统计学作业聚类分析

合集下载

统计学中的聚类分析方法

统计学中的聚类分析方法

统计学中的聚类分析方法统计学是一门研究数据收集、整理、分析和解释的学科。

在统计学中,聚类分析是一种常用的方法,通过对数据集进行分类,将相似的样本归为一类,以便揭示数据的内部结构和隐含关系。

聚类分析可以应用于各个领域,包括市场调研、生物学、医学、图像处理等。

对于大量数据集的分类和理解,聚类分析提供了一种有效的手段。

一、聚类分析的基本思想聚类分析的基本思想是将样本集合中具有相似特征的样本划分为一组,通过测量样本间的相似性或者距离,将样本分成不同的簇。

相似性可以根据各种度量方法来定义,例如欧氏距离、曼哈顿距离、相关系数等。

聚类分析的目标是使得同一簇中的样本之间更加相似,而不同簇中的样本之间差异较大。

在进行聚类分析时,需要注意选择合适的聚类算法和参数,以及对结果的验证和解释。

二、常用的聚类算法1. K-means算法K-means算法是一种常见的聚类算法,通过将样本分为K个簇,每个簇内的样本之间的距离最小,而不同簇之间的距离最大。

算法的基本步骤包括初始化质心、计算样本到质心的距离、分配样本到最近的质心、更新质心位置,并迭代上述步骤直至收敛。

2. 层次聚类算法层次聚类算法是一种分层次的聚类方法,不需要预先指定簇的数目。

该算法将每个样本作为一个独立的簇,并通过不断合并相似的簇来构建层次结构。

合并的标准可以是最小距离、最大距离、平均距离等。

3. 密度聚类算法密度聚类算法是一种基于密度的聚类方法,适用于对复杂的数据集进行聚类。

该算法通过计算样本集合中每个样本的密度,并将高密度相连的样本划分为一类。

密度聚类算法的优点在于它可以发现任意形状的簇,并且对于噪声和异常点具有较强的鲁棒性。

三、聚类结果的评价和解释聚类结果的评价和解释是聚类分析中的重要步骤。

常用的评价指标包括轮廓系数、DB指数、Dunn指数等,它们能够对聚类结果的好坏进行量化评估。

解释聚类结果的过程包括对每个簇的特征进行分析,寻找可以解释簇内样本差异的相关因素。

经济统计学中的聚类分析方法

经济统计学中的聚类分析方法

经济统计学中的聚类分析方法聚类分析是一种常用的数据分析方法,它在经济统计学中有着广泛的应用。

聚类分析的目标是将一组数据划分为若干个相似的子集,每个子集内的数据相似度高,而不同子集之间的数据相似度低。

这种方法可以帮助经济学家发现数据中的规律和模式,从而更好地理解经济现象。

聚类分析的基本原理是通过计算数据点之间的相似度或距离来确定数据的分组。

常用的相似度度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。

欧氏距离是最常用的相似度度量方法,它计算两个数据点之间的直线距离。

曼哈顿距离则是计算两个数据点在坐标轴上的距离之和。

余弦相似度是通过计算两个向量之间的夹角来度量它们的相似度。

在经济统计学中,聚类分析可以用于多个方面的研究。

首先,它可以帮助经济学家对经济发展水平进行分类。

通过对不同国家或地区的经济指标进行聚类分析,可以将它们划分为不同的发展水平组别。

这有助于我们了解不同地区的经济特点和发展趋势,为政府制定相关政策提供参考。

其次,聚类分析可以用于市场细分。

市场细分是指将一个大市场划分为若干个小市场,每个小市场具有相似的需求和行为特征。

通过对消费者的购买行为和偏好进行聚类分析,可以将消费者划分为不同的群体,从而更好地满足他们的需求。

这对企业来说是非常重要的,可以帮助它们制定更精准的市场营销策略。

此外,聚类分析还可以用于金融风险管理。

金融市场中的数据非常庞大复杂,通过对金融市场数据进行聚类分析,可以将相似的金融资产或交易划分为同一类别。

