电路仿真实验报告
电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
电路实验仿真实验报告

电路实验仿真实验报告电路实验仿真实验报告摘要:本实验通过电路仿真软件进行了一系列电路实验的仿真,包括电路基本定律验证、电路元件特性研究以及电路参数计算等。
通过仿真实验,我们深入理解了电路的工作原理和性能特点,并通过仿真结果验证了理论计算的准确性。
引言:电路实验是电子工程专业学生必修的一门重要课程,通过实际操作和观察电路的实际运行情况,加深对电路理论知识的理解。
然而,传统的电路实验需要大量的实验设备和实验器材,并且操作过程复杂,存在一定的安全风险。
因此,电路仿真技术的出现为电路实验提供了一种新的解决方案。
方法:本实验采用了电路仿真软件进行电路实验的仿真。
通过在软件中搭建电路原理图,设置电路元件参数,并进行仿真运行,观察电路的电压、电流等参数变化,以及元件的特性曲线等。
实验一:欧姆定律验证在仿真软件中搭建一个简单的电路,包括一个电源、一个电阻和一个电流表。
设置电源电压为10V,电阻阻值为100Ω。
通过测量电路中的电流和电压,验证欧姆定律的准确性。
仿真结果显示,电路中的电流为0.1A,电压为10V,符合欧姆定律的要求。
实验二:二极管特性研究在仿真软件中搭建一个二极管电路,包括一个二极管、一个电阻和一个电压表。
通过改变电阻阻值和电压源电压,观察二极管的正向导通和反向截止特性。
仿真结果显示,当电压源电压大于二极管的正向压降时,二极管正向导通,电压表显示有电压输出;当电压源电压小于二极管的正向压降时,二极管反向截止,电压表显示无电压输出。
实验三:RC电路响应特性研究在仿真软件中搭建一个RC电路,包括一个电阻、一个电容和一个电压源。
通过改变电阻阻值和电容容值,观察RC电路的充放电过程和响应特性。
仿真结果显示,当电压源施加一个方波信号时,RC电路会出现充放电过程,电压信号会经过RC电路的滤波作用,输出信号呈现出不同的响应特性。
实验四:电路参数计算在仿真软件中搭建一个复杂的电路,包括多个电阻、电容、电感和电压源。
电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。
二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。
2.使用电路仿真软件进行简单电路的仿真设计。
3.基于仿真结果,根据实验内容进行电路设计和分析。
四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。
2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。
3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。
4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。
5.运行仿真,观察电路的响应曲线和频率特性。
6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。
7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。
8.根据实验要求,记录仿真结果并撰写实验报告。
五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。
根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。
通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。
根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。
我们还可以通过改变电路参数来观察电路的变化。
例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。
而增大电阻值则可以增加滤波器的阻带特性。
通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。
六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。
通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。
