排列组合高考真题及答案.docx
排列组合高考试题及答案(最新整理)

(2010江西理数)14.将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。
【答案】 1080【解析】。
先分组,考虑到有2个是平均分组,得,再全排列得:221164212222C C C C A A 两个两人组两个一人组221146421422221080C C C C A A A ⋅⋅=(2010四川理数)(13)的展开式中的第四项是 .6(2-解析:T 4=答案:-33361602(C x =-160x(2010全国卷1文数)(15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)15.【解析1】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有种不同的选法.所2134C C 以不同的选法共有+种.【解析2】: 1234C C 2134181230C C =+=33373430C C C --=(2010湖北文数)11.在的展开中, 的系数为______。
【答案】45210(1)x -4x 安徽文 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B)18(C)16(D)15【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D.北京理12.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有______个【解析】个数为42214-=。
福建理6.(1+2x )3的展开式中,x 2的系数等于 BA .80B .40C .20D .1013.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。
高中排列组合试题及答案

高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类)专题45 排列组合(学生版)一.选择题(共20小题)1.(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种2.(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒3.(2007•全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种4.(2006•湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()A.6B.12C.24D.18 5.(2009•陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()A.432B.288C.216D.108 6.(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012•浙江)若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种8.(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A .24B .18C .12D .69.(2008•全国卷Ⅰ)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种10.(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A .504种B .960种C .1008种D .1108种11.(2015•上海)组合数122(2m m m nn n C C C n m --++,m ,*)n N ∈恒等于( ) A .2m n C + B .12m n C ++ C .1m n C + D .11m n C ++12.(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )A .30种B .36种C .42种D .48种13.(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种14.(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种15.(2006•全国卷Ⅰ)设集合{1I =,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种16.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个17.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种18.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( )A.6种B.9种C.10种D.15种19.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9 20.(2013•全国)3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有( )A.48种B.36种C.24种D.18种二.填空题(共5小题)21.(2007•陕西)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有种.(用数字作答)22.(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)23.(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有种.(以数字作答)24.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有种(结果用数值表示)25.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)历年高考数学真题精选(按考点分类)专题45 排列组合(教师版)一.选择题(共20小题)1.(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【答案】D【解析】分两类(1)甲组中选出一名女生有112536225C C C=种选法;(2)乙组中选出一名女生有211562120C C C=种选法.故共有345种选法.2.(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒【答案】C【解析】由题意知共有5!120=个不同的闪烁,每个闪烁时间为5秒,共5120600⨯=秒;每两个闪烁之间的间隔为5秒,共5(1201)595⨯-=秒.那么需要的时间至少是6005951195+=秒.3.(2007•全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【答案】D【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有5232=种.4.