这有助于金融机构更好地评估风险和制定风险管理策略,从而提高金融市场的稳定性和安全性。

聚类分析方法还可以与其他经济统计学方法相结合,如主成分分析和因子分析。

主成分分析可以用于降维,将高维数据转化为低维数据,而聚类分析可以在降维后的数据上进行分组。

因子分析可以用于提取数据的主要因素,而聚类分析可以将具有相似因素的数据进行分组。

这些方法的结合可以更全面地分析经济数据,提高分析的准确性和可解释性。

统计问题 5 聚类分析

统计问题 5 聚类分析
上表为聚类的步骤。
由上图可知易分为两类,X与Z一类,Y一类。1234 Nhomakorabea5
6
7
8
X
1.8
2.1
3.2
2.2
2.5
2.8
1.9
2.0
Y
95
99
101
103
98
102
120
130
Z
0.15
0.21
0.18
0.17
0.16
0.20
0.09
0.11
解答:
题目要求对8各企业技术密集水平聚类,即R聚类(变量聚类)
上表为Proximity相关系数。由上表知X和Z的正相关性较大,Y与Z的负相关性较大,Y与X也程现负相关性。
生产工人劳动生产率x每百万元固定资产所容纳的职工人数y和技术管理人员在职工中的比重z
5、聚类分析现有8个企业,对每个企业用3个指标来刻画企业的技术密集水平:生产工人劳动生产率(x)、每百万元固定资产所容纳的职工人数(y)和技术管理人员在职工中的比重(z)。具体数据如下表,试对这8个企业的技术密集水平作聚类分析。

统计学中的分类与聚类分析

统计学中的分类与聚类分析

统计学中的分类与聚类分析统计学作为一门研究数据收集、分析和解释的学科,对于各个领域的研究和应用起着重要的作用。

在统计学中,分类与聚类分析是两个基本的方法。

它们不仅在学术界得到广泛运用,也在商业领域以及社会科学中发挥着重要的作用。

一、分类分析分类分析是一种通过定义和识别不同类别的方法,将数据按照预设的类别进行划分。

在分类分析中,研究人员首先选择合适的变量,通过对这些变量的测量和观察,获得所需的数据。

然后,通过采用适当的数学和统计模型,将数据划分到不同的类别中。

分类分析的应用广泛。

比如,在医学研究中,分类分析能够帮助研究人员判断不同群体的特征,从而更好地进行预防和治疗。

在市场营销领域,分类分析则可以帮助企业了解消费者的需求和偏好,从而制定有效的市场策略。

此外,分类分析还可以用于社会科学研究中,帮助我们理解不同人群的行为和态度。

二、聚类分析聚类分析是一种无监督学习的方法,通过将数据样本分成不同的群组或聚类,揭示数据内在的结构和规律。

与分类分析不同,聚类分析不需要事先定义好类别,而是根据数据本身的特点进行自动分组。

聚类分析属于非监督学习,它可以应用于许多领域,包括生物学、社会学、经济学等。

在生物学研究中,聚类分析可以帮助研究人员发现不同物种之间的关系,从而推断出生物进化的过程。

在社会学研究中,聚类分析则可以帮助我们理解不同人群的行为模式,发现社会分布和人口组成的规律。

三、分类与聚类的关系分类和聚类是统计学中两个相互关联的概念。

分类可以看作是一种预测性的分析方法,它将待分类的数据样本与已知类别的样本进行比较,然后根据相似性进行划分。

而聚类则是一种描述性的分析方法,它从数据本身的相似性出发,将数据样本进行自动分组。

分类和聚类的关系在实际应用中有很大的重叠。

有时候,我们可以根据已有的分类信息,将数据分成不同类别,并进一步使用聚类分析来发现数据内在的结构。

而在某些情况下,我们也可以先使用聚类分析将数据分组,再根据分组内的特征进行分类。

高级统计学作业-聚类分析

高级统计学作业-聚类分析

全国各地区消费价格增长水平的聚类分析摘要:针对我国各省(直辖)市的2009年度消费价格增长水平数据,选取9个经济指标进行系统聚类分析,得到我国3类不同的地区消费价格增长水平类型。

