反比例函数的典型综合练习题
精品 九年级数学下册 反比例函数综合练习题

(3)过原点 O 的另一条直线 l 交双曲线 y
顶点组成的四边形面积为 24,求点 P 的坐标.
14.如图,点 A(m,m+1) ,B(m+3,m-1)都在反比例函数 y
k (k 0) 的图象上. x
(1)求 m,k 的值; (2)如果 M 为 x 轴上一点,N 为 y 轴上一点, 以点 A,B,M,N 为顶点的四边形 是平行四边形,试求直线 MN 的函数表达式.
3 的图象交点依次为 Q1 ( x1 ' , y1 ' ) 、 Q2 ( x 2 ' , y 2 ' ) 、 …、 x
5.如图,在 x 轴的正半轴上依次截取 OA1 A1 A2 A2 A3 A3 A4 A4 A5 ,过点 A1、A2、A3、A4、A5 分 别作 x 轴的垂线与反比例函数 y
2 x 0 的 图 象 相 交 于 点 P1、P2、P3、P4、P5 , 得 直 角 三 角 形 x
OP 并设其面积分别为 S1、S 2、S3、S 4、S5, 则 S5 的值为 1A 1、A 1P 2 A2、A2 P 3 A3、A3 P 4 A4、A4 P 5 A5,
6.已知反比例函数 y
12 的图象和一次函数 y=kx—7 的图象都经过点 P(m,2). x (1)求这个一次函数的解析式; (2)如果等腰梯形 ABCD 的顶点 A、B 在这个一次函数的图象上,顶点 C、D 在这个反比例函数的图象上, 两底 AD、BC 与 y 轴平行,且 A 和 B 的横坐标分别为 a 和 a+2,求 a 的值.
k ( x 0) 在第一象限内的交点面积为 R,与 x 轴的交点为 P, x
与 y 轴的交点为 Q;作 RM⊥x 轴于点 M,若△OPQ 与△PRM 的面积是 4:1,则 k=
(完整版)反比例函数练习题集锦(含答案)

反比例函数练习题集锦(含答案)1、综合题1、如图,已知直线与双曲线交于两点,且点的横坐标为.(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.2、已知一次函数与双曲线在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4(1)求一次函数的解析式;(2)根据图象指出不等式的解集;(2) 点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围。
二、简答题3、.已知:如图,在平面直角坐标系中,直线AB 分别与轴交于点B、A,与反比例函数的图象分别交(1)求该反比例函数的解析式;(2)求直线AB的解析式.4、如图,已知正比例函数与反比例函数的图象交于两点.(1)求出两点的坐标;的范围;(2)根据图象求使正比例函数值大于反比例函数值的三、计算题5、为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。
已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t 的函数关系为(为常数)。
如下图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?6、如图,在直角坐标系xOy中,一次函数y=k1x+b 的图象与反比例函数的图象交于A(1,4).B(3,m)两点。
(1)求一次函数的解析式;的面积。
(2)求△AOB7、如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(-2,1)、B(1,n)两点.(1) 求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积。
反比例函数综合练习

反比例函数综合练习题1、一次函数2x y =图像与反比例函数xk y =的图像交于A 、B 两点,过O 点的直线与反比例函数xk y =的图像交于P 、Q 两点。
且点A的横坐标为4。
(1)、求k 的值;(2)、若C 的纵坐标为8,求△AOC 的面积;(3)、若四边形APBQ 的面积=24,求P 点的坐标。
2、如图,已知反比例函数y=k/x ,和正比例函数y=x/4相交于A 、B 两点,M (m,n )为反比例函数图象上一动点,N (0,-n )为y 轴上一点,CD⊥x 轴,NC⊥y 轴。
(1)若点D 坐标为(-8,0),求k ;(2)若B 为CD 中点,且四边形OBCE 面积为4,求点M 的坐标;(3)连接AM 延长交y 轴于P 点,连接BM 交y 轴于Q 点,若AM :PM=a ,BM :QM=b ,求b-a3、如图P 1是反比例函数)0(>k xk y =在第一象限图像上的一点,点A 1的坐标为(2,0).(1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积 将如何变化? (2)若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,求此反比例函数的解析式及A 2点的坐标.4、如图,已知直线l :333+-=x y 交x 轴于点A ,交y 轴于点B ,将△AOB 沿直线l 翻折,点O 的对应点C 恰好落在双曲线)0(>=k xk y 上.(1)求k 的值;(2)将△ABC 绕AC 的中点旋转180°得到△PCA ,请判断点P 是否在双曲线xk y =上,并说明理由.5、如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=kx 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.6、如图,已知Rt △ABC 的顶点A 是一次函数y=x +m 与反比例函数y=xm 的图象在第一象限内的交点,且S △AOB =3(1)该一次函数与反比例函数的解析式是否能完全确定?若能,请写出它们的解析式,若不能,请说明理由。
中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。
反比例函数练习题及答案

一、选择题(每小题3分,共36分)1.(2022河口模拟)下列关系式中,y是x的反比例函数的是( C )A.x(y-1)=1B.y=1x+1C.y=13x D.y=1x32.对于反比例函数y=-5x,下列说法不正确的是( D )A.图象分布在第二、四象限B.当x<0时,y随x的增大而增大C.图象经过点(5,-1)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y23.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( B )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.若A(2,4)与B(-2,a)都是反比例函数y=kx(k≠0)图象上的点,则a 的值是( B )A.4B.-4C.2D.-25.在一个可以改变容积的密闭容器内,装有质量为m的某种气体,当改变容积V时,气体的密度ρ也随之改变,ρ与V在一定范围内满足,它的图象如图所示,则该气体的质量m为( C )ρ=mV第5题图A.1.4 kgB.5 kgC.7 kgD.6.4 kg6.正比例函数y=6x的图象与反比例函数y=6的图象的交点位于x( D )A.第一象限B.第二象限C.第三象限D.第一、三象限(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角7.反比例函数y=kx坐标系内的图象可能是( D )A B C D的图象相交于点M(1,m),N(-2,n).8.