通过本次实验,我还发现了电路设计和分析的一些问题和挑战。
Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
电工实验报告-基本电路的仿真实验

xxxx大学信控学院实验报告课程名称:电工技术与电子技术实验成绩:实验名称:基本电路的仿真实验班级: 3 姓名:学号:实验日期:教师签字:实验二十九基本电路的仿真实验——仿真实验一一、实验目的1.熟悉EWB仿真软件的使用2.学会用EWB仿真软件分析交流电路,并利用仿真仪器观察RLC电路的频率特性3.通过EWB仿真,观察RC电路的暂态过程及微分电路和积分电路的工作波形二、实验内容与步骤1.RC暂态电路观察并记录电路的充电、放电波形,测量充电时间常数和放电时间常数(1)Timebase=0.5s/div, ChannelA=5V/Div, ChannelB=5V/Div放电常数=200ms,充电常数=1.17s改变电路参数,观察时间常数对电容充放电波形的影响。
(2)Timebase=1.00s/ds, ChannelA=5V/Div, ChannelB=5V/Div(增大Timebase)放电常数=200ms,充电常数=1.15s(3)Timebase=0.2s/dv, ChannelA=5V/Div, ChannelB=5V/Div(减小Timebase)放电常数=205ms,充电常数=1.27s(4)Timebase=0.5s/dv, ChannelA=10V/Div, ChannelB=5V/Div(增大ChannelA)放电常数=220ms,充电常数=1.27s(5)Timebase=0.5s/dv, ChannelA=2V/Div, ChannelB=5V/Div(减小ChannelA)放电常数=220ms,充电常数=1.27s2. 微分电路观察并记录微分电路的输入、输出电压波形,标出输出脉冲的周期和幅值。
输出脉冲的周期=1.0000.ms幅值V1=10.0000V,V2=7.0765V3.积分电路观察并记录积分电路的输入、输出电压波形,标出输出波形的最大值和最小值。
波形VB最大值=6.1940V,周期1.0000ms4.单相交流RLC串联电路电路截图:(输出频率3kHz—6kHz)(1)在谐振曲线上读出谐振频率f0,下限截止频率f L和上限截止频率f H,并计算谐振电路的通频带F0=4.260kHz fl=4.116kHz f2=4.391kHz通频带f=0.131kHz谐振曲线:(2) 改变电阻R=100 ,观察幅频特性的变化,再读出谐振频率f0、下限截止频率f L和上限截止频率f H,计算通频带。
电路仿真实验报告

电路仿真MATLAB实验报告班级:学号:姓名:学院:实验一直流电路(1)一、实验目的1、加深对直流电路的节点电压法和网孔电流法的理解2、学习使用MATLAB的矩阵运算的方法二、实验示例1、节点分析电路如图所示(见书本12页),求节点电压V1,V2,V3.根据电路图得到矩阵方程,根据矩阵方程使用matlab命令为Y =0.1500 -0.1000 -0.0500-0.1000 0.1450 -0.0250-0.0500 -0.0250 0.0750节点v1,v2和v3:v =404.2857350.0000412.85712、回路分析电路如图所示(见书本13页),使用解析分析得到同过电阻RB的电流,另外求10V电压源的输出功率。
分析电路得到节点方程,根据节点方程得到矩阵方程,根据矩阵方程,使用matlab的命令为z=[40,-10,-30;-10,30,-5;-30,-5,65];v=[10,0,0]';I=inv(z)*v;IRB=I(3)-I(2);fprintf('the current through R is %8.3f Amps \n',IRB)ps=I(1)*10;fprintf('the power supplied by 10v source is %8.4f watts\n',ps)结果为:the current through R is 0.037 Ampsthe power supplied by 10V source is 4.7531 watts三、实验内容1 根据书本15页电路图,求解电阻电路,已知:R1=2Ω,R2=6Ω,R3=12Ω,R4=8Ω,R5=12Ω,R6=4Ω,R7=2Ω如果Us=10V,求i3,u4,u7如果U4=4V,求Us,i3,i7使用matlab命令为clear% 初始化阻抗矩阵Z=[20 -12 0;-12 32 -12;0 -12 18];% 初始化电压矩阵V=[10 0 0]';% 解答回路电流I=inv(Z)*V;% I3的计算I3=I(1)-I(2);fprintf('the current I3 is %8.2f Amps\n',I3) % U4的计算U4=8*I(2);fprintf('the voltage U4 is %8.2f Vmps\n',U4) % U7的计算U7=2*I(3);fprintf('the voltage U7 is %8.2f Vmps\n',U7)结果the current I3 is 0.36 Ampsthe voltage U4 is 2.86 Vmpsthe voltage U7 is 0.48 Vmpsclear% 初始化矩阵XX=[20 -1 0;-12 0 -12;0 0 18];% 初始化矩阵YY=[6 -16 6]';% 进行解答A=inv(X)*Y;% 计算各要求量Us=A(2)I3=A(1)-0.5I7=A(3)结果Us = 14.0000I3 = 0.5000I7 =0.33332 求解电路里的电压如图1-4(书本16页),求解V1,V2,V3,V4,V5使用matlab命令为clear% 初始化节点电压方程矩阵Z=[0.725 -0.125 -0.1 -5 -1.25;-0.1 -0.2 0.55 0 0;-0.125 0.325 -0.2 0 1.25;1 0 -1 -1 0;0 0.2 -0.2 0 1];I=[0 6 5 0 0]';% 解答节点电压U1,U3,U4与Vb,IaA=inv(Z)*I;% 最终各电压计算V1=A(1)V2=A(1)-10*A(5)V3=A(2)V4=A(3)V5=24结果V1 =117.4792V2 = 299.7708V3 =193.9375V4 =102.7917V5 = 243、如图1-5(书本16页),已知R1=R2=R3=4Ω,R4=2Ω,控制常数k1=0.5,k2=4,is=2A,求i1和i2.使用matlab命令为clear% 初始化节点电压方程矩阵Z=[0.5 -0.25 0 -0.5;-0.25 1 -1 0.5;0 0.5 0 -1;1 -1 -4 0];I=[2 0 0 0]';% 解答节点电压V1,V2及电流I1,I2A=inv(Z)*I;% 计算未知数V1=A(1)V2=A(2)I1=A(3)I2=A(4)结果如下:V1 =6V2 =2I1 = 1I2 =1实验二直流电路(2)一、实验目的1、加深多戴维南定律,等效变换等的了解2、进一步了解matlab在直流电路中的作用二、实验示例如图所示(图见书本17页2-1),分析并使用matlab命令求解为clear,format compactR1=4;R2=2;R3=4;R4=8;is1=2;is2=0.5;a11=1/R1+1/R4;a12=-1/R1;a13=-1/R4;a21=-1/R1;a22=1/R1+1/R2+1/R3;a23=-1/R3;a31=-1/R4;a32=-1/R3;a33=1/R3+1/R4;A=[a11,a12,a13;a21,a22,a23;a31,a32,a33];B=[1,1,0;0,0,0;0,-1,1];X1=A\B*[is1;is2;0];uoc=X1(3);X2=A\B*[0;0;1];Req=X2(3);RL=Req;P=uoc^2*RL/(Req+RL)^2;RL=0:10,p=(RL*uoc./(Req+RL)).*uoc./(Req+RL),figure(1),plot(RL,p),gridfor k=1:21ia(k)=(k-1)*0.1;X=A\B*[is1;is2;ia(k)];u(k)=X(3);endfigure(2),plot(ia,u,'x'),gridc=polyfit(ia,u,1);%ua=c(2)*ia=c(1) , 用拟合函数术,c(1),c(2)uoc=c(1),Req=c(2) RL =0 1 2 3 4 5 6 7 8 9 10 p =Columns 1 through 70 0.6944 1.0204 1.1719 1.2346 1.2500 1.2397Columns 8 through 111.2153 1.1834 1.1480 1.1111A 、功率随负载变化曲线 B.