聚类结果为制订有针对性的地区消费市场战略提供依据。

关键词:SPSS;聚类分析;消费水平。

1.引言由于传统的经济发展起点不同,加上地域、资源、技术和政策等条件的差异,各个地区的经济发展水平高低不齐,导致各地区的工资水平和消费价格增长水平的不同。

因此,对各地区消费价格增长水平进行分类、比较和研究,总结出有助于市场调节和商业发展的对策,有针对性地制订地区经济发展战略,对促进国民经济协调发展有重要意义。

聚类分析和判别分析是是进行以上分析的两个重要的方法。

1.1聚类分析[1]定义:聚类分析又称群分析、点群分析。

根据研究对象特征对研究对象进行分类的一种多元分析技术,把性质相近的个体归为一类,使得同一类中的个体都具有高度的同质性,不同类之间的个体具有高度的异质性。

聚类分析的基本思想:我们所研究的样品或指标(变量)之间存在程度不同的相似性(亲疏关系),于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品(或指标)聚合为一类,把另外一些相似程度较大的样品(或指标)又聚合为另一类;关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直到把所有的样品(或指标)聚合完毕。

1.1.1 系统聚类法系统聚类法的基本原理:首先将一定数量的样本或指标各自看成一类,然后根据样本(或指标)的亲疏程度,将亲疏程度最高的两类进行合并,然后考虑合并后的类与其他类之间的亲疏程度,再进行合并。

重复这一过程,直到将所有的样本(或指标)合并为一类。

系统聚类分为Q型聚类和R型聚类两种:Q型聚类是对样本进行聚类,它使具有相似特征的样本聚集在一起,使差异性大的样本分离开来;R型聚类是对变量进行聚类,它使差异性大的变量分离开来,相似的变量聚集在一起,这样就可以在相似变量中选择少数具有代表性的变量参与其他分析,实现减少变量个数、降低变量维度的目的。

统计分析- 聚类分析

统计分析- 聚类分析

聚类方法
§10.3 系统聚类
①“Between-groups linkage”类间平均法,当两类之间所有样本 之间距离的平均值最小时,这两类可以合并为一类。 ②“Within- groups linkage”类内平均法,当合并后所有样本的距 离的平均值最小时,这两类可以合并为一类。 ③“Nearest neighbor”最短距离法,当两类最近样本之间的距离 最小时,这两类可以合并为一类。 ④“Furthest neighbor”最长距离法,当两类最远样本之间的距离 最小时,这两类可以合并为一类。 ⑤“Centroid clustering”重心法,当两类重心距离最小时,这两 类可以合并为一类。 ⑥“Median clustering”中心法,当两类中心距离最小时,这两类 可以合并为一类。 ⑦ “Ward‘s method”离差平方和法,当合并后类内部各个样本 距离(欧氏距离)的离差平方和最小时,这两类可合并为一 类。
选择对变量进行聚类
SPSS 软件实现
§10.3 系统聚类法
对原始数据进行离差标准化处理; 采用相关系数表征变量之间的相似程度; 采用离差平方和最小的方法计算类与类之间的距离。
SPSS 软件实现
结果分析-数据信息
§10.3 系统聚类法
Case Processing Summarya Cases Missing N Percent 0 .0%
p
j.
)
2 2 ( x x ) ( x x ) i i. j j.
1
1
当 i j 时,rij 1 , 说明两个变量(样本)x i 与 x j完全相似; 当rij 1 ,说明两个变量(样本)x i 与 x j 相似密切; 当 i与j 正交时,rij 0, 说明变量(样本)x i 与 x j完全不一样; 当rij 0,说明变量(样本)x i 与 x j 差别很大。

数理统计大作业聚类分析和判别分析

数理统计大作业聚类分析和判别分析

数理统计大作业(2)全国各省、市及自治区产业类型聚类分析和判别分析院(系)名称航空科学与工程学院专业名称飞行器设计与工程学生姓名熊蕾学号ZY15054022015年12月全国各省、市及自治区产业类型聚类分析和判别分析ZY1505402 熊蕾摘要本文从中国统计年鉴(2014)中获得了2013年按三次产业分地区生产总值的数据,按各省的第一产业、第二产业和第三产业产值所占地区生产总值的比值不同,对全国23个省、4个直辖市和5个少数民族自治区进行聚类分析和判别分析。