如图所示,函数y1=x+1与函数y2=2x若y1>y2,则x的取值范围是( D )第8题图A.x<-2或0<x<1B.x<-2或x>1C.-2<x<0或0<x<1D.-2<x<0或x>19.如图所示,在平面直角坐标系中,点A是x轴负半轴上一个定点,点(x<0)图象上一个动点,PB⊥y轴于点B,当点P的横坐标P是函数y=-6x逐渐增大时,四边形OAPB的面积将会( D )第9题图A.先增后减B.先减后增C.逐渐减小D.逐渐增大10.如图所示的是某公园“水上滑梯”的侧面图,其中BC段可看成是双曲线的一段,建立如图所示的坐标系后,其中,矩形AOEB中有一向上攀爬的梯子,OA=5 m,进口AB∥OD,且AB=2 m,出口C点距水面的距离CD为1 m,则B,C之间的水平距离DE为( D )A.5 mB.6 mC.7 mD.8 m第10题图11.如图所示,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数的图象恰好经过A′B的中点D,则k的值是( C )y=kx第11题图A.9B.12C.15D.18(x>0)的图象上,点C在反比例函12.如图所示,点B在反比例函数y=6x(x>0)的图象上,且BC∥y轴,AC⊥BC于点C,交y轴于点A,则数y=-2x△ABC的面积为( B )第12题图A.3B.4C.5D.6二、填空题(每小题3分,共18分)13.(2022栖霞模拟)一批零件有200个,一个工人每小时生产5个,则完成任务所需时间y(小时)与人数x之间的函数表达式为y=40.x与一次函数y=2x-1的图象的交点为(1,a),则14.已知反比例函数y=kxk的值为 1 .15.双曲线y=k+1在每个象限内,函数值y随x值的增大而增大,则k x的取值范围是k<-1 .16.王师傅用一根撬棒撬动一块大石头,已知阻力臂和阻力不变,分别为0.5 m和1 000 N,当动力臂l为2 m 时,撬动这块大石头需用的动力F为250 .17.如图所示,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为10 .18.在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为0 .三、解答题(共46分)19.(6分)已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的表达式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-2<x<-1时,求y的取值范围.解:(1)把A(2,3)代入y=kx ,得k=2×3=6,∴y=6x.(2)点B(-1,6)不在这个函数的图象上,点C(3,2)在这个函数的图象上.理由如下:当x=-1时,y=-6,∴点B(-1,6)不在这个函数的图象上.当x=3时,y=2,∴点C(3,2)在这个函数的图象上.(3)当x=-1时,y=-6;x=-2时,y=-3,∵k=6>0,∴当-2<x<-1时,y随x的增大而减小.∴当-2<x<-1时,y的取值范围为-6<y<-3.20.(8分)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系式t=kv ,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多长 时间?解:(1)由题意,得函数图象经过点(40,1),(m,0.5),把(40,1)代入t=kv ,得k=40,故可得关系式为t=40v .再把(m,0.5)代入t=40v,得m=80.(2)把v=60代入t=40v,得t=23,故汽车通过该路段最少需要23h.21.(10分)某商场出售一批进价为2元的贺卡,在销售中发现此商品的日销售单价x(元)与日销售量y(张)之间有如下关系:(1)猜测并确定y 与x 的函数表达式.(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此贺卡的日销售利润为W 元,试求出W 与x 之间的函数表达式.若物价部门规定此贺卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解:(1)由题意设y=k(k为常数,且k≠0),x把(3,20)代入,得k=60,.∴y与x的函数表达式是y=60x=6,(2)当x=10时,y=6010∴当日销售单价为10元时,贺卡的日销售量是6张.,且2≤x≤10,(3)∵W=(x-2)y=60-120x=48(元).∴当x=10时,W最大,W最大=60-12010∴当日销售单价为10元时,每天获得的利润最大,最大利润为48元.22.(10分)如图所示,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=-12的图象交于A,B两点,且与x轴交于点C,与y轴交于x点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;的解集.(3)写出不等式kx+b>-12x解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A,B两点,y=-12x且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴当y=3时,3=-12,解得x=-4;x当x=3时,y=-123=-4.故点B 的坐标为(-4,3),点A 的坐标为(3,-4), 把点A,B 的坐标代入y=kx+b,得 {-4k +b =3,3k +b =-4,解得{k =-1,b =-1, 故一次函数的表达式为y=-x-1. (2)y=-x-1,当y=0时,x=-1, 故点C 的坐标为(-1,0),∴S △AOB =S △BOC +S △AOC =12OC ·|y B |+12OC ·|y A |=12×1×3+12×1×4=72.∴△AOB 的面积为72.(3)由图象,知不等式kx+b>-12x 的解集为x<-4或0<x<3.23.(12分)(2022莱西模拟)如图所示,正比例函数y=12x 的图象与反比例函数y=kx(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M,已知△OAM 的面积为1.(1)求反比例函数的表达式;(2)如果点B(a,b)为反比例函数在第一象限图象上的点,且b=2a,试探究在x 轴上是否存在点P,使△PAB 周长最小.若存在,求点P 的坐标;若不存在,请说明理由.解:(1)∵反比例函数y=kx (k ≠0)的图象在第一象限,∴k>0.∵△OAM 的面积为1,∴12k=1,解得k=2,故反比例函数的表达式为y=2x.(2)存在.∵点A 是正比例函数y=12x 与反比例函数y=2x图象的交点,且x>0,y>0,∴{y =12x ,y =2x ,解得{x =2,y =1,∴A(2,1). ∵B(a,b)为反比例函数在第一象限图象上的点,∴b=2a.又∵b=2a,∴a=1,b=2,∴B(1,2).∵AB 的距离为定值,∴若使△PAB 周长最小,则PA+PB 的值最小. 如图所示,作A 点关于x 轴的对称点C,并连接BC,交x 轴于点P,P 为所求点.设A 点关于x 轴的对称点为C,则C 点的坐标为(2,-1).设直线BC 的表达式为y=mx+n,将B,C 两点的坐标代入,得{2m +n =-1,m +n =2,解得{m =-3,n =5,故直线BC 的表达式为y=-3x+5.当y=0时,x=53,则点P 坐标为(53,0).。
初二数学人教版(下册)反比例函数典型例题汇总(附答案)

