2
公式一
2、三角公式
当∠A+∠B=90°时
B
c
a

A
b
C
sinA=cosB cosA=sinB
tanA . tanB=1
公式二
sin2 A cos2 A 1 tan A sin A cos A
新知探究
已知Rt△ABC中,∠A=30°
B
a
2a
Sin30°=
A的对边 1
斜边
2
C
30.0 A
3a
60o
3 2
1 2
3
角度逐 渐增大
正切值 也增大
讨论: 锐角A的正弦值、余弦值有无变化范围?
30o
1
sinα 2
cosα 3 2 3
tanα 3
45o
2 2
2 2
1
60o
3 2
1 2
3
0< sinA<1 0<cosA<1
归纳

沪科版数学九年级上册 23.1 锐角三角函数 课件(共13张PPT)

沪科版数学九年级上册 23.1 锐角三角函数  课件(共13张PPT)

(6) tan30°·tan60°+ cos230°
本节课学习了什么内容?
三角函数 sina cos a tan a
30°
1 2
3 2 3 3
45°
2 2
2 2
1
60°
3 2
1 2
3
拓展探究
求已知锐角的三角函数值:
21..求求csoint7603゜゜4552′′的41值″的.(值精. 确(到精0确.0到0001.)0001) 在先角用度如单下位方状法态将为角“度度单” 位的状情态况设下定:屏为幕“显度示”出
显示
按再下按列下列顺顺序序依依次次按按键键
由锐角三角函数值求锐角:
已知tan x=0.7410,求锐角 x.(精确到1′) 在角度单位状态为“度” 的情况下(屏幕显示 出 ),按下列顺序 依次按键:
显示结果为36.538 445 77.
再按键:
24.2锐角三角函数值
自学检测:
根据三角函数的定义,sin30°是一个常数.用刻度
尺量出你所用的含30°的三角尺中,30°所对的
直角边与斜边的长,与同桌交流,看看这个常数
是什么.
B
sin30°=
对边 =1 Βιβλιοθήκη 边 2理由:30在直角三角形中,如果A一个锐角等于30°,C
那么它所对的直角边等于斜边的一半.
若 tan 1 则α=______3_0_°____;
3
若 cos 1 ,则α=______4_5_°____.
2
2.根据下列条件,求出相应的锐角A:
(1) sin A 2 ; (2) cos A 3 0;
2
2
(3) tan(A 20) 1.
基础练习:

冀教版九年级数学上册《锐角三角函数的计算》PPT精品课件

冀教版九年级数学上册《锐角三角函数的计算》PPT精品课件

9
8
1
观察计算的结果,当α增大时,角α的正弦值、余弦值、正切值怎样变化?
正弦值随着角度的增大(或减ቤተ መጻሕፍቲ ባይዱ)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小)
知识讲解
2.已知一个锐角三角函数的值求锐角的度数
例2 用计算器求下列各锐角的度数:(结果精确到1″) (1)已知cosα=0.5237,求锐角α; (2)已知tanβ=1.6480,求锐角β.
知识讲解
(2)在计算器开机状态下,按键顺序为
2ndF tan-1 1 . 6 4 显示结果为58.750 786 43. 即β≈58.750 786 43°.
80=
再继续按键: 2ndF
DEG
显示结果为58□45□2.83.
即β≈58°45‘ 3″.
知识讲解
例3 如图所示,在Rt△ABC中,∠C=90°,AB=5,BC=4.
2.已知 sin232°+cos2α=1,则锐角α等于( A )
A.32°
B.58°
C.68°
D.以上结论都不对
3.用计算器验证,下列各式中正确的是( D ) A.sin18°24′+sin35°26′=sin45° B.sin65°54′-sin35°54′=sin30° C.2sin15°30′=sin31° D.sin72°18′-sin12°18′=sin47°42′
2.求cos72°的值. 第一步:按计算器 cos 键,
第二步:输入角度值72, 第三步:输入 键, 屏幕显示结果为0.309 016 994.
即cos 72°=0.309 016 994.