电路对负载的输出特性0123456789100.20.40.60.811.21.400.20.40.60.81 1.2 1.4 1.6 1.82三、实验内容1、图见书本19页2-3,当RL从0改变到50kΩ,校验RL为10kΩ的时候的最大功率损耗使用matlab命令为clear% 定义电压源和电阻值Us=10;Rs=10000;RL=0:20000;p=(Us^2.*RL)./(RL+Rs).^2;plot(RL,p);输出结果为Maximum power occur at 10000.00hmsMaximum power dissipation is 0.0025Watts2、在图示电路里(书本20页2-4),当R1取0,2,4,6,10,18,24,42,90和186Ω时,求RL 的电压UL,电流IL 和RL 消耗的功率。
电路仿真实验报告

电路仿真实验报告本次实验旨在通过电路仿真软件进行电路实验,以加深对电路原理的理解,掌握电路仿真软件的使用方法,以及提高实验操作能力。
1. 实验目的。
通过电路仿真软件进行电路实验,掌握电路原理,加深对电路知识的理解。
2. 实验仪器与设备。
电脑、电路仿真软件。
3. 实验原理。
电路仿真软件是一种利用计算机进行电路仿真的工具,可以模拟各种电路的性能,包括直流电路、交流电路、数字电路等。
通过电路仿真软件,可以方便地进行电路实验,观察电路中各种参数的变化,从而加深对电路原理的理解。
4. 实验步骤。
(1)打开电路仿真软件,创建新的电路实验项目。
(2)按照实验要求,设计电路图并进行仿真。
(3)观察电路中各种参数的变化,并记录实验数据。
(4)分析实验数据,总结实验结果。
5. 实验结果与分析。
通过电路仿真软件进行实验,我们可以方便地观察电路中各种参数的变化,比如电压、电流、功率等。
通过对实验数据的分析,我们可以得出一些结论,加深对电路原理的理解。
6. 实验总结。
通过本次实验,我们掌握了电路仿真软件的使用方法,加深了对电路原理的理解,提高了实验操作能力。
电路仿真软件为我们进行电路实验提供了便利,让我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路知识。
7. 实验心得。
通过本次实验,我深刻体会到了电路仿真软件的重要性,它为我们进行电路实验提供了极大的便利。
通过电路仿真软件,我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路原理。
我相信,在今后的学习和工作中,我会继续利用电路仿真软件进行电路实验,不断提高自己的实验操作能力和电路知识水平。
8. 参考文献。
[1] 《电路原理》,XXX,XXX出版社,200X年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 叠加定理的验证一、电路图二、实验步骤1.原理图编辑:分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(注意电流表和电压表的参考方向),并按上图连接;2.设置电路参数:电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为 10A。
3.实验步骤:1)、点击运行按钮记录电压表电流表的值U1和I1;2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2;3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3;根据电路分析原理,解释三者是什么关系?并在实验报告中验证原理。
三、实验数据:电压电流U/V I/A第一组12V 10A 6.800 -1.600第二组0V 10A 2.000 -4.000第三组12V 0A 4.800 2.400四、实验数据处理:U2 + U3 = 2.000V + 4.800V = 6.800V = U3I2 + I3 = (-4.000A) + 2.400A= -1.600A = I1五、实验结论:由电路分析叠加原理知:由线性电路、线性受控源及独立源组成的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。
本次实验中,第一组各数据等于第二组与第三组各对应实验数据之和,与叠加原理吻合,验证了叠加原理的正确性,即每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。