(2006•湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .24D .18【答案】B【解析】在数字1,2,3与符号“+”,“ -”五个元素的所有全排列中,先排列1,2,3,有336A =种排法,再将“+”,“ -”两个符号插入, 有222A =种方法,共有12种方法,故选B . 5.(2009•陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为( )A .432B .288C .216D .108【答案】C 【解析】由题意知本题是一个分步计数原理,第一步先从4个奇数中取2个再从3个偶数中取2个共224318C C =种, 第二步再把4个数排列,其中是奇数的共132312A A =种, ∴所求奇数的个数共有1812216⨯=种.6.(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24【答案】D【解析】使用“插空法“.第一步,三个人先坐成一排,有33A 种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有14C 种办法.根据分步计数原理,6424⨯=. 7.(2012•浙江)若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种【答案】D【解析】由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有441C =种结果, 当取得4个奇数时,有455C =种结果,当取得2奇2偶时有224561060C C =⨯= ∴共有156066++=种结果8.(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A .24B .18C .12D .6【答案】B【解析】从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有236A =种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有236A =种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有236A =种;故共有23318A =种9.(2008•全国卷Ⅰ)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种【答案】B【解析】填好第一行和第一列,其他的行和列就确定,323212A A ∴= 10.(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A .504种B .960种C .1008种D .1108种【答案】C【解析】分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有222A ⨯种,然后排丁,有14A 种,剩下其他四个人全排列有44A 种,因此共有2142442384A A A ⨯=种方法 第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有224A ⨯种,然后丙在7号,剩下四个人全排列有44A 种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有224A ⨯种,然后排丙,丙不再1号和7号,有13A 种,接着排丁,丁不排在10月7日,有13A 种,剩下3个人全排列,有33A 种,因此共有242113242333(44)624A A A A A A +=种方法,故共有1008种不同的排法 11.(2015•上海)组合数122(2m m m nn n C C C n m --++,m ,*)n N ∈恒等于( ) A .2m n C +B .12m nC ++ C .1m n C +D .11m n C ++【答案】A 【解析】组合数1211211122m m m m m m m m m m n n n n n n n n n n C C C C C C C C C C ------+++++=+++=+=.12.(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )A .30种B .36种C .42种D .48种【答案】C【解析】根据题意,不同的安排方法的数目等于所有排法减去甲值14日或乙值16日的排法数,再加上甲值14日且乙值16日的排法,即221211645443242C C C C C C -⨯+= 13.(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种【答案】C【解析】根据题意,分两步,①由题意可得,所有两人各选修2门的种数224436C C =, ②两人所选两门都相同的有为246C =种,都不同的种数为246C = 14.(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种【答案】C【解析】根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有24C 种,乙、丙各选修3门,有3344C C 种,则不同的选修方案共有23344496C C C =种 15.(2006•全国卷Ⅰ)设集合{1I =,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种【答案】B【解析】集合A 、B 中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有2510C =种选法,小的给A 集合,大的给B 集合;从5个元素中选出3个元素,有3510C =种选法,再分成1、2两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有21020⨯=种方法;从5个元素中选出4个元素,有455C =种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有3515⨯=种方法;从5个元素中选出5个元素,有551C =种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有414⨯=种方法;总计为102015449+++=种方法.16.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个【答案】B【解析】4个数字1和4个数字2可以组成不同的8位数共有:88444470A A A =. 17.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】4项工作分成3组,可得:246C =, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:33636A ⨯=种. 18.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A .6种B .9种C .10种D .15种【答案】C【解析】从1,2,3,4,5,6中任取三个不同的数相加,所得的最小值为1236++=,最大值为45615++=,1236++=,1247++=,1251348++=++=,1261352349++=++=++=,136********++=++=++=,14623624511++=++=++=,156********++=++=++=,34613++=,35614++=,45615++=共有:10种不同结果. 