2015年高三复习高中数学三角函数基础过关习题(有答案)
2015届高考数学(文)达标小测3-3三角函数的图象与性质Word版含答案

[A 组 基础演练·能力提升]一、选择题1.函数y =|2sin x |的最小正周期为( )A .πB .2π C.π2 D.π4解析:由图象知T =π. 答案:A2.已知f (x )=cos 2x -1,g (x )=f (x +m )+n ,则使g (x )为奇函数的实数m ,n 的可能取值为( )A .m =π2,n =-1B .m =π2,n =1C .m =-π4,n =-1D .m =-π4,n =1解析:因为g (x )=f (x +m )+n =cos(2x +2m )-1+n ,若使g (x )为奇函数,则需满足2m =π2+k π, k ∈Z ,且-1+n =0,对比选项可选D. 答案:D3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .π D.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎢⎡⎦⎥⎤2π3,4π3.答案:A4.已知函数f (x )=sin πx 的部分图象如图1所示,则图2所示的函数的部分图象对应的函数解析式可以是( )A .y =f ⎝ ⎛⎭⎪⎫2x -12B .y =f ⎝ ⎛⎭⎪⎫x 2-12C .y =f (2x -1)D .y =f ⎝ ⎛⎭⎪⎫x2-1 解析:图2相对于图1:函数的周期减半,即f (x )→f (2x ),且函数图象向右平移12个单位,得到y =f (2x -1)的图象.故选C.答案:C5.定义行列式运算:⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m >0),若所得图象对应的函数为偶函数,则m 的最小值为( )A.π8 B.π3 C.56π D.2π3解析:∵f (x )=3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6,向左平移m 个单位得y =2sin ⎝ ⎛⎭⎪⎫x +m -π6,为偶函数,∴m -π6=k π+π2 (k ∈Z ),m =k π+23π,k ∈Z ,∴m min =23π(m >0).答案:D6.已知f (x )=sin x ,x ∈R ,g (x )的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称,则在区间[0,2π]上满足f (x )≤g (x )的x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤π4,3π4B.⎣⎢⎡⎦⎥⎤3π4,7π4C.⎣⎢⎡⎦⎥⎤π2,3π2 D. ⎣⎢⎡⎦⎥⎤3π4,3π2 解析:设(x ,y )为g (x )的图象上任意一点,则其关于点⎝ ⎛⎭⎪⎫π4,0对称的点为⎝ ⎛⎭⎪⎫π2-x ,-y ,由题意知该点必在f (x )的图象上,∴-y =sin ⎝⎛⎭⎪⎫π2-x ,即g (x )=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x ,依题意得sin x ≤-cos x ⇒sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤0,又x ∈[0,2π],解得3π4≤x ≤7π4.答案:B 二、填空题7.若函数f (x )=sin(2x +φ)(φ∈[0,π])是偶函数,则φ=________. 解析:∵f (x )=sin(2x +φ)是偶函数,∴φ=k π+π2,k ∈Z ,∵φ∈[0,π],∴取k =0时,φ=π2.答案:π28.(2014年潍坊质检)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.解析:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x =22sin 2x -22cos 2x -22×1-cos 2x 2=22sin2x +22cos 2x -2=sin ⎝⎛⎭⎪⎫2x +π4-2,故该函数的最小正周期为2π2=π.答案:π9.函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.解析:因为f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π4上单调递增,且在这个区间上的最大值是3,所以2sin π4ω=3,且0<π4ω<π2,因此ω=43.答案:43三、解答题10.已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间. 解析:由y =sin ⎝ ⎛⎭⎪⎫π3-2x 可化为y =-sin ⎝ ⎛⎭⎪⎫2x -π3.(1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡k π-π12,⎦⎥⎤k π+5π12,k ∈Z . 从而x ∈[-π,0]时,y =sin ⎝ ⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤-π,-7π12,⎣⎢⎡⎦⎥⎤-π12,0. 11.已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4x +9π4.(1)求函数f (x )的最小正周期;(2)计算f (1)+f (2)+…+f (2 013)的值. 解析:(1)∵f (x )=2sin 2⎝⎛⎭⎪⎫π4x +9π4,∴f (x )=2sin 2⎝ ⎛⎭⎪⎫π4x +π4=1-cos ⎝ ⎛⎭⎪⎫π2x +π2=1+sin π2x .∴函数f (x )的最小正周期T =2ππ2=4.(2)∵f (1)+f (2)+f (3)+f (4)=2+1+0+1=4.由(1)知,函数f (x )的最小正周期为4,且2 013=4×503+1,∴f (1)+f (2)+…+f (2 013)=4×503+f (1)=2 012+2=2 014.12.(能力提升)设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间.解析:(1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z . ∴φ=k π+π4,k ∈Z .又∵-π<φ<0,∴φ=-3π4.(2)由(1)知y =sin ⎝⎛⎭⎪⎫2x -3π4, 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z ,∴k π+π8≤x ≤k π+5π8,k ∈Z .∴函数y =sin ⎝⎛⎭⎪⎫2x -3π4的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z .。
