理论力学简明教程(第二版)陈世民答案
理论力学简明教程(第二版)陈世民答案

(A x By A z By )i (A z Bx A x Bz ) j (A x By A y Bx )k
四 矩阵
此处仅讨论用矩阵判断方程组解的分布情形。
a11x1 a12 x 2 a13 x 3 0 a 21x1 a 22 x 2 a 23 x 3 0 a x a x a x 0 31 1 32 2 33 3
1 2
1 2
*若 1 2 R 则 y1 e x , y 2 xe x ; y e x (c1 xc 2 )
1 1 1
e x cos x , y e x sin x ; *若 12 i 则 y 1 2
y e x (c1 cos x c 2 sin x)
注: P x dx, Q x e P x dx dx 积分时不带任意常数,Q x 可为 常数。
2 一个特殊二阶微分方程
y A2 y B
通解: y=K cos Ax+ 0
B A2
注: K ,0 为由初始条件决定的常量 3 二阶非齐次常微分方程
r r r dυ r dT Fυ =m υ= dt dt
r r ∂V ∂V ∂V dx + dy + dz = − F dr ∂x ∂y ∂z
r ∂V r ∂V r ∂V r F = −( i+ j+ k) ∂x ∂y ∂z
稳定平衡下的势函数: 此时势能处极小处 Vm
dV( x ) dx
x =x 0
=0;
dV 2( x ) dx
x=x0
>0
⎧VM < E < 0质点再平衡点附近振动 ⎪ 且能量满足 ⎨0 < E质点逃逸-∞ ⎪V < E质点逃逸+ ∞ ⎩ m
陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备一 泰勒展开式1 二项式得展开()()()()()m 23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++K !!2 一般函数得展开()()()()()()()()230000000f x f x f xf x f x x-x x-x x-x 123!''''''=++++K !!特别:00x =时,()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++K!!3 二元函数得展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭K !评注:以上方法多用于近似处理与平衡态处得非线性问题向线性问题得转化。
在理论力问题得简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+&& 通解:()02By=Kcos Ax+Aθ+注:0,K θ为由初始条件决定得常量 3 二阶非齐次常微分方程()x y ay by f ++=&&&通解:*y y y =+;y 为对应齐次方程得特解,*y 为非齐次方程得一个特解。
非齐次方程得一个特解 (1) 对应齐次方程0y ay by ++=&&&设x y e λ=得特征方程2a b 0λλ++=。
陈世民理论力学简明教程(第二版)课后答案-精选.pdf

。
解:建立自然坐标系有:
a
d e
dt
2
en
且: d
dt d
2
2k
2kd
ds 2k
dt
ds 2k
ds dt
d
d 2k
dt
积分得: ue 2k (代入 0 u ) 又因为: y 2 2px 在 (p 2 ,p) 点处斜率:
k 1 dy1
d 2px
dx
x
p 2
dx
在 ( p 2 , p) 点处斜率:
p 1
水平线之间的夹角又为 角度时所需时间。
解:依牛顿第二运动定律有: m x mk x , m y mg mk y
积分并代入初始条件: t 0 时: 0x 0 sin , 0 y
解得: x 0 cos e kt , y ( 0 sin
g )e
kt
g
k
k
当再次夹角为 时: y tan
x
0 cos
可解出: t
无滑动地滚动,如图所示,求圆盘边上 M点的深度 υ和加速度 α(用
参量 θ,Ψ表示)。
解:依题知:
Байду номын сангаас
r Rr
r Rr
且 O点处: ek cos( )er sin( )e
则:
rM rO O rOM
(R r)eR rer
[(R r)cos(
) r]er (R r)sin(
)e
rM
rM (
)sin(
)er [(R r)cos(
由 r e t,
t 得: r e t ,
且设: rer r e
则: 得: e
en
r2
2
简明材料力学第二版课后答案