19.(2016•新课标Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数( )A .24B .18C .12D .9【答案】B【解析】从E 到F ,每条东西向的街道被分成2段,每条南北向的街道被分成2段, 从E 到F 最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有22426C C =种走法.同理从F 到G ,最短的走法,有12323C C =种走法. ∴小明到老年公寓可以选择的最短路径条数为6318⨯=种走法.20.(2013•全国)3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有()A .48种B .36种C .24种D .18种【答案】A 【解析】3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有:424248A A =种.二.填空题(共5小题)21.(2007•陕西)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)【答案】60【解析】分2类:(1)每校最多1人:3424A =; (2)每校至多2人,把3人分两组,再分到学校:223436C A =,共有60种 22.(2010•全国大纲版Ⅰ)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)【答案】30【解析】分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有12213434181230C C C C +=+=种. 23.(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有 种.(以数字作答)【答案】25【解析】所有的选法数为47C ,两门都选的方法为2225C C , 故共有选法数为422725351025C C C -=-=. 24.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)【答案】24【解析】在五天里,连续的2天,一共有4种,剩下的3人排列,故有33424A =种 25.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【答案】16【解析】1女2男,有122412C C=,2女1男,有21244C C=根据分类计数原理可得,共有12416+=种,故答案为:16第11页(共11页)。
(完整版)排列组合高考真题及答案

1 •将标号为1, 2, 3, 4, 5, 6的6张卡片放入3个不同的信圭寸中•若每个信封放2张,其中标号为1, 2的卡片放入同一信封,则不同的方法共有(力72 种但)18 种(C) 36 种(D)54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力•【解析】标号1,2的卡片放入同一封信有4种方法;其他四封信放入两个信封,每个信封两个有圧'种方法,共有'M “种,故选B.2某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天•若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A) 30种但)36种(C) 42种解析:法一:所有排法减去甲值14日或乙值(D) 48种16日,再加上甲值14日且乙值16日的排法即C; C: 2C; C: C:C3=42法二:分两类甲、乙同组,贝y只能排在15 S,有C: =6种排法3•某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲' 乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有解析:分两类:甲乙排1、2号或6、7号 共有2A 2A 4A :种方法甲乙排中间,丙排7号或不排7号,共有 4A22 ( A44 A31A31A33) 种方法故共有IOO8种不同的排法 4.8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为 (A)A8√∖92 (B) Aδ8C92 (C) A88A72 (D) Aδ8C72 答案:A5•由 1、2、3、4、 5、 6组成没有重复数字且1、 3都不与5相邻的六位偶 的个数是(A) 72 (B) 96 (C) 108 (D) 144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,3A; A;二24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A∣A2 = 12个 算上个位偶数字的排法,共计3 (24+ 12) = 108个答案:C6. 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂 一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A) 288 种(B) 264 种(C) 240 种(D) 168 种A. 504 种B.960种 C. 1008 种 D.【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)

专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
浙江省排列组合历年高中高考题包括答案 .docx

排 列 组 合1. 【 2009年. 浙江卷. 理16】甲、乙、丙3 人站到共有7 的台 上,若每 台 最多站2 人,同一 台上的人不区分站的位置, 不同的站法种数是(用数字作答) .2. 【 2008 年 . 浙江卷 . 理 16】用 1, 2,3, 4, 5, 6 成六位数(没有重复数字) ,要求任何相 两个数字的奇偶性不同,且 1 和 2 相 , 的六位数的个数是 (用数字作答 ).3. 【 2007 年 . 浙江卷 . 理 14】某 店有 11 种 志, 2 元 1 本的 8 种, 1 元 1 本的 3 种,小 有 10 元志(每种至多 一本, 10 元 好用完) , 不同 法的种数是 __________(用数字作答)4. 【 2005 年 . 浙江卷 . 理 9】 从集合 { O , P ,Q , R , S } 与 {0 , 1, 2, 3,4, 5,6, 7,8, 9} 中各任取 2 个元素排成一排 ( 字母和数字均不能重复 ) .每排中字母 O , Q 和数字 0 至多只能出 一个的不同排法种数是_________. ( 用数字作答 ) .5.【 2017 年. 浙江卷 .16 】从 6 男 2 女共 8 名学生中 出 1 人,副1 人,普通2 人 成 4 人服 ,要求服 中至少有1 名女生,共有 ______种不同的 法.(用数字作答)6.【 2018 年 . 浙江卷 .16 】从 1, 3, 5,7, 9 中任取 2 个数字,从 0, 2, 4,6 中任取 2 个数字,一共可以 成___________个没有重复数字的四位数 .( 用数字作答 )7. 【 2014 年 . 浙江卷 . 理 14】在 8 券中有一、二、三等 各 1 ,其余5 无 . 