例 下面函数中,哪些是反比例函数? (1)3x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,xky =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式.反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 已知反比例函数62)2(--=a xa y ,y 随x 增大而减小,求a 的值及解析式.分析 根据反比例函数的定义及性质来解此题. 解 因为62)2(--=ax a y 是反比例函数,且y 随x 的增大而减小,所以⎩⎨⎧>--=-.02,162a a 解得⎩⎨⎧>±=.2,5a a所以5=a ,解析式为xy 25-=.反比例函数的典型例题四例 (1)若函数22)1(--=mx m y 是反比例函数,则m 的值等于( )A .±1B .1C .3D .-1(2)如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则:A .1=SB .2=SC .3=SD .S 的值不确定解:(1)依题意,得⎩⎨⎧-=-≠-,12,012m m 解得1-=m .故应选D . (2)由双曲线x y 1=关于O 点的中心对称性,可知:O BC O BA S S ∆∆=. ∴12122=⋅=⨯⨯==∆AB OB AB OB S S OBA .故应选A .例 已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,当1=x 时,4=y ;当3=x 时,5=y ,求1-=x 时,y 的值.分析 先求出y 与x 之间的关系式,再求1-=x 时,y 的值.解 因为1y 与x 成正比例,2y 与x 成反比例,所以)0(,212211≠==k k xk y x k y . 所以xkx k y y y 2121+=+=.将1=x ,4=y ;3=x ,5=y 代入,得⎪⎩⎪⎨⎧=+=+.5313,42121k k k k 解得 ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以xx y 821811+=. 所以当1-=x 时,4821811-=--=y . 说明 不可草率地将21k k 、都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.反比例函数的典型例题六例 根据下列表格x 与y x …… 1 2 3 456 …y…6 3 2 1.5 1.2 1 …(1x 的取值范围. 解:(1)图像如右图所示. (2)根据图像,设)0(≠=k xky ,取6,1==y x 代入,得16k=. ∴6=k .∴函数解析式为)0(6>=x xy . 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )解:1+-=x y 的图像经过第一、二、四象限,故排除B 、C ;又xy 3=的图像两支在第一、三象限,故排除D .∴答案应选A .(2)若0>k ,则直线)1(2+-=k kx y 经过第一、三、四象限,双曲线xky =的图像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若0<k ,则直线)1(2+-=k kx y 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正确.应选C .例 已知函数24231-⎪⎭⎫ ⎝⎛+=mx m y 是反比例函数,且其函数图像在每一个象限内,y 随x 的增大而减小,求反比例函数的解析式.解:因为y 是x 的反比例函数,所以1242-=-m ,所以21=m 或.21-=m 因为此函数图像在每一象限内,y 随x 的增大而减小,所以031>+m ,所以31->m ,所以21=m ,所以反比例函数的解析式为.65xy = 说明:此题根据反比例函数的定义与性质来解反比例函数xky = )0(≠k ,当0>k 时,y 随x 增大而减小,当0<k 时,y 随x 增大而增大.例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当3=x 厘米时,求y 的值; (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式. 解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米, 所以1005=xy ,所以xy 20=. (2)因为x 是长方体的高.所以0>x .即自变量x 的取值范围是0>x . (3)当3=x 时,326320==y (厘米) (4x … 0.525 1015…y … 40 10 4 2 311 …描点画图如图所示.例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据S F W ⋅=,得15=S F ⋅,即SF 15=,所以F 与S 之间是反比例函数关系,故选(B ).例 一个圆台形物体的上底面积是下底面积的.32如果如下图所示放在桌上,对桌面的压强是Pa 200,翻过来放,对桌面的压强是多少?解:由物理知识可知,压力F ,压强p 与受力面积S 之间的关系是.SFp =因为是同一物体,F 的数值不变,所以p 与S 成反比例. 设下底面是0S ,则由上底面积是032S , 由SFp =,且0S S =时,200=p , 有.20020000S S pS F =⨯==因为是同一物体,所以0200S F =是定值.所以当032S S =时,).Pa (3003220000===S S SF p因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.例 如图,P 是反比例函数xky =上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为),(y x .因为P 点在第二象限,所以0,0><y x . 所以图中阴影部分矩形的长、宽分别为y x ,-.又2=-xy ,所以2-=xy .因为xy k =,所以2-=k . 所以这个反比例函数的解析式为xy 2-=. 说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于xk y =中的k .例 当n 取什么值时,122)2(-++=n n x n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y随x 增大而增大还是减小?分析 根据反比例函数的定义)0(≠=k x k y 可知,122)2(-++=n n x n n y 是反比例函数,必须且只需022≠+n n 且112-=-+n n .解 122)2(-++=n n xn n y 是反比例函数,则⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 1-=n .故当1-=n 时,122)2(-++=n nx n n y 表示反比例函数:xy 1-=. 01<-=k ,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.11。
反比例函数综合练习题