2015届新课标高考数学一轮三角函数复习题

新课标高考数学一轮三角函数复习题(二)一、选择题(每小题5分,共60分,每小题给出的选项中只有一个符合题目的要求) 1、△ABC 中,“A >B ”是“sin A >sin B ”的………………………………………………( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件2、(理)给出下面四个函数,其中既是区间(0,)2π上的增函数又是以π为周期的偶函数的函数是( )A .x y 2tan = B.x y sin = C.y =cos2x D.x y cos =(文)已知函数f (x )=sin (πx -2π)-1,则下列命题正确的是 A.f (x )是周期为1的奇函数 B.f (x )是周期为2的偶函数C.f (x )是周期为1的非奇非偶函数D.f (x )是周期为2的非奇非偶函数 3、用五点法作x y 2sin 2=的图象时,首先应描出的五点的横坐标可以是( )A .ππππ2,23,,2,0 B.ππππ,43,,4,0 C .ππππ4,3,2,,0 D .32,2,3,6,0ππππ4、(理)ABC ∆的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π(D) 23π(文)在△ABC 中,如果(a +b +c)(b +c -a)=3bc ,则A 等于( ) A .150°B .120°C .60°D .30°5、若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在A.第一象限B.第二象限C.第三象限D.第四象限6、(理)若c Cb B aA cos cos sin ==,则△ABC 是( ) A .等边三角形 B .有一个内角是30°的直角三角形 C .等腰直角三角形 D .有一个内角是30°的等腰三角形 (文)若1)cos()cos()cos(=---A C C B B A 则△ABC 是( )A .直角三角形B .等腰直角三角形C .等边三角形D .顶角为1200的等腰三角形 7、(理)函数x xy cos 2sin 3-=的值域为( )(A )]1,1[- (B )]3,3[- (C )[]1,3-]1,3[- (D )]3,1[-(文)已知函数f (x )=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于A.32 B.23C.2D.3 8、(理)设0<|α|<4π,则下列不等式中一定成立的是 A.sin2α>sin α B.cos2α<cos α C.tan2α>tan αD.cot2α<cot α(文)△ABC 中,B =600,则C A cos cos 的取值范围是( )(A )[]41,0 (B )(]4121,- (C )[)2141, (D )[)0,41-9、若函数f (x )=sin (ωx +ϕxy2ππO 33-1如下图所示,则ω和ϕ的取值是A.ω=1,ϕ=3π B.ω=1,ϕ=-3πC.ω=21,ϕ=6π D.ω=21,ϕ=-6π10、(理)如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( )A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形(文)在△ABC 中,若2cos B ·sin A =sin C ,则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 11、已知y =f (x )是周期为2π的函数,当x ∈[0,2π)时,f (x )=sin 2x ,则f (x )=21的解集为A.{x |x =2k π+3π,k ∈Z } B.{x |x =2k π+3π5,k ∈Z } C.{x |x =2k π±3π,k ∈Z }D.{x |x =2k π+(-1)k3π,k ∈Z } 12、关于函数f (x )=sin 2x -(32)|x |+21,有下面四个结论, ①f (x )是奇函数 ②当x >2003时,f (x )>21恒成立 ③f (x )的最大值是23④f (x )的最小值是-21其中正确结论的个数为 A.1 B.2 C.3 D.4 二、填空题(每小题4分,共16分,将答案填在题后的横线上)13、若方程sin x +cos x =k 在0≤x ≤π上有两解,则k 的取值范围是 . 14、函数y =lg (cos x -sin x )的定义域是_______.15、设函数())()cos30f x x ϕϕπ=+<<。
苏州市2015届高三数学必过关题(逐题解析)——三角函数