关键词经济类型聚类分析判别分析一、引言产业是指具有某种同类属性的经济活动的集合或系统,是经济社会的物质生产部门。

世界各国把各种产业划分为三大类:第一产业、第二产业和第三产业。

第一产业是指提供生产资料的产业,包括种植业、林业、畜牧业、水产养殖业等直接以自然物为对象的生产部门。

第二产业是指加工产业,利用基本的生产资料进行加工并出售,包括采矿业、制造业、电力、燃气和水的生产和供应业和建筑业。

第三产业又称服务业,它是指第一、第二产业以外的其他行业。

第三产业行业广泛。

包括交通运输业、通讯业、商业、餐饮业、金融保险业、行政、家庭服务等非物质生产部门。

我国区域经济发展不平衡,各地区的产业类型和产业结构不尽相同,因此可以以各省的第一产业、第二产业和第三产业产值所占地区生产总值的比值对全国的23个省、4个直辖市和5个少数民族自治区进行分类。

二、聚类分析2.1数据输入从中国统计年鉴中得到了2013年按三次产业分地区生产总值的数据,如下表所示,产值单位均为亿元,由于各省经济发展程度不同,地区生产总值有较大的差别,因此要算出各地区三大产业所占的比值来进行聚类和判别分析。

表 1 原始数据2.2聚类分析从表1中选出湖南、安徽和西藏三个地区的数据以待判别,对其余地区的数据进行聚类分析。

表 2 聚类分析数据将表2数据导入SPSS,进行系统聚类分析,得到以下结果:表 3 聚类表阶群集组合系数首次出现阶群集下一阶群集 1 群集 2 群集 1 群集 21 7 13 .052 0 0 92 6 12 .109 0 0 133 14 20 .174 0 0 54 3 21 .244 0 0 95 14 27 .336 3 0 166 5 24 .465 0 0 127 8 23 .602 0 0 198 11 17 .742 0 0 109 3 7 .952 4 1 1510 10 11 1.163 0 8 1711 18 28 1.381 0 0 1812 5 26 1.641 6 0 2013 4 6 1.977 0 2 1614 16 25 2.315 0 0 1815 3 15 2.673 9 0 2016 4 14 3.149 13 5 2317 2 10 3.678 0 10 2318 16 18 4.238 14 11 2119 8 22 4.814 7 0 2120 3 5 5.523 15 12 2521 8 16 6.429 19 18 2422 1 9 7.640 0 0 2623 2 4 9.318 17 16 2524 8 19 11.431 21 0 2625 2 3 14.946 23 20 2726 1 8 20.495 22 24 2727 1 2 26.551 26 25 0表4 群集成员案例8 群集7 群集 6 群集 5 群集 4 群集 3 群集1:北京 1 1 1 1 1 1 2:天津 2 2 2 2 2 2 3:河北 3 3 3 3 3 2 4:山西 4 4 4 2 2 2 5:内蒙古 3 3 3 3 3 2 6:辽宁 4 4 4 2 2 2 7:吉林 3 3 3 3 3 2 8:黑龙江 5 5 5 4 4 3 9:上海 6 6 1 1 1 1 10:江苏 2 2 2 2 2 2 11:浙江 2 2 2 2 2 2 12:福建 4 4 4 2 2 2 13:江西 3 3 3 3 3 2 14:山东 4 4 4 2 2 2 15:河南 3 3 3 3 3 2 16:湖北7 5 5 4 4 3 17:广东 2 2 2 2 2 2 18:广西7 5 5 4 4 3 19:海南8 7 6 5 4 3 20:重庆 4 4 4 2 2 2 21:四川 3 3 3 3 3 2 22:贵州 5 5 5 4 4 3 23:云南 5 5 5 4 4 3 24:陕西 3 3 3 3 3 2 25:甘肃7 5 5 4 4 3 26:青海 3 3 3 3 3 2 27:宁夏 4 4 4 2 2 2 28:新疆7 5 5 4 4 3图1聚类分析树状图从树状图中,我们定下聚类分析最终得到四个组别:1为北京和上海,可以看出这两个直辖市的总产值中,第三产业也就是服务业占有绝对优势,因此可将第一组作为第三产业为主的地区;2为天津、山西、江苏、广东等10个省份,这些省份的第二产业占有较多的比重,而第一产业仅占极少的比重,说明第2组以第二、三产业为主;第三组包括河北、河南、吉林、江西等省份,这些省份虽然也是第二产业占有的比重最大,但它们的第一产业的比重与第1、2组相比更多;第四组的各个地区是传统的鱼米之乡,可以看到它们的第一产业的比重大于其他各组。