反比例函数练习题(1)一、填空题:1、函数9x y =-和函数2y x =的图象有 个交点;2、反比例函数k y x =的图象经过(-32,5)点、(,3a -)及(10,b )点,则k = ,a = ,b = ;3、若反比例函数1232)12(---=k k xk y 的图象经过二、四象限,则k = _______5、已知正比例函数y kx =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 6、设有反比例函数,、为其图象上的两点,若时,,则的取值范围是___________7、如图是反比例函数ky x=的图象,则k 与0的大小关系是k 0. 8、函数2y x =-的图象,在每一个象限内,y 随x 的增大而 ; 9、反比例函数()0ky k x=>在第一象限内的图象如图,点M 是图象上一点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ;10.已知点A (72m -,5m -)在第二象限,且m 为整数,则过A 的反比例函数的关系式为___________.11.正比例函数(2)y m x =-的图象与反比例函数1m y x+=的图象的一个交点是A ,点A 的横坐标是2,则此反比例函数的关系式为_________________. 12.已知反比例函数52)32(--=kx k y 的图象在所在的每一个象限内y 随着x 的增大而增大,则=k.13.请写出一个当自变量x <0时,函数值y 随x 的增大而增大的反比例函数 二、选择题14、下列函数中,是反比例函数的是( )A. y x =-2B. y x =-12C. y x=-11D. y x =1215、 函数ykx =-与y k x=(k ≠0)的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定 16、在同一直角坐标系中,x y 2-=与)0(<=k xky 的交点个数是 A .3 B .2 C .1 D .017.向高为H 的圆柱形水杯中注水,已知水杯底面半径为2,那么注水量y 与水深x 的函数图象是( )19.已知函数xky =(K <0)经过P 1(1x ,1y ),P 2(2x ,2y ),如果y 2<y 1<0,那么 ( ) A .012<<x xB .021<<x x C .012>>x x D .021>>x x20.已知点P 1(a ,b )在函数xky =(k ≠0)的图象上,那么不在此图象上的点是 A .P1(b ,a)B .P2(-a ,-b)C .P 3(a 1,-b1)21.如图所示的图象的函数关系式只能是( ) A.y x = B .1y x=C . 2y x =22.在函数xky =(k >0)的图象上有三点A 1(x 1, 12223(x 3, y 3 ),已知x 1<x 2<0<x 3,则下列各式中,正确的是 ( ) A.y 1<y 2<y 3 B.y 3<y 2<y 1 C. y 2< y 1<y 3 D.y 3<y 1<y 224、若y 与-3x 成反比例,x 与4z成正比例,则y 是z 的()A 、 正比例函数B 、 反比例函数C 、 一次函数D 、 不能确定25、若反比例函数22)12(--=mx m y 的图象在第二、四象限,则m 的值是( )A 、 -1或1B 、小于12的任意实数 C 、 -1 D、 不能确定26、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )D27、在同一直角坐标平面内,如果直线1y xk =2k x的关系一定是()A 、1k <0, 2k >0 B 、1k >0, 2k <0 C 、1k 、2k 同号D 、1k 、2k 异号28、已知反比例函数()0k y k x=<的图象上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、正数 B 、 负数 C 、 非正数 D 、 不能确定 29、在同一坐标系中,函数ky =和3y kx =+的图象大致是 ( )1、如图,Rt △ABO 的顶点A 是双曲线ky x=与直线()1y x k =--+在第二象限的交点,AB ⊥x轴于B 且S △ABO=32 (1)求这两个函数的解析式 (2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。
反比例函数练习题及答案6套

反比例函数练习(1)一、判断题 1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ___; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y与x 的函数关系是______________ 三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( )(A ) 12+=x y (B )22x y = (C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.②这是一个反比例函数吗? ③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的典型综合练习题反比例函数综合练习题一.选择题(共18小题)1.如图,▱ABCD 的顶点A ,B 的坐标分别是A (﹣1,0),B (0,﹣2),顶点C ,D 在双曲线上,边AD交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k 的值等于( )A 12B 10C 8D 62.(如图,在△OAB 中,C 是AB 的中点,反比例函数y= (k >0)在第一象限的图象经过A 、C 两点,若△OAB 面积为6,则k 的值为( )A 2B 4C 8D 163.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )A . 2≤k≤9B . 2≤k≤8C . 2≤k≤5D .5≤k≤84.(2011•兰州)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数的图象上.若点A 的坐标为(﹣2,﹣2),则k 的值为( )A . 1B . ﹣3C .4 D . 1或﹣3 A B C y5.如图,A 是反比例函数y =k x图像上一点,C 是线段OA 上一点,且OC :OA =1:3作CD ⊥x 轴,垂足为点D ,延长DC 交反比例函数图像于点B ,S △ABC =8,则k 的___________.6.如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。
在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,…。