将 8 券分配 4个人,每人2 ,不同的 情况有_____种(用数字作答) .8. 【 2013 年 . 浙江卷 . 理 14】将 A , B , C ,D , E ,F 六个字母排成一排,且 A ,B 均在 C 的同 , 不同的排法共有 __________ 种( 用数字作答 ) .9. 【 2012 年 . 浙江卷 . 理 6】若从 1,2,3 ,⋯, 9 9 个整数中同 取 4 个不同的数,其和 偶数, 不同的取法共有 ()A . 60 种B . 63 种C . 65 种D . 66 种10. 【 2010 年 . 浙江卷 . 理 17】有 4 位同学在同一天的上、 下午参加 “身高与体重” 、“立定跳 ” 、“肺活量”、“握力”、“台 ”五个 目的 ,每位同学上、下午各 一个 目,且不重复 . 若上午不 “握力”目,下午不 “台 ” 目,其余 目上、下午都各 一人 . 不同的安排方式共有______________种(用数字作答) .11. 【 2011 年 . 浙江卷 . 理 9】有 5 本不同的 ,其中 文 2 本,数学 2 本,物理1 本. 若将其随机的并排 放到 架的同一 上, 同一科目的 都不相 的概率(A )1( B )2( C )3D455 55答案:33640 266 【答案】 8424660 126060 480 D264 48/120=2/5。
排列组合的试题及答案高中
排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。
如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。
2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。
二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。
但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。
4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。
三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。
然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。
所以至少有1名女性员工的组合数为 252 - 1 = 251。
高考试题汇编-排列组合(附答案)
1 .[高考全国卷Ⅰ(河南,河北,广西等)理第12 题]设集合I= 1,2,3,4,5}。
选择 I 的两个非空子集 A 和B,要使 B 中最小的数大于 A 中最大的数,则不同的选择方法共有A.50种 B.49种 C.48种 D.47种2.[高考全国卷Ⅰ(河南,河北,广西等)理第15 题,文第16 题]安排 7 位工作人员在 5 月 1 日到 5 月 7 日值班,每人值班一天,其中甲、乙二人都不安排在 5 月 1 日和 2 日,不同的安排方法共有__________种。
(用数字作答)3.[高考全国卷Ⅱ(吉林,黑龙江, 内蒙,贵州,云南等)文第12 题] 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A) 150种 (B)180种 (C)200种 (D)280种4.[高考北京卷文第4 题]在 1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数共有(A) 36 个 (B) 24 个(C) 18 个 (D) 6 个5.[高考北京卷理第3 题]在1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A) 36 个 (B) 24 个(C) 18 个 (D) 6 个6.[高考天津卷理第5 题]将 4 个颜色互不相同球全部放入编号为 1 和 2 的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10 种B .20 种C .36 种D .52 种7 .[高考天津卷文第16 题]用数字0 ,1 ,2,3,4 组成没有重复数字的五位数,则其中数字1,2 相邻的偶数有个(用数字作答).8 .[高考重庆卷理第8 题]将 5 名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(A)30种(B)90种(C)180种(D)270种9 .[高考重庆卷文第9 题]高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A) 1800 (B) 3600 (C) 4320 (D) 504010 .(高考辽宁卷理第15 题,文第16 题)5 名乒乓球队员中,有2 名老队员和3 名新队员.现从中选出3 名队员排成1,2,3 号参加团体比赛,则入选的3 名队员中至少有1 名老队员,且1,2 号中至少有1 名新队员的排法有________种. (以数作答)11.[高考山东卷理第9 题,文第11 题]已知集集合A= {5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A)33 (B)34 (C)35 (D)3612 .[高考湖南卷理第6 题]某外商计划在四个候选城市投资 3 个不同的项目,且在同一个城市投资项目不超过 2 个, 则该外商不同的投资方案有 ( )A.16 种B.36 种C.42 种D.60 种13 .[高考湖南卷文第6 题]在数字 1,2,3 与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6 B. 12 C. 18 D. 2414 .[高考湖北卷理第14 题]某工程队有6 项工程需要单独完成,其中工程乙须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
(word完整版)高中数学排列组合高频经典题目练习及答案解析.docx
⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯○ ⋯_ _⋯____⋯__⋯: 号考 _ ⋯_ _ _ _⋯_ _ _⋯ :⋯班○_ __ _ ⋯_ _ _⋯_:⋯名 ⋯姓 _ _ _ 装_ _ _⋯_ _ _ ⋯_ _ :⋯ 校 学⋯ ○ ⋯ ⋯ ⋯ ⋯ 外 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯⋯⋯⋯⋯⋯○ 绝密 ★启用前⋯2018 年 04 月 14 日 910****3285 的高中数学组卷⋯ ⋯试卷副标题⋯考试范围: xxx ;考试时间: 100 分钟;命题人: xxx⋯ 题号 一总分⋯ 得分⋯⋯ 注意事项:○1.答题前填写好自己的姓名、班级、考号等信息⋯2.请将答案正确填写在答题卡上⋯⋯⋯第Ⅰ 卷(选择题)请点击修改第I 卷的文字说明⋯⋯ 评卷人得分⋯⋯ 一.选择题(共 10 小题)○⋯ 1.在航天员进行一项太空实验中,要先后实施6 个程序,其中程序 A 只能⋯ 出现在第一或最后一步,程序 B 和 C 在实施时必须相邻,问实验顺序的编排⋯⋯ 方法共有()装 A . 34 种B .48 种C .96 种D .144 种⋯ 2.