实验2 并联谐振电路仿真一、电路图:二、实验步骤:1.原理图编辑:分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,并按上图连接;2.设置电路参数:将交流分析量值设置为5V,电压源V1设置为5V,频率设为500Hz,设置电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。
并如图所示对电容上方的线名称改为“out”。
3.分析参数设置:(1)AC分析①类型设置仿真→分析→交流分析。
②参数设置起始频率设为1Hz,停止频率设为100MHz,扫描类型为十倍频程,每十倍频程点数设为10,垂直刻度设为线性,其他保持默认,单击“确定”。
然后选择对话框菜单栏的“输出”按钮,在左侧的“所有变量”中选择“V(out)”(双击)。
③仿真在交流分析参数都设置好以后,单击对话框中的“仿真”按钮,开始仿真。
④记录结果在所得图形上点击右键,将图片复制并粘贴在新建word文档中。
之后单击“工具”菜单,选择“导出到Excel”选项,将实验数据以excel的形式保存。
(2)瞬态分析①类型设置仿真→分析→瞬态分析。
②参数设置由信号源f=500Hz,可得周期为0.002s,五个周期即0.01s。
参数设置起始时间设为0s,结束时间设为0.01s,其他参数保持默认,单击“确定”。
然后选择对话框菜单栏的“输出”按钮,在左侧的“所有变量”中选择“V(out)”。
③仿真在瞬态分析参数都设置好以后,单击对话框中的“仿真”按钮,开始仿真。
④记录结果在所得图形上点击右键,将图片复制并粘贴在新建word文档中。
之后单击“工具”菜单,选择“导出到Excel”选项,将实验数据以excel的形式保存。
4.实验结果:要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。
三、仿真结果:按上述步骤进行完毕后,得到仿真结果如下图所示:1.交流分析仿真结果:2.瞬态分析仿真结果:四、实验结果分析将电路化作等效向量模型,计算其阻抗得电路谐振条件:L=1/C,其谐振频率为LC π21f 0。
本实验中的电路满足谐振条件,并联谐振电路呈电阻性,当f=f0时,电路为纯电阻电路,其阻抗模最小,电路中电流最大,此时,R2两端电压最大。
由仿真结果可知,当f=510.03Hz 时,其输出达到最大值,与理论结果相接近,得以验证。
由瞬态分析结果计算可知,时域波形的频率为500Hz ,幅值约为7.09,与理论值基本吻合。
综上所述,结果与理论值相符,正确。
实验3 含运算放大器的比例器仿真一、电路图:二、实验步骤1.原理图编辑:分别调出电阻R1、R2,虚拟运算放大器OPAMP_3T_VIRTUA(在ANALOG 库中的ANALOG_VIRTUAL中,放置时注意同相和方向引脚的方向);调用虚拟仪器函数发生器Function Generator与虚拟示波器Oscilloscope。
2.设置电路参数:电阻R1=1KΩ,电阻R2=5KΩ。
信号源V1设置为Voltage=1v。
函数发生器分别为正弦波信号、方波信号与三角波信号。
频率均为 1khz,电压值均为1。
其中方波信号和三角波信号占空比均为50%。
3.分析示波器测量结果:实验结果:只记录数据(并考虑B通道输入波形和信号发生器的设置什么关系)将测量结果保存,并利用电路分析理论计算结果验证。
三、仿真结果:按照上述步骤操作完成之后,可在示波器上观察到如下波形:四、实验结果分析对与节点2可列节点方程:0021221=⨯-⨯-⨯+U G U G U G G S )( 由理想运放特点可知: u2=0(虚断)S U R R U 120-=由仿真结果可知,输出信号与输入信号反相,且被放大R2/R1=5倍,与理论一致。
故测量结果得以验证。
实验4 二阶电路瞬态仿真一、电路图:二、实验步骤1.初步设置C1的电容值分别取1000u、500u、100u、10u,并设置初始值为5V,电感L1=1mH,使用瞬态分析求出上图中各节点的V(out)节点的时域响应,并能通过数据计算出对应电路谐振频率(零输入响应)。
2.分析电路(1)参数扫描分析①类型设置仿真→分析→参数扫描。
②参数设置选择扫描参数的器件类型为“电容”,扫描变量类型为“列表”,分别将0.001, 0.0005, 0.0001, 1e-005输入“值列表”选框内。
然后选择“输出”,在左侧的“所有变量”中选择“V(out)”。
③仿真单击参数扫描分析对话框的“仿真”按钮,开始仿真。
④记录结果在所得图形上点击右键,将图片复制并粘贴在新建word文档中。
之后单击“工具”菜单,选择“导出到Excel”选项,将实验数据以excel的形式保存。