记点A n 的横坐标为n a ,若21=a ,a 2015= ▲ .7.如图所示,点P (3a ,a )是反比例函数y=(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )A . y=B . y=C . y=D .y= 8.如图:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线y=(k≠0)与△ABC 有交点,则k 的取值范围是( )A . 1<k <2B . 1≤k≤3C . 1≤k≤4D .1≤k<49.如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线y=(x >0)上,则k 的值为( )A . 2B . 3C . 4D .6 10.如图△OAP ,△ABQ 均是等腰直角三角形,点P ,Q 在函数y=(x >0)的图象上,直角顶点A ,B 均在x 轴上,则点B 的坐标为( )A . (,0)B . (,0)C . (3,0)D . (,0)11.反比例函数y=在第一象限的图象如图所示,则k 的值可能是( )A .1B . 2C . 3D .4二.填空题(共7小题)12如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为_________ .13.(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_________ .14.已知y=(m+1)是反比例函数,则m= .15.反比例函数y=(a﹣3)的函数值为4时,自变量x 的值是_________ .16.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S 四边形ABDC=14,则k= _________ .17.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是_________ .三.解答题(共5小题)18 如图1,已知直线y=2x分别与双曲线y=8/x、y=k/x(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=8/x上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=k/x(x>0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.19如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB 上.(1)求证:△AOE 与△BOF 的面积相等;(2)求反比例函数的解析式;(3)如图2,P 点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M 、N (M 在N 的左侧),使得以O 、P 、M 、N 为顶点的四边形是平行四边形?若存在,求出点M 、N 的坐标;若不存在,请说明理由.20.(本题满分12分)如图,过原点的直线x k y 1=和x k y 2=与反比例函数x y 1=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时k 1和k 2之间的关系式;若不可能,说明理由;(3)设P (1x ,1y ),Q (2x ,2y )(x 2 > x 1 > 0)是函数x y 1=图象上的任意两点,221y y a +=,212x x b +=,试判断a ,b 的大小关系,并说明理由.y xDC B AO21 已知双曲线y=与直线y=相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线y=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,﹣n )作NC ∥x 轴交双曲线y=于点E ,交BD 于点C .(1)若点D 坐标是(﹣8,0),求A 、B 两点坐标及k 的值;(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式;(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p﹣q的值反比例函数的典型综合练习题参考答案与试题解析一.选择题(共18小题)1.如图,▱ABCD 的顶点A ,B 的坐标分别是A (﹣1,0),B (0,﹣2),顶点C ,D 在双曲线上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k 的值等于( )A .12B . 10C . 8D .6 考点: 反比例函数综合题.专题: 探究型.分析: 分别过C 、D 作x 轴的垂线,垂足为F 、G ,过C 点作CH ⊥DG ,垂足为H ,根据CD ∥AB ,CD=AB 可证△CDH≌△ABO ,则CH=AO=1,DH=OB=2,由此设C (m+1,n ),D (m ,n+2),C 、D 两点在双曲线y=上,则(m+1)n=m (n+2),解得n=2m ,设直线AD 解析式为y=ax+b ,将A 、D 两点坐标代入求解析式,确定E 点坐标,求S △ABE ,根据S 四边形BCDE =5S △ABE,列方程求m 、n 的值,根据k=(m+1)n求解.解答:解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,∵ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,∴△CDH≌△ABO(ASA),∴CH=AO=1,DH=OB=2.设C(m+1,n),D(m,n+2),则(m+1)n=m(n+2)=k,解得n=2m,∴D的坐标是(m,2m+2).设直线AD解析式为y=ax+b,将A、D两点坐标代入得,由①得:a=b,代入②得:mb+b=2m+2,即b(m+1)=2(m+1),解得b=2,∴,∴y=2x+2,E(0,2),BE=4,∴S △ABE=×BE×AO=2,∵S 四边形BCDE=5S△ABE=5××4×1=10,∴S △ABE +S 四边形BEDM =10,即2+4×m=10,解得m=2,∴n=2m=4,∴k=(m+1)n=3×4=12.故选A .点评: 本题考查了反比例函数的综合运用,解答此题的关键是通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标,根据面积关系,列方程求解.2.(2012•泸州)如图,在△OAB 中,C 是AB 的中点,反比例函数y= (k >0)在第一象限的图象经过A 、C 两点,若△OAB 面积为6,则k 的值为( )A .2B . 4C . 8D .16 考点: 反比例函数系数k 的几何意义;三角形中位线定理.分析:分别过点A、点C作OB的垂线,垂足分别为点M、点N,根据C是AB的中点得到CN为△ADE的中位线,然后设MN=NB=a,CN=b,AM=2b,根据OM•AM=ON•CN,得到OM=a,最后根据面积=3a•2b÷2=3ab=6求得ab=2从而求得k=a•2b=2ab=4.解答:解:分别过点A、点C作OB的垂线,垂足分别为点M、点N,如图,∵点C为AB的中点,∴CN为△AMB的中位线,∴MN=NB=a,CN=b,AM=2b,∵又因为OM•AM=ON•CN∴OM=a∴这样面积=3a•2b÷2=3ab=6,∴ab=2,∴k=a•2b=2ab=4,故选B.点评:本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,解题的关键是正确的作出辅助线.3.(2012•黄石)如图所示,已知A(,y 1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A . (,0)B . (1,0)C . (,0)D . (,0)考点: 反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系. 专题: 计算题.分析:求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP ﹣BP|<AB ,延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可. 