统计学中的因子分析与聚类分析

统计学中的因子分析与聚类分析

统计学中的因子分析与聚类分析统计学是一门研究收集、整理、分析和解释数据的学科,因子分析和聚类分析是其中两个重要的分析方法。

本文将介绍因子分析和聚类分析的基本概念、应用领域以及它们在统计学中的作用。

一、因子分析因子分析是一种多变量统计分析方法,用于研究观测变量之间的潜在关系和提取隐藏在数据中的共性因子。

通过因子分析,我们可以将一组相关的变量简化为更少的因子,从而减少变量的维度,提取出数据背后的信息。

1.1 基本原理在因子分析中,我们假设每个观测变量都是由一组共同的潜在因子所决定,并且这些因子之间是相互独立的。

通过因子分析,我们可以估计每个观测变量和每个潜在因子之间的相关系数,从而推断变量之间的关系。

1.2 应用领域因子分析广泛应用于社会科学、心理学、市场研究等领域。

在社会科学中,因子分析常用于构建测量量表,识别潜在的个人特质或者态度因子。

在市场研究中,因子分析可以帮助我们理解消费者的购买行为,并进行市场细分。

1.3 实际案例举个例子,假设我们有一份调查数据包含多个问题,例如消费者对于产品的满意度、价格感知、品牌忠诚度等。

通过因子分析,我们可以识别出重要的潜在因子,例如产品质量、价格因素和品牌认可等。

这些因子可以帮助我们了解消费者对于产品的整体评价。

二、聚类分析聚类分析是一种将数据划分为不同组别的方法,使得同一组别内的个体趋于相似,而不同组别之间的个体趋于不同。

聚类分析可以帮助我们发现数据中的隐藏模式和结构,并进行分类或者分群。

2.1 基本原理聚类分析的目标是将样本划分为不同的簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。

聚类分析有多种方法,包括层次聚类和K均值聚类等。

层次聚类通过计算样本之间的距离或者相似度进行聚类,而K均值聚类则通过迭代计算每个样本到簇质心的距离,并将样本分配到最近的簇中。

2.2 应用领域聚类分析在数据挖掘、市场细分、生物学等领域得到广泛应用。

在数据挖掘中,聚类分析可以帮助我们发现数据中的规律和模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析
采用欧式距离,分别运用类平均法、最短距离法、最长距离法,对31个省、直辖市、自治区分类。

