三视图高考题解题技巧及教学建议

合集下载

高中数学三视图解题技巧

高中数学三视图解题技巧

高中数学三视图解题技巧在高中数学中,三视图是一种常见的解题方法,尤其在几何题中应用广泛。

通过三视图,我们可以更加直观地理解和解决问题。

本文将介绍一些常见的三视图解题技巧,并通过具体的题目进行说明,帮助高中学生和他们的父母更好地掌握这一解题方法。

一、什么是三视图三视图是指一个物体或图形从不同方向观察时所得到的三个视图,通常包括俯视图、前视图和侧视图。

通过这三个视图,我们可以全面了解物体或图形的形状和特征,从而解决与其相关的问题。

二、三视图解题的基本步骤1. 确定视图方向:在解题过程中,首先要确定俯视图、前视图和侧视图的方向,通常俯视图在上方,前视图在中间,侧视图在下方。

2. 观察图形特征:通过观察三个视图,分析图形的特征,如边长、角度、对称性等。

3. 建立关系:根据观察到的特征,建立各个视图之间的关系,找出它们之间的联系。

4. 运用几何知识:根据建立的关系,运用几何知识进行推理和计算,解决问题。

三、三视图解题的考点1. 图形的投影:在三视图中,图形的投影是一个重要的考点。

投影是指物体在不同方向上的阴影,通过观察投影,我们可以确定图形的形状和位置。

例如,某题给出了一个正方体的三视图,要求求解正方体的体积。

通过观察侧视图,我们可以发现正方体的高度,然后根据俯视图和前视图中的边长信息,计算出正方体的体积。

2. 图形的对称性:在三视图中,图形的对称性也是一个重要的考点。

通过观察三个视图,我们可以判断图形是否具有对称性,并利用对称性进行计算。

例如,某题给出了一个立方体的三视图,要求求解立方体的表面积。

通过观察俯视图和前视图,我们可以发现立方体的两个相对面是相等的,根据对称性,我们可以利用这个特点计算出立方体的表面积。

3. 图形的位置关系:在三视图中,图形的位置关系也是一个重要的考点。

通过观察三个视图,我们可以确定图形之间的位置关系,并利用位置关系进行计算。

例如,某题给出了一个平行四边形的三视图,要求求解平行四边形的面积。

2022年高考数学一轮复习专题33:几何体三视图的解题策略

2022年高考数学一轮复习专题33:几何体三视图的解题策略

• 1.(2012·福建)一个几何体的三视图形状都相同、大小均相等,
那么这个几何体不可以是
( ).
• A.球
B.三棱锥
• C.正方体
D.圆柱
• 答案:D [球的三视图都是圆;三棱锥的三
视图可以都是全等的三角形;正方体的三视
图都是正方形;圆柱的底面放置在水平面上
,则其俯视图是圆,正视图是矩形,故应选
例1. 2014浙江文5已知某几何体的三视图 单位:cm 如图所示,
B 则该几何体的体积是( )
A.108cm3
B.100cm3
C.92cm3
D.84cm3
D1 A1
C1
E
B1
D F
A
C B
规律总结: 1、还原到常见几何体中
2、实线当面切,虚线背后切
3、切完后对照三视图进行检验
对点演练
C 2014重庆文7某几何体的三视图如图所示,则该几何体的体积为( )
[解析] 根据三视图知,该几何体上部是一个底面直径为4 m,高为2 m的圆锥,下部是一个底面直径为2 m,高为4 m的圆 柱.
故该几何体的体积V=13π×22×2+π×12×4=203π(m3).
C1
A1
B1
D
C
A
B
跟踪训练:
1.某三棱锥的三视图如图所示,则该三棱锥最长的棱长为 2 2
3 2 1
A 2.四棱锥的三视图如图所示,则最长的一条侧棱的长度是( )
A. 29
B.5
C. 13
D.2 2
B 3.某几何体的三视图如图所示,则这个几何体的体积为( )
A.4
B. 20 3
C. 26 3
D.8
D 则相应的侧视图可能为( )

高考有方法——三视图解题超级策略

高考有方法——三视图解题超级策略

高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6 C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.40+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A侧视图俯视图正视图2A 、2B、4 C 、83D 、2 5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C)61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)(D)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B )1()A 6 ()B 9 ()C 12 ()D 189、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于13、某几何体的三视图如图所示,则该几何体的体积为_____________.8314、某几何体的三视图如图所示,则该几何体的体积为_____________.15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A. B. C .6 D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+323。