解答:解:∵把A (,y 1),B (2,y 2)代入反比例函数y=得:y 1=2,y 2=, ∴A (,2),B (2,), ∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP|<AB , ∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB=AB , 即此时线段AP 与线段BP 之差达到最大, 设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:,解得:k=﹣1,b=, ∴直线AB 的解析式是y=﹣x+, 当y=0时,x=,即P (,0),故选D .点评: 本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.4.(2012•福州)如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )A .2≤k≤9 B . 2≤k≤8 C . 2≤k≤5 D .5≤k≤8考点: 反比例函数综合题. 专题: 综合题.分析: 先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y=﹣x+6,设交点为(x ,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.解答: 解:∵点C (1,2),BC ∥y 轴,AC ∥x 轴,∴当x=1时,y=﹣1+6=5,当y=2时,﹣x+6=2,解得x=4,∴点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k=1×2=2最小,设与线段AB 相交于点(x ,﹣x+6)时k 值最大,则k=x (﹣x+6)=﹣x 2+6x=﹣(x ﹣3)2+9, ∵1≤x≤4,∴当x=3时,k 值最大,此时交点坐标为(3,3),因此,k 的取值范围是2≤k≤9.故选A .点评: 本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.5.(2012•德州)如图,两个反比例函数和的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为( )A .3B . 4C .D .5考点:反比例函数综合题;三角形的面积.分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.解答:解:∵点P在y=上,∴|x p|×|y p|=|k|=1,∴设P 的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得:=﹣,解得:x=﹣2a,∴B的坐标是(﹣2a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣2a)|=3a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××3a=.故选C.点评:本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.6.(2011•兰州)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A .1B . ﹣3C . 4D .1或﹣3 考点: 待定系数法求反比例函数解析式;矩形的性质.专题: 函数思想.分析: 设C (x ,y ).根据矩形的性质、点A 的坐标分别求出B (﹣2,y )、D (x ,﹣2);根据“矩形ABCD 的对角线BD 经过坐标原点”及直线AB 的几何意义求得xy=4①,又点C 在反比例函数的图象上,所以将点C 的坐标代入其中求得xy=k 2+2k+1②;联立①②解关于k 的一元二次方程即可. 解答:解:设C (x ,y ). ∵四边形ABCD 是矩形,点A 的坐标为(﹣2,﹣2),∴B (﹣2,y )、D (x ,﹣2); ∵矩形ABCD 的对角线BD 经过坐标原点,∴设直线BD 的函数关系式为:y=kx , ∵B (﹣2,y )、D (x ,﹣2),∴k=,k=,∴=,即xy=4;① 又∵点C 在反比例函数的图象上,∴xy=k 2+2k+1,② 由①②,得k 2+2k ﹣3=0,即(k ﹣1)(k+3)=0,∴k=1或k=﹣3,则k=1或k=﹣3. 故选D .点评:本题主要考查了待定系数法求反比例函数解析式、矩形的性质.解答此题的难点是根据C(x,y)求得B、D 两点的坐标,然后根据三角形相似列出方程=,即xy=4.7.(2011•湖州)如图,已知A、B 是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A .B.C.D.考点:反比例函数综合题;动点问题的函数图象.专题:综合题.分析:当点P在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,当点P在BC上运动时,S随t的增大而减小,根据以上判断做出选择即可.解答:解:当点P在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,∴B、D淘汰;当点P在BC上运动时,S随t的增大而逐渐减小,∴C错误.故选A.点评:本题考查了反比例函数的综合题和动点问题的函数图象,解题的关键是根据点的移动确定函数的解析式,从而确定其图象.8.(2011•河北)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x 轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A . ①②④B . ②④⑤C . ③④⑤D .②③⑤考点: 反比例函数综合题;反比例函数的性质;反比例函数图象上点的坐标特征;三角形的面积.分析: 根据题意得到当x <0时,y=﹣,当x >0时,y=,设P (a ,b ),Q (c ,d ),求出ab=﹣2,cd=4,求出△OPQ 的面积是3;x >0时,y 随x 的增大而减小;由ab=﹣2,cd=4得到MQ=2PM ;因为∠POQ=90°也行,根据结论即可判断答案.解答: 解:①、x <0,y=﹣,∴①错误;②、当x <0时,y=﹣,当x >0时,y=, 设P (a ,b ),Q (c ,d ),则ab=﹣2,cd=4,∴△OPQ 的面积是(﹣a )b+cd=3,∴②正确; ③、x >0时,y 随x 的增大而减小,∴③错误; ④、∵ab=﹣2,cd=4,∴④正确;⑤设PM=a ,则OM=﹣.则P02=PM 2+OM 2=a 2+(﹣)2=a 2+,QO 2=MQ 2+OM 2=(2a )2+(﹣)2=4a 2+,PQ 2=PO 2+QO 2=a 2++4a 2+=(3a )2=9a 2,整理得a 4=2 ∵a 有解,∴∠POQ=90°可能存在,故⑤正确;点评: 本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键.9.(2010•孝感)双曲线y=与y=在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A ,B 两点,连接OA ,OB ,则△AOB 的面积为( )A . 1B .2 C .3 D .4考点: 反比例函数系数k 的几何意义.分析: 如果设直线AB 与x 轴交于点C ,那么△AOB 的面积=△AOC 的面积﹣△COB 的面积.根据反比例函数的比例系数k 的几何意义,知△AOC 的面积=2,△COB 的解答: 解:设直线AB 与x 轴交于点C .∵AB ∥y 轴,∴AC ⊥x 轴,BC ⊥x 轴.∵点A 在双曲线y=的图象上,∴△AOC 的面积=×4=2.点B 在双曲线y=的图象上,∴△COB 的面积=×2=1. ∴△AOB 的面积=△AOC 的面积﹣△COB 的面积=2﹣1=1. 故选A .