1、类平均法
* * * * * * * * * * * * * * * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * * * * * * * * * * * * * * *
Dendrogram using Average Linkage (Between Groups)
Rescaled Distance Cluster Combine
C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+
甘肃 28 -+
宁夏 30 -+
青海 29 -+-+
河南 16 -+ |
新疆 31 -+ +-+
黑龙江 8 -+ | |
陕西 4 -+-+ +-+
内蒙古 5 -+ | |
陕西 27 -----+ +-+
山东 15 ---+-+ | |
湖南 18 ---+ | | |
河北 3 -+-+ +-+ |
吉林 7 -+ +-+ |
湖北 17 ---+ | +---+
四川 23 -+-+ | | |
云南 25 -+ +-+ | |
辽宁 6 ---+ | +-----+
江西 14 -+-+ | | |
贵州 24 -+ +-----+ | |
安徽 12 ---+ | |
广西 20 -------+-----+ +-----------------------------+
海南 21 -------+ | |
江苏 10 -+-------+ | |
重庆 22 -+ +---+ | |
天津 2 ---------+ +---+ | |
福建 13 -------------+ +-+ |
西藏 26 -----------------+ |
北京 1 ---------+ |
上海 9 ---------+---+ |
浙江 11 ---------+ +-----------------------------------+
广东 19 -------------+
2、最短距离法
* * * * * * * * * * * * * * * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * * * * * * * * * * * * * * *
Dendrogram using Single Linkage
Rescaled Distance Cluster Combine
C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+
甘肃 28 -+
宁夏 30 -+
青海 29 -+---+
河南 16 -+ |
新疆 31 -+ |
黑龙江 8 -+ |
陕西 4 -+---+-+
内蒙古 5 -+ | |
陕西 27 -----+ |
四川 23 -----+-+
云南 25 -----+ |
河北 3 -+---+ |
吉林 7 -+ | |
湖北 17 -----+-+
山东 15 -----+ |
辽宁 6 -------+-+
湖南 18 -------+ |
江西 14 ---+-+ | +---+
贵州 24 ---+ +-+ | |
安徽 12 -----+ | +-+
广西 20 ---------+ | |
江苏 10 -+-----------+ +---+
重庆 22 -+ | +---+
海南 21 ---------------+ | +-+
天津 2 -------------------+ | +-----------------------+
福建 13 -----------------------+ | |
西藏 26 -------------------------+ |
北京 1 -------------------+-+ |
上海 9 -------------------+ +-+ |
浙江 11 ---------------------+ +-------------------------+
广东 19 -----------------------+
3、最长距离法
* * * * * * * * * * * * * * * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * * * * * * * * * * * * * * *
Dendrogram using Complete Linkage
Rescaled Distance Cluster Combine
C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+
甘肃 28 -+
宁夏 30 -+
青海 29 -+---+
河南 16 -+ |
新疆 31 -+ +---+
黑龙江 8 -+ | |
陕西 4 -+-+ | |
内蒙古 5 -+ +-+ +-----+
陕西 27 ---+ | |
山东 15 ---+---+ | |
湖南 18 ---+ | | |
河北 3 -+-+ +-+ |
吉林 7 -+ +-+ | |
湖北 17 ---+ +-+ +---------+
四川 23 -+-+ | | |
云南 25 -+ +-+ | |
辽宁 6 ---+ | |
江西 14 -+ | |
贵州 24 -+-------+ | +-----------------------+
安徽 12 -+ +-----+ | |
广西 20 -----+---+ | |
海南 21 -----+ | |
江苏 10 -+-----+ | |
重庆 22 -+ +---------+ | |
天津 2 -------+ +-------+ |
福建 13 -----------+-----+ |
西藏 26 -----------+ |
北京 1 -------+ |
上海 9 -------+-----+ |
浙江 11 -------+ +-----------------------------------+
广东 19 -------------+
由上述图表可知,类平均法分为三类:{1,9,11,19}为第一类,{13,22,2,10,26}为第二类,其他为第三类;最短距离分为两类,{1,9,11,19}为第一类,其余的归为第二类;最长距离法归为三类:{1,9,11,19}为第一类,{13,22,2,10,26}为第二类,其他为第三类。

综合考虑,我
们认为从全国各省、直辖市、自治区的消费情况来看,分为三类较为适合。

有分类结果可以看出,类平均法和最长距离法结果一致。

但从题目中表的实际情况来看,西藏的经济发展水平和消费水平与始终处在第二类的福建、天津、江苏、重庆有较大的差距,因此我们把西藏列为待分类,运用判别分析法来进行分类。

判别分析
测数量为1。

从表我们可以看出,出了变量人均粮食支出的类内均值检验的显著性概率sig.=0.16大于0.05,其余变量类内均值检验的显著概率皆远小于0.05,说明八个变量类内均值都存在显著差异,可以进行判别分析。

从上表相关数值可知,各变量的线性相关关系皆不显著。

Wilks' Lambda值
上表是对判别函数的显著性检验,其中Lambda值分别等于0.41、0.897,非常小,显著性概率函数1sig=0.000,函数2sig=0.09略大于0.05,从而认为判别函数有效。

由上表我们可以看出,全部31个观测样本都被采用,没有一个样本由于缺失值或由于其他原因被排除。

由上图可看出西藏更接近于第三类。

上表显示,对于原始数据中分别属于第一类、第二类、第三类的30个观测值仍然归为原类,全部判断对,待判的1个观测量归入第二类,即西藏归入第二类。

(?)。

相关文档
最新文档