简明材料力学第二版课后答案1. 第一章。
1.1 选择题。
1. A。
2. B。
3. C。
4. D。
5. A。
1.2 填空题。
1. 应力。
2. 变形。
3. 弹性模量。
4. 泊松比。
5. 线弹性。
1.3 简答题。
1. 什么是应力?应力是单位面积上的内力。
2. 什么是应变?应变是材料单位长度上的变形量。
3. 弹性模量的意义是什么?弹性模量是材料在弹性阶段的应力和应变之比,代表了材料的刚度。
4. 什么是泊松比?泊松比是材料在拉伸时横向收缩的比例。
5. 什么是线弹性?线弹性是指材料在应力小于屈服强度时,应力和应变成正比。
2. 第二章。
2.1 选择题。
1. C。
2. A。
3. D。
4. B。
5. C。
2.2 填空题。
1. 弹性极限。
2. 屈服强度。
3. 断裂强度。
4. 韧性。
5. 脆性。
2.3 简答题。
1. 什么是弹性极限?弹性极限是材料在拉伸时,超过该极限会发生塑性变形。
2. 什么是屈服强度?屈服强度是材料在拉伸时开始发生塑性变形的应力值。
3. 断裂强度和韧性有何区别?断裂强度是材料在拉伸时发生断裂的最大应力值,而韧性是材料吸收能量的能力。
4. 什么是脆性?脆性是指材料在受力时发生突然断裂的性质。
3. 第三章。
3.1 计算题。
1. 根据公式σ=F/A,计算出应力值。
2. 利用杨氏模量公式计算材料的弹性模量。
3. 根据泊松比公式计算材料的泊松比值。
3.2 简答题。
1. 什么是拉伸?拉伸是指材料在受力时发生长度增加的现象。
2. 什么是压缩?压缩是指材料在受力时发生长度减小的现象。
3. 什么是剪切?剪切是指材料在受力时发生形状变化但体积不变的现象。
4. 第四章。
4.1 计算题。
1. 根据应变-位移曲线计算出材料的弹性模量。
2. 根据拉伸试验数据计算出材料的屈服强度。
3. 利用断裂强度公式计算出材料的断裂强度值。
4.2 简答题。
1. 什么是应力-应变曲线?应力-应变曲线是材料在受力时应力和应变之间的关系曲线。
2. 什么是屈服点?屈服点是应力-应变曲线上的一个特殊点,表示材料开始发生塑性变形的位置。
F__学习_陈世民理论力学简明教程(第二版)答案_第六章

(R − r) g [m1 tan ϕ − m1 tan θ − m2 tan ϕ − m2 tan θ ] cos ϕ cos θ
r (R − r) − r
2 2
代入 tan ϕ = 得: tan θ =
=
r R − 2 Rr
2
m1 − m2 tan ϕ m1 + m2
θ = arctan
(m1 − m2 )r (m1 + m2 ) R 2 − 2 Rr
t =0
=
2 6 r 3
皮周长: l = 3d + 2π r = 3 3 4r 2 − h2 + 2π r 依虚功原理: δW = mgδ h + FT δl = mgδ h − 则依: 代入: 得: FT =
δW 3 3h = mg − FT = 0 δh 4r 2 − h 2
h
t =0
3 3h 4r 2 − h 2
2 & 积分得: θ =
&
2m g 2m + m′r
4mgθ (2m + m′ )r
L r
& 当完全释放( θ = )时: ω = θ
L θ= r
=
2 mgl r 2m + m′
ks 2 , s 为绳子的伸长 2
8 .上题中,如果绳子具有弹性,弹性势能为
证明重物 m 的运动为维持恒定的加速运动上附加一角频率为 ω 的 振动。其中 ω 2 = k
微振动,取近似 sin θ : θ , 得:
积分: 则: T( = 周期 )
θ = A cos(
m + 2m′g t) + B m + 4m′ l
(A ,B 为积分常数)
陈世民理论力学简明教程第二版答案第五张刚体力学

第五张 刚体力学平动中见彼此,转动中见分高低.运动美会让你感受到创造的乐趣.走过这遭,也许会有曾经沧海难为水的感叹.别忘了,坐标变换将为你迷津救渡,同时亦会略显身手.【要点分析与总结】1 刚体的运动(1)刚体内的任一点的速度、加速度(A 为基点) (2)刚体内的瞬心S :()21s A A r r ωυω=+⨯〈析〉ω为基点转动的矢量和,12ωωω=++值得注意的是:有转动时r '与r ω'⨯的微分,引入了r ω'⨯与()r ωω'⨯⨯项。
2 刚体的动量,角动量,动能 (1)动量:c P m υ=(2)角动量: x x xx xy xz i i i y yxyy yz y zx zyzz z z L J J J L r m L J J J J J J J L ωυωωω⎛⎫⎛⎫⎛⎫-- ⎪ ⎪⎪=⨯===-- ⎪ ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭∑式中:转动惯量()()()222222xx yy zz J y z dmJ z x dm J x y dm ⎧=+⎪⎪=+⎨⎪=+⎪⎩⎰⎰⎰惯量积xx yy zz J xydmJ yzdm J zxdm ⎧=⎪⎪=⎨⎪=⎪⎩⎰⎰⎰且c c cL r m L υ'=⨯+ * l e 方向(以l 为轴)的转动惯量: (,,αβγ分别为l e 与,,x y z 轴夹角的余弦) * 惯量主轴惯量主轴可以是对称轴或对称面的法线若X 轴为惯量主轴,则含X 的惯量积为0,即: 0==xy xz J J 若,,x y z 轴均为惯量主轴,则:xx yy zz L J i J j J k =++ 〈析〉建立的坐标轴轴应尽可能的是惯量主轴,这样会降低解题繁度。
(3) 动能:22211112222c i i c c iT m m m J υυυωω'=+=+∑* 定轴转动时: 212T J ω=* 平面平行运动: 221122c c T m J υω=+3刚体的动力学方程与质点动力学方程相同。
F__学习_陈世民理论力学简明教程(第二版)答案_第三章 非惯性参考系