要排出某理科班一天中语文、数学、物理、英语、生物、化学6 堂课的⋯⋯ 课程表,要求语文课排在上午(前 4 节),生物课排在下午(后 2 节),不同⋯ 排法种数为()○A . 144B .192C . 360D .720⋯⋯ 3.福州西湖公园花展期间,安排6 位志愿者到 4 个展区提供服务,要求⋯甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方⋯ 案共有()内⋯A . 90 种B .180 种C .270 种D .360 种⋯ 4.若有 5 本不同的书,分给三位同学,每人至少一本,则不同的分法数是⋯⋯()○A . 120B .150C . 240D .300⋯⋯试卷第 1 页,总 3 页⋯⋯5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有 5 架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为()A.24 B. 36 C.48D.966.某学校需要把6 名实习老师安排到A,B,C 三个班级去听课,每个班级安排 2 名老师,已知甲不能安排到 A 班,乙和丙不能安排到同一班级,则安排方案的种数有()A.24 B. 36 C.48D.727.上海某小学组织 6 个年级的学生外出参观包括甲博物馆在内的 6 个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.A× A种B. A×54种C.C× A种D. C×54种8.从 7 名男队员和 5 名女队员中选出 4 人进行乒乓球男女混合双打,不同的组队种数是()A.B.C.D.9.甲、乙、丙等 6 个人排成一排照相,且甲、乙不在丙的同侧,则不同的排法共有()A.480 B. 240 C.120 D.36010.用数字0,1,2,3,4,5 组成没有重复数字的五位数,其中比40000大的偶数共有()A.144 个 B.120 个 C.96 个D.72 个试卷第 2 页,总 3 页⋯⋯⋯⋯⋯⋯⋯⋯○○⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯○※○⋯⋯※⋯⋯※⋯※⋯⋯答⋯※※内⋯※⋯⋯※⋯⋯※⋯※⋯⋯○※○※⋯装⋯⋯※⋯※⋯在⋯※⋯※⋯装要装※⋯※⋯不⋯⋯※⋯※⋯⋯※⋯○※○⋯⋯⋯⋯⋯⋯⋯⋯内外⋯⋯⋯⋯⋯⋯⋯⋯○○⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯○ ⋯_ _⋯____⋯__⋯: 号考 _⋯_ _ _ _ ⋯_ _ _⋯ :⋯班○_ __ _ ⋯_ _ _⋯_:⋯名 ⋯姓 _ _ _ 装_ _ _⋯_ _ _ ⋯_ _ :⋯校 学⋯ ○ ⋯ ⋯ ⋯ ⋯ 外 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯⋯⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯○⋯ ⋯ ⋯ ⋯⋯⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 内 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯⋯试卷第 3 页,总 3 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2020年全国高考理科数学试题分类汇编10:排列、组合及二项式定理 Word版含答案
2020年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))已知5)1(x+的展开式中2x的系数为5,ax+)(1则=a()A.4-B.3-C.2-D.1-【答案】D2 .(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279【答案】B3 .(2020年高考新课标1(理))设m为正整数,2+展开式的x y()m二项式系数的最大值为a,21+展开式的二项式系数的x y+()m最大值为b,若137=,则m=()a bA.5 B.6 C.7 D.8【答案】B4 .(2020年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))()()84x y的系数是()+的展开式中22x y11+A .56B .84C .112D .168【答案】D5 .(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2020年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .7【答案】B8 .(2020年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20【答案】C9 .(2020年高考陕西卷(理))设函数61,00.,(),x x f x x x x ⎧⎛⎫-<⎪ ⎪=⎝-≥⎭⎨⎪⎩ , 则当x>0时, [()]f f x 表达式的展开式中常数项为 ( )A .-20B .20C .-15D .15【答案】A10.(2020年高考江西卷(理))(x 2-32x )5展开式中的常数项为( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2020年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2020年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】1013.(2020年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2020年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)【答案】59016.(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))61x x ⎛⎫- ⎪⎝⎭ 的二项展开式中的常数项为______.【答案】1517.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________.【答案】10-18.(2020年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a =-19.(2020年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】9620.(2020年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若83a x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为7,则实数a =______.【答案】2121.(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).【答案】480。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种 (B )18种 (C )36种 (D )54种 【答案】B
【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有
种方法,共有
种,故选B.