点评: 本题主要考查反比例函数的比例系数k 的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S=|k|.10.(2010•深圳)如图所示,点P (3a ,a )是反比例函数y=(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )A . y=B .y= C .y= D .y=考点:反比例函数图象的对称性.专题:转化思想.分析:根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.解答:解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.点评:此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.11.(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)A . 1<k <2B . 1≤k≤3C . 1≤k≤4D .1≤k<4考点: 反比例函数图象上点的坐标特征;等腰直角三角形.分析: 先根据题意求出A 点的坐标,再根据AB=AC=2,AB 、AC 分别平行于x 轴、y 轴求出B 、C 两点的坐标,再根据双曲线y=(k≠0)分别经过A 、B 两点时k 的取值范围即可.解答: 解:点A 在直线y=x 上,其中A 点的横坐标为1,则把x=1代入y=x 解得y=1,则A 的坐标是(1,1), ∵AB=AC=2,∴B 点的坐标是(3,1),∴BC 的中点坐标为(2,2)当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(2,2)时,k=4,因而1≤k≤4. 故选C .点评: 本题考查一定经过某点的函数应适合这个点的横纵坐标.12.(2010•长春)如图,平面直角坐标系中,OB 在x 轴上,∠90°,点O 的对应点C 恰好落在双曲线y=(x >0)上,则k 的值为( )A . 2B .3 C .4 D .6考点: 反比例函数图象上点的坐标特征;坐标与图形变化-旋转.分析: 由旋转可得点D 的坐标为(3,2),那么可得到点C的坐标为(3,1),那么k 等于点C 的横纵坐标的积.解答: 解:易得OB=1,AB=2,∴AD=2,∴点D 的坐标为(3,2),∴点C 的坐标为(3,1), ∴k=3×1=3.故选B .点评: 解决本题的关键是利用旋转的性质得到在反比例函数上的点C 的坐标.13.(2010•鞍山)如图△OAP ,△ABQ 均是等腰直角三角形,点P ,Q 在函数y=(x >0)的图象上,直角顶点A ,B 均在x 轴上,则点B 的坐标为( )A . (,0)B . (,0)C .(3,0) D . (,0)考点: 反比例函数综合题.专题: 数形结合.分析: 由△OAP 是等腰直角三角形得到PA=OA ,可以设P 点的坐标是(a ,a ),然后把(a ,a )代入解析式求出a=2,从而求出P 的坐标,接着求出OA 的长,再根据△ABQ 是等腰直角三角形得到BQ=AB ,可以设Q 的纵坐标是b ,因而横坐标是b+2,把Q 的坐标代入解析式即可求出B 的坐标.解答: 解:∵△OAP 是等腰直角三角形∴PA=OA ∴设P 点的坐标是(a ,a )把(a ,a )代入解析式得到a=2∴P 的坐标是(2,2)则OA=2∵△ABQ 是等腰直角三角形∴BQ=AB ∴设Q 的纵坐标是b ∴横坐标是b+2把Q 的坐标代入解析式y= ∴b=∴b=﹣1b+2=﹣1+2=+1∴点B 的坐标为(+1,0).故选B .点评: 本题考查了反比例函数的图象的性质以及等腰直角三角形的性质,利用形数结合解决此类问题,是非常有效的方法.14.(2009•宁波)反比例函数y=在第一象限的图象如图所示,则k 的值可能是( )A . 1B .2 C .3 D .4考点: 反比例函数的性质.分析: 根据图象,当x=2时,函数值在1和2之间,代入解析式即可求解.解答: 解:如图,当x=2时,y=,∵1<y <2,∴1<<2,解得2<k <4,所以k=3.故选C .点评: 解答本题关键是要结合函数的图象,掌握反比例函数的性质.15.(2009•眉山)如图,点A在双曲线y=上,且OA=4,过A 作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC 的周长为()A .B.5 C.D.考点:反比例函数综合题.专题:综合题;数形结合.分析:根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b 的方程组,解之即可求出△ABC的周长.解答:解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC 的周长=OC+AC,设OC=a,AC=b ,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故选A.点评:本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.16.(2009•鄂州)如图,直y=mx 与双曲线y=交于点A ,B .过点A 作AM ⊥x 轴,垂足为点M ,连接BM .若S △ABM=1,则k 的值是( )A . 1B .m ﹣1 C .2 D .m考点: 反比例函数系数k 的几何意义.分析: 利用三角形的面积公式和反比例函数的图象性质可知.解答: 解:由图象上的点A 、B 、M 构成的三角形由△AMO 和△BMO 的组成,点A 与点B 关于原点中心对称,∴点A ,B 的纵横坐标的绝对值相等,∴△AMO 和△BMO 的面积相等,且为,∴点A 的横纵坐标的乘积绝对值为1,又因为点A 在第一象限内,所以可知反比例函数的系数k 为1.故选A .点评: 本题利用了反比例函数的图象在一、三象限和S△=|xy|而确定出k 的值.B 两点,若A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1y 2+x 2y 1的值为( )A . ﹣8B .4 C .﹣4 D .考点: 反比例函数图象的对称性.分析: 根据直线y=kx (k >0)与双曲线y=两交点A ,B 关于原点对称,求出y 1=﹣y 2,y 2=﹣y 1,代入解析式即可解答.解答: 解:将y=化为xy=2,将A (x 1,y 1),B (x 2,y 2)分别代入xy=2,得x 1y 1=2,x 2y 2=2.因为y 1和y 2互为相反数,所以y 1=﹣y 2,y 2=﹣y 1.则x 1y 2+x 2y 1=﹣x 1y 1﹣x 2y 2=﹣(x 1y 1+x 2y 2)=﹣(2+2)=﹣4.故选C .点评: 此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用.18.(2007•黔东南州)已知正比例函数y=k 1x (k 1≠0)与反比例函数y=(k 2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A (2,1)B (﹣2,C (﹣2,D (2,﹣..﹣1).1).1)考点:反比例函数图象的对称性.分析:根据关于原点对称的两点横坐标,纵坐标都互为相反数即可解答.解答:解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(2,1).故选A.点评:此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用.二.填空题(共7小题)19.