终极版:搞定三视图问题的4个绝招及释例

终极版:搞定三视图问题的4个绝招及释例

终极版:搞定三视图问题的4个绝招及释例
第一招:排山倒海第二招:瓮中捉鳖
第三招:去伪存真小编发现绝大多数三视图试题都与长(正)方体有着密切的关系。

命题者大多是在长(正)方体的基础上进行适当的切割得到几何体,再画出其三视图,然后让学生还原。

正所谓“知己知彼,百战百胜”。

因此,让学生自己做“命题人”命题,然后再做“解题人”解题,这样既能激发学习兴趣又能增强信心,还会事半功倍的掌握三视图问题。

第四招:反客为主
请大家先别看直观图,自己试试看!。

高考数学中的三视图及相关方法

高考数学中的三视图及相关方法

高考数学中的三视图及相关方法在高考数学中,三视图是一个常见的概念。

三视图是一个物体分别从三个不同的方向所观测到的图形,通过三个视图可以确定一个物体的形状、尺寸及空间位置。

在学习三视图时,需要掌握一些相关的知识和方法。

一、投影法与投影面在学习三视图之前,需要先掌握投影法和投影面的相关概念。

投影法是指从物体上某一点出发,将光线对着投影面射出,所形成的投影。

投影面是指用来做投影的平面。

在三视图中,通常使用前、上、侧三个平面来进行投影,这三个平面分别称为主平面。

二、主视图主视图是指在三视图中,以物体的正面朝前、上面朝上、左面朝左的方向所形成的视图。

主视图常常是确定一个物体的形状和尺寸的主要依据。

三、侧视图侧视图是指在三视图中,以物体左侧面朝上、物体正面朝前、物体下侧面朝下的方向所形成的视图。

侧视图和主视图相结合,可以确定一个物体的整体形状和尺寸。

四、俯视图俯视图是指在三视图中,以物体的上部朝上、物体的前面朝下、物体的左侧面朝左的方向所形成的视图。

俯视图主要用来确定一个物体的上部结构,例如天棚、台面等。

五、三视图的绘制方法在学习三视图时,需要掌握三视图的绘制方法。

绘制三视图时,需要确定主平面,然后将物体在主平面上分别绘出主视图、侧视图、俯视图。

在绘制时,需要按比例绘制,保持各个视图之间的比例关系一致。

六、三视图的应用在实际生活中,三视图有很多应用。

例如在工程设计中,可以通过三视图来确定一个建筑物或机械设备的形状和尺寸,以便进行制造和施工。

在家具设计方面,通过三视图可以确定家具的形状和尺寸,以便进行制造和销售。

总之,三视图在数学中是一个非常重要的概念。

通过学习三视图,可以帮助我们更好地了解物体的形状、尺寸和空间位置,从而更好地进行设计、制造和施工。

通过掌握三视图的相关知识和方法,我们可以在高考数学中取得更好的成绩。

高中数学三视图技巧

高中数学三视图技巧

高中数学三视图技巧篇一:三视图还原技巧核心内容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。

还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。

方法展示(1)将如图所示的三视图还原成几何体。

还原步骤:1?依据俯视图,在长方体地面初绘ABCDE如图;?依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图?将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于( )cm3。

解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为( )答案:21+计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;2第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F'分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。

例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=42,DB=DC=2,可得DA=6.故最长的棱长为6.方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:3(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。

太原高考数学王康民老师怎样把三视图又快又准还原成几何体

高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。

一个方法教你搞定所有三视图

⼀个⽅法教你搞定所有三视图例题:分析本题考察是是根据三视图求⼏何体的表⾯积,⼏何体的表⾯积,同学们都知道,关键是还原出⼏何体,把每个⾯的⾯积求出来再相加即可,但这题的关键是,如何还原?还原出的三棱锥是什么样的呢?我想象不出来!所以,题⽬也就解不出来!接下来,⽼师带同学们⼀起回顾⼀下,如何通过三视图还原⼏何体!回顾>>>>1、三视图是怎么来的?三视图可以看作是观测者从上⾯、左⾯、正⾯三个不同⾓度观察同⼀个空间⼏何体⽽画出的图形。

>>>>2、三视图的性质:主俯⼀样长,主左⼀样⾼,俯左⼀样宽,或者也可以说是长对正,⾼平齐,宽相等,这三句话是什么意思呢?跟⽼师⼀起看⼀下下⾯的图形。

>>>>3、如何还原直观图?⼀般情况下,我们⾼中阶段的三视图是⽐较简单的,⼤多数通过对长⽅体或者正⽅体进⾏切割⽽成,或者是圆锥(或圆柱)与长⽅体(或正⽅体)的组合,所以,同学们要对我们学过的最基本的⼏何体的三视图熟练掌握,例如,三棱锥,三棱柱,圆柱,圆锥,四棱锥,四棱柱等。