9 一平放于光滑水平桌面上的圆盘, 以恒定角速度 ω 绕固定的圆盘 中心转动。有一质量为 m 的人沿圆盘上确定的半径以恒定的相 对速率 u 向圆盘的边缘走动。试分别利用(1 )地面惯性系; (2 ) 圆盘非惯性系,讨论圆盘对人的作用力 解: (1) 以地面惯性参考系讨论,设人走的半径为 ren , 切向为 e , 则 有:
为 m 的质点沿楔子的光滑斜面滑下,如图所示。求质点相对于 楔子的加速度 a ′及质点对楔子的压力 F . 解:依 a = a 0 + a ′ 得:
a ′= a − a 0 = g sin α i + a 0 cos α j − (a 0 cos α j + a 0 sin α i ) = (g sin α − a 0 cos α )i
1相对运动
r = rt + r ′
υ=
dr drt dr ′ drt dr ′ = + = + +ω × r′ dt dt dt dt dt
= υt + υ ′ + ω × r′
a=
dv dvt d (v′ +ω × r′ ) = + dt dt dt
d 2 rt 2 d 2*r ′ d *ω dr ′ + 2 + × r′ +ω × + ω × (v ′ +ω × r′ ) 2 dt dt dt dt
1 cos 2ω t ≈ 1 − (2ω t )2 ,sin 2ω t ≈ 2ω t 2
【解题演示】
1 一船蓬高 4 米,在雨中航行时,它的雨篷遮着蓬的垂直投影后 2 m 的甲板; 但当停航时, 甲板上干湿两部分的分界线却在蓬前 3 m处,
如果雨点的速率是 8 米每秒,求船航行时的速率? 解:取湖面为惯性坐标系,如右图所示建立坐标系 依几何关系,设雨点相对湖面速度为υt = 船相对雨点的速度为υ ′= −
物理学专业理论力学简明教程(第二版)-----陈世民答案

【解题演示】1 细杆OL 绕固定点O 以匀角速率ω转动,并推动小环C 在固定的钢丝AB 上滑动,O 点与钢丝间的垂直距离为d ,如图所示。
求小环的速度υ和加速度a。
解:依几何关系知:x d tan θ=又因为:222d d x xi i i cos dωυωθ+===故:22222(d x )x a 2xx i i d d ωυω+=== 2 椭圆规尺AB 的两端点分别沿相互垂直的直线O χ与Oy 滑动,已知B 端以匀速c 运动,如图所示。
求椭圆规尺上M 点的轨道方程、速度及加速度的大小υ与α。
解:依题知:B y (b d)cos θ=+且:B yC (b d)sin θθ=-=-+ 得:C*(b d)sin θθ=+又因M 点位置:M M x bsin ,y dcos θθ==故有:M M M xi |y j b cos i d sin j υθθθθ=+=-代入(*)式得:M bccot dc i j b d b dθυ=-++即:υ=2M M222bc bc a i i (b d)sin (b d)sin θυθθ==-=++1 一半径为r 的圆盘以匀角速率ω沿一直线滚动,如图所示。
求圆盘边上任意一点M 的速度υ 和加速度a(以O 、M 点的连线与铅直线间的夹角θ表示);并证明加速度矢量总是沿圆盘半径指向圆心。
解:设O 点坐标为(0Rt x ,R ω+)。
则M 点坐标为(0Rt x Rsin ,R R cos ωθθ+++)故:M M M xi y j (R R cos )i R υωωθ=+=+-222M M a R sin i R cos j R (sin i cos j)υωθωθωθθ==--=-+2 一半径为r 的圆盘以匀角深度ω在一半经为R 的固定圆形槽内作无滑动地滚动,如图所示,求圆盘边上M 点的深度υ和加速度α(用参量θ,Ψ表示)。
解:依题知:r rR rR rθωϕ=-=---且O 点处:k r e cos()e sin()e θθϕθϕ=---则:M O O OMR rr r r r (R r)e re [(R r)cos()r]e (R r)sin()e θθϕθϕ'=+=-+=--+---M M r rr r r ()sin()e [(R r)cos()r]e (R r)()cos()e (R r)sin()e r sin()e r [1cos()]e θθθυϕθθϕθϕθϕθθϕθθϕωθϕωθϕ==--+--+----+--=--+--(){}r rr r 2r a r ()cos()e r sin()e r ()sin()e r [1cos()]e r cos()e r sin()e r e r r R r cos()e r sin()e R r θθθθυωϕθθϕωθθϕωϕθθϕωθθϕωϕθϕωϕθϕωθωθϕθϕ==----------=----=---+-⎡⎤⎣⎦-3 已知某质点的运动规律为:y=bt,at θ=,a 和b 都是非零常数。