2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有
(A )30种 (B )36种 (C )42种 (D )48种 解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法
即221211
645
4432C C C C C C -⨯+=42 法二:分两类
甲、乙同组,则只能排在15日,有24C =6种排法
3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有
A. 504种
B. 960种
C. 1008种
D. 1108种
解析:分两类:甲乙排1、2号或6、7号 共有4
414
222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43
31313
4422A A A A A +种方法
故共有1008种不同的排法
4.8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为 (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C 答案:A
5.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是
(A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法
①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个 ②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个
算上个位偶数字的排法,共计3(24+12)=108个 答案:C
6.如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用 (A )288种 (B )264种 (C )240种 (D )168种 【答案】D
【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
(1) B ,D,E,F 用四种颜色,则有441124A ⨯⨯=种涂色方法;
(2) B ,D,E,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法; (3) B ,D,E,F 用两种颜色,则有242248A ⨯⨯=种涂色方法; 所以共有24+192+48=264种不同的涂色方法。
7.某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种
8.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是
A .152 B.126 C.90 D.54 8.【答案】B
【解析】分类讨论:若有2人从事司机工作,则方案有233318C A ⨯=;若有1
人从事司机工作,则方案有123
343108
C C A ⨯⨯=种,所以共有
18+108=126种,故B 正确
9.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 ( )
A .324
B .328
C .360
D .648 【答案】B
【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知
识. 属于基础知识、基本运算的考查.
首先应考虑“0”是特殊元素,当0排在末位时,有299872A =⨯=(个),
当0不排在末位时,有111
4
88488256A A A ⋅⋅=⨯⨯=(个), 于是由分类计数原理,得符合题意的偶数共有72256328+=(个).故选B.
10.(2009全国卷Ⅱ文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有
(A )6种 (B )12种 (C )24种 (D )30种 答案:C
解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数2424C C =36,再求出两人所选两门都相同和都不同的种数均为24C =6,故只恰好有1门相同的选法有24种 。
11.(2009全国卷Ⅰ理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D )(A )150种 (B )180种 (C )300种 (D)345种
解: 分两类(1) 甲组中选出一名女生有11
25
36225C C C ⋅⋅=种选法; (2) 乙组中选出一名女生有211
56
2120C C C ⋅⋅=种选法.故共有345种选法.选D
12.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为
【答案】C
【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是24C ,顺序有33A 种,而甲乙被分在同一个班的有33A 种,所以种数是23343330C A A -= 13.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
A. 60
B. 48
C. 42
D. 36 【答案】B
【解析】解法一、从3名女生中任取2人“捆”在一起记作A ,(A 共有62223=A C 种不同排法),剩下一名女生记作B ,两名男生分别记作甲、乙;则男生甲必须在A 、B 之间(若甲在A 、B 两端。
则为使A 、B 不相邻,只有把男生乙排在A 、B 之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A 左B 右和A 右B 左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。
解法二;同解法一,从3名女生中任取2人“捆”在一起记作A ,(A 共有62223=A C 种不同排法),剩下一名女生记作B ,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:
第一类:女生A 、B 在两端,男生甲、乙在中间,共有22226A A =24种
排法;
第二类:“捆绑”A 和男生乙在两端,则中间女生B 和男生甲只有一
种排法,此时共有226A =12种排法
第三类:女生B 和男生乙在两端,同样中间“捆绑”A 和男生甲也只
有一种排法。
此时共有2
6A=12种排法
2
三类之和为24+12+12=48种。