⽼师通过对近三年⾼考题及模拟题的统计,发现有这么⼀个规律:(1)如果三视图中有两个或三个三⾓形,那么这个⼏何体⼀定是棱锥;(这种考的是最多的)(2)如果三视图中有⼀个圆,那么这个⼏何体可能是圆柱或圆锥,另外两个图要是三⾓形,那⼀定是圆锥,如果是长⽅形,那⼀定是圆柱;(3)如果三视图中只有⼀个三⾓形,那么这个⼏何体很有可能是三棱柱,此时要注意株的摆放形式,有可能是放倒的三棱柱!当然,上⾯⽼师说的是⼀些⽐较简单的,如果碰上⿇烦的,我根本就看不出来的,更甭提还原了,怎么办呢?⽼师推荐⼀个⽅法:嵌套法。

嵌套法,指的是根据三视图,把三个视图嵌套到长⽅体或者正⽅体中,然后再把多余的线擦掉,即能画出所要求的⼏何体。

⼀般情况下,我们只需要在长⽅体(正⽅体)中找到这个⼏何体的顶点即可。

这么说,同学们可能不是特别明⽩,下⾯⽼师通过今天的例题,给⼤家解析清楚⼀点。

高考数学:立体几何——三视图——命题类型规律和解题技巧

高考数学:立体几何——三视图——命题类型规律和解题技巧三视图问题是高考中的重要题型。

此类问题要求学生有较强的空间想象能力,因此成为很多考生做题的难点。

下面将三视图考题的出题规律和解题技巧,归结如下。

根据高考所考查几何体的结构特征,其出题类型分为三种:单体型、组合型和切削型,现逐一分析。

一、单体型所谓单体型,即根据三视图还原后的几何体是一个我们常见的基本几何体,如长方体、三棱锥、圆锥、三棱柱、球等。

一般情况下,我们可以根据下列结论来判断所求几何体的结构特征:(1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形和一个四边形,对应四棱锥;(3)三视图为两个三角形和一个圆,对应圆锥;(4)三视图为一个三角形和两个四边形,对应三棱柱;(5)三视图为两个四边形和一个圆,对应圆柱。

二、组合型所谓组合型,即根据三视图还原后的几何体是两个或两个以上的几何单体组合而成的,此时我们只需根据三视图看懂相应部分对应的每个单体的结构特征即可。

三、切削型所谓切削型.即根据三视图还原后的几何体可以看成是从某一熟悉的几何单体(我们可以将其看成所求几何体的载体)中截去一部分后得到的。

对于此类问题,我们的解决方案是:先画出所求几何体的载体,再根据题意截去其中一部分,最后根据题目中的位置关系和数量关系进行推理和计算。

例1:[2018全国卷Ⅲ,3,5分]中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()思路分析:根据题意画出带卯眼的木构件的直观图,借助直观图判断俯视图。

解析:由题意带卯眼的木构件的直观图如下图所示,由直观图知其俯视图应选A。

答案:A注意:不要忽视木构件俯视图中的虚线。

例2:[2018北京卷,5,5分]某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4思路分析:根据还原出来几何体的形状,判断直角三角形的个数。

三视图高考题解题技巧

三视图高考题解题技巧
三视图高考题解题技巧
1、主视图和左视图如果都是三角形的必然是椎体,要么是棱锥要么是圆锥。

还有两种特殊的情况:
1、是棱锥和半圆锥的组合体。

2、就是半圆锥。

到底如何如确定就是通过俯视图观察。

(1) 若俯视图是三角形时,就是三棱锥。

(2) 若俯视图是多边形时,就是多棱锥。

(3) 若俯视图是半圆和三角形时,就是是棱锥和半圆锥的组合体。

(4) 若俯视图是半圆时,就是半圆锥。

(5) 注意虚线和实线的意义,虚线代表的是看不到的线,实线代表的是能看的见得都是一种平行投影所创造出来的。

2、三视图求体积时候,先观察主视图和侧视图,注意主视图和侧视图的高一定都是一样的,并且肯定是立体图形的高,先通过观察判定图形到底是什么立体图形,看看到底是棱锥,棱柱,还是组合体,通常的组合体都是较为简单的.组合体,无需过多考虑。