(2012•深圳)如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为 4 .考点:反比例函数综合题.分析:由于⊙O和y=(k>0)都关于y=x对称,于是易求Q点坐标是(3,1),那么阴影面积等于两个面积相等矩形的面积减去一个边长是1的正方形的面积.解答:解:∵⊙O在第一象限关于y=x对称,y=(k>0)也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3﹣2×1×1=4.故答案是4.点评:本题考查了反比例函数的性质,解题的关键是知道反比例函数在k>0时关于y=x对称.20.(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.考点:反比例函数综合题.分析:由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S 梯形OBAC=S△ABD+S△ADC+S△ODC得(a+2a)×b=a×b+4+×2a×b,整理可得ab=,即可得到k的值.解答:解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S 梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为.点评:本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系.21.已知y=(m+1)是反比例函数,则m= 1 .考点:反比例函数的定义.分析:根据反比例函数的定义.即y=(k≠0),只需令m2﹣2=﹣1、m+1≠0即可.解答:解:∵y=(m+1)是反比例函数,∴,解之得m=1.故答案为:1.点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.22.反比例函数y=(a﹣3)的函数值为4时,自变量x 的值是﹣1 .考点:反比例函数的定义.分析:根据反比例函数的定义先求出a的值,再求出自变量x的值.解答:解:由函数y=(a﹣3)为反比例函数可知a 2﹣2a﹣4=﹣1,解得a=﹣1,a=3(舍去),又a﹣3≠0,则a≠3,a=﹣1.将a=﹣1,y=4代入关于x的方程4=,解得x=﹣1.故答案为:﹣1.点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.23.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S 四边形ABDC=14,则k= 16 .考点:反比例函数系数k的几何意义.分析:利用已知条件判断点A与点B的纵横坐标正好相反,从而设出点A的坐标,进而求得点B的坐标,利用S ACDB=S△CED﹣S△AEB,求得点A的坐标后,用待定系数法确定出k的值.解答:解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.点评:本题考查了反比例函数系数k的几何意义,关键是要构造直角三角形CED,利用S ACDB=S△CED﹣S△AEB计算.24.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y 轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是①②④.考点:反比例函数综合题.分析:设A(x1,y1),B(x2,y2),而A、B两点都在的图象上,故有x 1y1=x2y2=1,而S△ODB=×BD×OD=x2y2=,S△OCA=×OC×AC=x1y1=,故①正确;由A、B两点坐标可知P(x 1,y2),P点在的图象上,故S矩形OCPD=OC×PD=x1y2=k,根据S四边形PAOB=S矩形OCPD﹣S△ODB﹣S△OCA,计算结果,故②正确;由已知得x 1y2=k,即x1•=k,即x1=kx2,由A、B、P三点坐标可知PA=y 2﹣y1=﹣=,PB=x1﹣x2,=(k﹣1)x2,故③错误;当点A是PC的中点时,y2=2y1,代入x1y2=k中,得2x1y1=k,故k=2,代入x1=kx2中,得x1=2x2,可知④正确.解答:解:(1)设A(x1,y1),B(x2,y2),则有x1y1=x2y2=1,∵S △ODB=×BD×OD=x2y2=,S△OCA=×OC×AC=x1y1=,故①正确;(2)由已知,得P(x1,y2),∵P点在的图象上,∴S 矩形OCPD=OC×PD=x1y2=k,∴S 四边形PAOB=S矩形OCPD﹣S△ODB﹣S△OCA=k﹣﹣=k﹣1,故②正确;(3)由已知得x 1y2=k,即x1•=k,∴x1=kx2,根据题意,得PA=y 2﹣y1=﹣=,PB=x1﹣x2,=(k﹣1)x2,故③错误;(4)当点A是PC的中点时,y2=2y1,代入x1y2=k中,得2x1y1=k,∴k=2,代入x1=kx2中,得x1=2x2,故④正确.故本题答案为:①②④.点评:本题考查了反比例函数性质的综合运用,涉及点的坐标转化,相等长度的表示方法,三角形、四边形面积的计算,充分运用双曲线上点的横坐标与纵坐标的积等于反比例系数k.25.如图,双曲线与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q两点,且,,则p﹣q的值为 2 .考点:反比例函数综合题;平行线分线段成比例.分析:设A(m,n)则B(﹣m,﹣n),过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,根据平行线分线段成比例定理得出=,=,求出p=1+,q=﹣1,代入p﹣q求出即可.解答:解:∵双曲线与直线y=mx相交于A、B两点,∴设A(m,n)则B(﹣m,﹣n),过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,则BG=AN=m,∴MH∥AN∥BG,∴=,∴p===1+=1+,∵=,∴=,即1+=,∴q==﹣1,∵BG=AN,∴p﹣q=(1+)﹣(﹣1)=2.故答案为:2.点评:本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度.三.解答题(共5小题)26.(2010•荆州)已知:关于x的一元二次方程x2+(2k﹣1)x+k 2=0的两根x1,x2满足x12﹣x22=0,双曲线(x>0)经过Rt △OAB斜边OB的中点D,与直角边AB交于C(如图),求S△OBC.考点:反比例函数综合题.分析:首先由一元二次方程根的判别式得出k的取值范围,然后由x12﹣x22=0得出x1﹣x2=0或x1+x2=0,再运用一元二次方程根与系数的关系求出k的值,由k 的几何意义,可知S △OCA=|k|.如果过D作DE⊥OA于E,则S △ODE=|k|.易证△ODE∽△OBA,根据相似三角形的面积比等于相似比的平方,得出S△OBA,最后由S△OBC=S△OBA ﹣S△OCA,得出结果.解答:解:∵x2+(2k﹣1)x+k2=0有两根,∴△=(2k﹣1)2﹣4k2≥0,即.由x12﹣x22=0得:(x1﹣x2)(x1+x2)=0.当x 1+x2=0时,﹣(2k﹣1)=0,解得,不合题意,舍去;当x1﹣x2=0时,x1=x2,△=(2k﹣1)2﹣4k2=0,解得:符合题意.∵y=,∴双曲线的解析式为:.过D作DE⊥OA于E,则.∵DE⊥OA,BA⊥OA,∴DE∥AB,∴△ODE∽△OBA,∴,∴,∴.点评:本题综合考查了一元二次方程根的判别式、根与系数的关系,反比例函数比例系数k的几何意义,相似三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.。