新华师大版九年级上册初中数学 24-3-1课时1 锐角三角函数 教学课件

新华师大版九年级上册初中数学 24-3-1课时1 锐角三角函数 教学课件
(2)当锐角是用一个大写英文字母或一个小写希腊字母 表示时,它的三角函数习惯上省略角的符号,如sin A,cos α,tan B等;当锐角是用三个大写英文字母
或数字表示时,它的三角函数不能省略角的符号,
如sin ∠ABC,sin ∠1等. (3)三角函数符号后面可以写成度数,如sin 20°等.
第十二页,共二十页。
c5
c5
tan B= b = 4 . a3
A
c
b
解:(2) b c2 a2 144 12
B
sin B= b = 12,cos B= a = 5 ,
c 13
c 13
tan B= b = 12 . a5
C
a
第十八页,共二十页。
拓展与延伸
如图,在Rt△DEC中,∠E=90°,CD=10, E
ED=6.试求出∠D的三个三角函数值.
正切.
sin
A=
∠A的对边 斜边
=
a c

cos
A=
∠A的邻边 斜边
=
b c

tan
A=
∠A的对边 ∠A的邻边
=
a b
.
取值范围 0<sinA<1,0<cosA<1
第九页,共二十页。
新课讲解
例 1 如图,在Rt△ACB中,∠C=90°,AC=15
知识点 ,BC=8.试求出∠A的三个三角函数值.
解: AB BC2 AC2 289 17
A
c b
B
C
a
第五页,共二十页。
新课讲解
知识点1 锐角三角函数的定义
一般情况下,Rt△ABC中,当锐角∠A
取一固定值时,∠A的对边与邻边的比值会

人教版九年级数学第二十八章:锐角三角函数(教案)

人教版九年级数学第二十八章:锐角三角函数(教案)
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:强调锐角三角函数是由直角三角形中的边长比定义的,包括正弦、余弦、正切三个函数,以及它们的基本性质。
-特殊角的三角函数值:熟练掌握30°、45°、60°等特殊角的正弦、余弦、正切值,并能灵活运用。
-函数图像与性质:理解正弦、余弦、正切函数的图像特点,以及它们随角度变化的规律。
五、教学反思
在今天的课程中,我发现学生们对锐角三角函数的概念和应用表现出浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解抽象的数学概念。我注意到,当学生们参与到实验操作和小组讨论中时,他们能够更主动地探索和发现数学规律。
在讲授新课的过程中,我发现正弦、余弦、正切的定义对于一些学生来说还是有一定难度。为了帮助学生更好地理解,我采用了直观的图形和实际例子来进行解释。我觉得这种方法是有效的,因为学生能够通过视觉和实际操作来加深记忆。
我也注意到,在小组讨论环节,有些学生刚开始时不太愿意发表自己的意见。为了鼓励他们,我尽量提了一些开放性的问题,并给予积极的反馈。随着时间的推移,我看到了他们的参与度逐渐提高,这是非常令人欣慰的。
在实践活动方面,虽然时间有限,但学生们似乎很喜欢这种动手操作的机会。他们通过测量和计算,能够将理论知识应用到实际问题中。不过,我也意识到在未来的课程中,可以设计更多样化的实践活动,让学生有更多机会亲自探索和验证三角函数的性质。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