(1) 如果是棱锥的话,就看俯视图是什么图形,判定后算出俯视图的面积即可,应用体积公式。

(2) 如果是棱柱的话,同样看俯视图的图形,求出面积,应用公式即可。

(3) 如果是组合体,要分辨出是哪两种规则图形的组合,分别算出体积相加即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三视图高考题解题技巧及教学建议
【摘要】对近三年来全国各省市高考题中的三视图问题进行分类整理,探讨三视图高考题的解题技巧及教学建议。

【关键词】三视图高考题解题技巧教学建议
《高中数学课程标准》明确指出:培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。

为了保证学生的空间想象能力得到有效的培养,新教材关于立体几何部分新增了平行投影、中心投影、三视图等内容。

自此,三视图问题在各省市近年的数学高考题中频频出现。

经过对各省市三年来的三视图高考题的比较研究,笔者发现三视图高考题大致可分为三种题型,并从中精选了一些三视图高考题。

基于此,本文从三种题型出发,探讨三视图高考题的解题技巧及教学建议。

一、虚线在三视图中的重要作用
(2012·湖南卷理科第3题)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()
简要解答:本小题选D,主要考察虚线在三视图中的应用。

因为D 答案中的几何体上方的三棱柱的正视图与侧视图并不相同,其正视图应如图2。

教学建议:尽管学生在初中时期就已经接触到了关于三视图的一些知识,如正视图、侧视图、俯视图的相对位置等,但是,初中阶段的数学课程标准只要求学生能画出或判断出几何体三视图的形状即可,对尺寸、线条不做严格的要求。

到了高中阶段,学生继续学习三视图则是在初中关于“投影与视图”的基础上的进一步发展。

高中教材明确规定,在画几何体的三视图时,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示。

引入虚线的目的是为了更准确、更形象地通过三视图刻画一些简单的几何体,有效地提高学生对简单几何体和组合体的认知能力,培养其空间想象能力。

因此,教师在教学时应密切关注虚线在三视图中的作用,并培养学生良好的作图习惯。

二、投影面的位置变化对几何体三视图的影响
(2013·湖南卷理科第7题)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()。

教学建议:教材中关于三视图的定义是建立在平行投影的基础上的,所以要准确作出几何体的三视图,必须准确理解平行投影的特征,这与物理学科中关于线圈磁通量的计算方法相类似。

因此,教师在三视图的教学中应该具备一定的灵活性,渗透可以将几何体进行适当的“旋转”这一理念,来强调投影面的位置变化对几何体三视图中的哪些
数据产生影响,以及投影面的位置变化对几何体的三视图中哪些数据没有影响。

如正方体放置在桌面上“旋转一定的角度”,则正视图的长会受到影响,但正视图的宽不受影响(仍为几何体的高)。

同理,其侧视图也将产生一定的变化。

又如,2013年新课标Ⅱ卷理科第7题,该题通过引入空间直角坐标系,将三视图与空间向量的知识联系在一起,并专门强调以zOx为投影面,进一步考察了投影面的位置变化时,对几何体三视图所造成的影响。

三、旋转体与多面体的异同点
(2013·湖北卷理科第8题)一个几何体的三视图如图3所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()。

A.V1<V2<V4<V3
B.V1<V3<V2<V4
C.V2<V1<V3<V4
D.V2<V3<V1<V4
教学建议:旋转体与多面体是简单几何体的两种基本形式,它们的定义、直观图和几何性质等特征都具有明显的区别。

但是,基于平行投影的知识可知,二者的正视图和侧视图有可能出现相同的情况,如圆
柱、直四棱柱的正视图和侧视图都可能是矩形,圆台、棱台的正视图和侧视图可能都是等腰梯形。

因此,不能光凭正视图和侧视图就急于下结论,而应根据已知条件或俯视图来判断几何体的类型,再进行下一步的推理。

同时,在高考题中还经常涉及与简单组合体相关的三视图问题,如2011年陕西卷文科第5题、2013年浙江卷理科第12题,等等。

不管高考题中的组合体是由简单几何体拼接而成,还是分割而成,只要我们以整体的角度来研究组合体的三视图,密切注意旋转体与多面体的三视图的异同点,就能准确分析组合体的真正结构,从而突破题目的难点,化繁为简,化难为易,事半功倍。

总之,三视图知识的高考题能有效地检测考生的空间想象能力和运用知识解决问题的能力。

它需要考生灵活运用所学习过的知识,并注重一些三视图知识的特殊细节,才能在高考中准确、高效地解决问题。

因此,一线教师应有意识地对学生加强这些细节的教育,才能使三视图的教学起到有的放矢、事半功倍的效果。

相关文档
最新文档