(2)瞬态分析①类型设置参数扫描分更多选项待扫描的分析瞬态分析。
②参数设置单击“编辑分析”,初始条件设为“用户自定义”,起始时间设为0,结束时间设为0.01,单击“确定”。
③仿真④记录结果在所得图形上点击右键,将图片复制并粘贴在新建word文档中。
之后单击“工具”菜单,选择“导出到Excel”选项,将实验数据以excel的形式保存。
三、仿真结果:四、实验结果分析LC电路的零输入响应是按正弦方式变化的等幅振荡,由仿真数据计算得对应的谐振频率如下:电容C/uF 1000 500 100 10周期/ms 6.3 4.7 2.0 0.653频率/Hz 158.73 212.77 500 1531.09ω/(rad/s)997.33 1336.87 3141.59 9620.11实验5 戴维南等效定理的验证一、电路图Figure 1:Figure 2:Figure 3:Figure 4:二、实验步骤1.原理图编辑:1)分别调出接地符、电阻R,直流电压源电流表电压表(注意电流表和电压表的参考方向),并按Figure 1连接运行,并记录电压表和电流表的值;2)如Figure 2连接,将电压源从电路中移除,并使用虚拟一下数字万用表测量电路阻抗3)如Figure 3连接,将电阻RL从电路中移除,并使用电压表测量开路电压;4)如Figure 4连接,验证戴维南定理;2.设置电路参数:电阻、电源参数如上述图中所示。
3实验步骤:如原理通编辑步骤,分别测试对应电路的电压、电流和电阻值。
4.实验结果:比较Figure 1和Figure 4中电压表和电流表的值的异同,并解释原因。
三、实验数据Figure 1 电压2.713V 电流5.772mA Figure 2 电阻223 OhmFigure 3 开路电压4.000VFigure 4 电压2.713V 电流5.772mA四、实验数据处理:电压 U1 = 2.713V = U4电流 I1 = 5.772mA = I4五、实验结论:由电路分析戴维南定理知:含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。
电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。
本次实验中,Figure 2实验测定了戴维南等效电阻R0的值为223 Ohm,Figure 3实验测定了戴维南开路电压uoc的值为4.000V,在Figure 4中,原电路已由等效电阻R0和开路电压uoc代替,端口特性完全吻合,电压及电流的数值匹配,验证了戴维南等效电路的正确性。
实验6 元件模型参数的并联谐振电路一、电路图二、实验步骤1.原理图编辑分别调出电阻R1、R2,电容C1、电感L1、信号源V1,并正确连接。
2.初步设置设置电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。
信号源V1设置频率为500Hz,电压峰值设为5V,交流分析量值设为5V。
3.分析电路(1)参数扫描分析①类型设置仿真分析参数扫描。
②参数设置选择扫描参数的器件类型为“电容”,扫描变量类型为“列表”,分别将4e-007, 4e-006, 4e-005, 4e-004输入“值列表”选框内。
然后选择对话框菜单栏的“输出”按钮,在左侧的“所有变量”中选择“V(out)”。
③仿真④记录结果(2)AC分析①类型设置参数扫描分析更多选项待扫描的分析交流分析。
②参数设置单击“编辑分析”,起始频率设为1Hz,停止频率设为100MHz,扫描类型为十倍频程,每十倍频程点数设为10,垂直刻度设为线性,其他保持默认,单击“确定”。
③仿真④记录结果⑤重复试验之后再依次将交流分析扫描对话框中的“每十倍频程点数”分别改为100和1000,分别得到三种情况下的仿真结果。
4.参数扫描分析设置:simulate –>Parameter Sweep:AC分析设置:扫描范围1Hz~100MHz,横坐标扫描模式为Decade,纵坐标为线性。
每十倍频程扫描点数为10点,同学们自己设置100和1000点并分析所得结果的异同。
观察电容的容值发生变化时,记录电路的幅频响应。
在实验报告中重点分析响应波形不同的原因。
并介绍AC分析和参数分析的特点。
三、仿真结果:按上述步骤进行完毕后,得到仿真结果如下图所示:①每十倍频程点数为10:②每十倍频程点数为100:③每十倍频程点数为1000:四、实验结果分析1.影响波形不同的原因谐振条件:电容大小满足L=1/C。