初中数学九年级锐角三角函数知识点总结

初中数学九年级锐角三角函数知识点总结

锐角三角函数是初中九年级数学中的一个重要内容,其中包括对正弦、余弦和正切函数的理解和应用。

下面是对锐角三角函数知识点的详细总结:1.三角函数的定义:- 正弦函数(sin):对于单位圆上的一个角,其对边的长度与斜边的长度的比值。

- 余弦函数(cos):对于单位圆上的一个角,其邻边的长度与斜边的长度的比值。

- 正切函数(tan):对于单位圆上的一个角,其对边的长度与邻边的长度的比值。

2.锐角的定义:锐角是角度在0°到90°之间的角。

3.单位圆:单位圆指半径长度为1的圆,锐角三角函数可以通过单位圆来定义和理解。

4.三角函数的图像:正弦函数、余弦函数和正切函数的图像可以通过将单位圆绕过原点旋转得到。

5. 正弦函数(sin)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1-图像特点:关于y轴对称6. 余弦函数(cos)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:cos0° = 1, cos30° = √3/2, cos45° = √2/2,cos60° = 1/2, cos90° = 0-图像特点:关于x轴对称7. 正切函数(tan)的特点:-定义域:(0°,90°)或(0,π/2)-值域:R(实数集)-周期:180°或π- 特殊值:tan30° = 1/√3, tan45° = 1, tan60° = √3, tan90° = 不存在(无限大)-图像特点:周期性递增8.三角函数之间的关系:- 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)- 正切函数与正弦、余弦函数的关系:tanθ = sinθ / cosθ9.锐角三角函数的应用:-通过正弦函数、余弦函数和正切函数可以求解三角形的边长和角度大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、下图中∠ACB=90°,
(1)指出∠A的对边、邻边。
B
(2)CD⊥AB
D
(3)sinA可以表
示为
A
C
2、上题中如果CD=5,AC=10,
1
则sinA=
2
求出如图所示的Rt△ABC中∠A的四个三角函 数值.
B
6
A
8
C
小试身手
1.设Rt△ABC中∠ACB=90°, ∠A ∠B、 ∠C的对边分别a 、b 、c根据下列条件求 ∠B的四个三角函数值
(1)
脑中有“图”,心中有“式”
我们已经知道,如图:直角三角形ABC可以简 记为Rt△ABC,直角∠C所对的边AB称为斜边, 用c表示,另两条直角边分别叫∠A的对边与邻 边,用a、b表示.
B
斜边c
∠A的对 边a
A ∠A的邻边b C
如图,在Rt△MNP中,∠N=90゜. ∠P的对边是____M_N_____,∠P的邻边是 _______P_N_______;
A cos A= cos A 1 B 3cos A = cos A 1
C cos A= 3cos A1 D 不能确定
在Rt△ABC 中, ∠ACB=90° ,

AB=5 BC=3 CD⊥AB 求
sin∠BCD
A
D
B
C
布置作业
P93 1 、 2
再见
=
∴BC=AB×
4 5
4 5
=8
AB=10
∵AC= AB2 BC2 =6
∴tanB=
AC BC
3 4
A
C
(1)在Rt△ABC 中∠ACB=90° , BC:AC=3:4 cos A= 3
5
(2)( tan20º)·cot20º=1,
(3)( cos2 500 )+ sin2 500 =1
(4)把Rt△ABC的各边都扩大5倍得Rt△ A1B1C1 则 锐角A, A1的余弦值关系是( )A
3. sin A、cos A、tan A、cot A都是表达符号,它们是一 个整体,不能拆开来理解. 4. sin A、cos A、tan A、cot A中∠A的角的记号“∠”∠ 习惯省略不写,但对于用三个大写字母和阿 拉伯数字表示的 角,角的记号“∠” 不能省略.如sin ∠1不能写成sin1.
试一试
(1)a = 3 b = 4 (2)a = 5 c = 13
2.猜一猜 做一做 tan A•cot A= 1
sin2 A cos2 A 1
示例:
在Rt△ABC中,∠ACB=90°sinA= 4 ,AB=10 .
5
求AC 、tanB
B
解:在Rt△ABC 中,∠C=90°,
∵sinA=
BC AB
∠M的对边是_____P_N____,∠M的邻边是 ________M__N_____;
N
P
M
观察图中的Rt△AB1C1、 Rt△AB2C2和Rt△AB3C3, 它们相似吗?
B3 B2 B1
A
C1 C2 C3
Rt△AB1C1∽Rt△AB2C2∽Rt△AB3C3
B1C1
B2C2
B3C3
所以 AC1 =___A_C_2_____=____A_C_3____.
可见,在Rt△ABC中,对于锐角A的每一个确 定的值,其对边与邻边的比值是唯一确定的.
想一想
B3 B2 B1
A
C1 C2 C3
对于锐角A的每一个确定的值,其对 边与斜边、邻边与斜边、邻边与对边 的比值也是惟一确定的 吗?
注意:
1. 我们研究的锐角三角函数都是在直角三角形中定义的.
2. 三角函数的实质是一个比值,没有单位,而且这个比值 只与锐角的大小有关与三角形边长无关.
相关文档
最新文档