高三必过关题 三角函数一、 填空题例题1. 已知34sin ,cos 2525θθ==- ,则θ角所在的象限为__________. 答案:θ在第四象限解析:sin 0,cos 0,θθθ<>∴为第四象限例题2.α终边上有一点(4,3)P m m -,(0)m ≠,则2sin cos αα+的值为__________.答案:25±解析:3(0)355||,sin 35||(0)5m m r m m m α⎧->⎪-=∴==⎨⎪<⎩,4(0)5cos 4(0)5m m α⎧>⎪=⎨⎪-<⎩例题3. 若cos(80),k -=那么tan100=__________.答案: 解析:221cos800sin801,tan100tan80k k k -=>=-=-=-例题4. 已知扇形的周长为(0),c c >当扇形中心角为_________弧度时,扇形有最大面积答案:2rad解析:2r r cθ+=2cr θ∴=+∴22222122881628c c c S r θθθθθθ===≤=++++ 当且仅当82,2rad θθθ==时,S 最大例题5. ABC ∆的内角满足sin cos 0,tan sin 0,A A A A +>-<则A 的取值范围是______.答案:324A ππ<< 解析:由tan sin 0,cos 0A A A -<<可知,所以A 为钝角,又sin cos 0A A +> tan 1A ∴<- 故324A ππ<<例题6. 若2sin ,cos 420x mx m θθ++=是方程的两根,则m 的值为__________.答案:1解析:由2sin cos ,sin cos ,12244m m m m θθθθ+=-=∴+=1m ∴=,又111sin cos ,sin 242242m m θθθ=-≤=≤故22m -≤≤1m ∴=例题7. 定义在区间(0,)2π上的函数6cos y x =的图像与5tan y x =的图像交点为P ,过P 做1PP x ⊥轴于点1P ,直线1PP 与sin y x =的图像交于2P ,则线段12P P 的长为__________.答案:23解析:线段12P P 的长度即为sin x 的值,且其中的x 满足6cos 5tan x x =((0,)2x π∈),解得1222sin ,33x PP =∴=例题8. 已知函数()3sin()(0)6f x x πωω=->和()2cos(2)1g x x ϕ=++的图像的对称轴完全相同,若[0,],2x π∈则()f x 的取值范围是__________. 答案:3[,3]2-解析:2ω=,5[0,]2[,]2666x x ππππ∈∴-∈-m i nm a x 3()3s i n (),()3s i n3622f x f x ππ∴=-=-==例题9. 已知tan 2θ=,则22sin sin cos 2cos _____________θθθθ+-= 答案:45解析:原式=222222sin sin cos 2cos tan tan 24224sin cos tan 1415θθθθθθθθθ+-+-+-===+++例题10. 函数lg(2sin 1)y x =-__________.答案:5[2,2)()36k k k Z ππππ++∈解析:{2sin 1012cos 0x x -≥-≥ 即1sin 21cos 2x x ⎧>⎪⎨⎪≤⎩ 5[2,2)()36x k k k Z ππππ∴∈++∈例题11. 设函数()2sin(),25f x x ππ=+若对任意的x R ∈都有12()()()f x f x f x ≤≤成立,则12||x x -的最小值为__________.答案:2解析:由1212,,()()()x x f x f x f x ≤≤由任意知12(),()f x f x 为最小值与最大值 12min ||x x ∴-为()f x 的最小正周期的一半,242T ππ== 22T∴=例题12. 已知22326x y +=,y +的最大值是__________. 答案:2解析:设,,x y θθ=cos 2sin()3y πθθθ+==+例题13. 在斜三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,若1tan tan tan tan =+BCA C , 则 =+222cb a __________. 答案:3 解析:2sin cos cos sin sin()sin ()1()11cos sin sin cos sin sin cos sin sin C A B C A B CC A B C A B C A B++=∴⋅=∴= 22222222221332c a b c a b a b c c ab ab+∴=∴=+∴=+-⋅例题14. 23sin 702cos 10-=- __________.答案:2 解析:原式:3sin 7021cos 2022-==+-例题15. 若1sin(),63πα-=则2cos(2)3πα+=__________.答案:79-解析:227cos(2)cos[2()]cos2()2sin ()136669ππππαπααα+=--=--=--=-例题16. 已知(0,),2πα∈且11sin 2cos ,5αα+=则tan _____________α=答案:34解析:2211sin 2cos 5sin cos 1αααα⎧⎪+=⎨⎪+=⎩解得3sin 35tan 44cos 5ααα⎧=⎪∴=⎨⎪=⎩例题17. 函数()sin(),(,,f x A x A ωϕωϕ=+是常数,0,0)A ω>>的部分图象如图所示,则=)0(f 答案:2例题18. 在ABC ∆中,角,,A B C 所对的边长分别为,,a b c ,若120C =,c =则a 与b 的大小关系是__________.答案:ab >解析:22222222120,,2cos 122()2,0C c c a b ab Ca ab ab aba b ab a b a ba b===+-∴=+--∴-=∴-=>∴>+例题19. 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值__________.答案:解析:设BC =x ,则AC, 根据面积公式得ABC S ∆=1sin 2AB BC B ⋅=,根据余弦定理得 2222242cos 24AB BC AC x x B AB BC x +-+-==244x x-=,代入上式得 ABC S ∆==由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当x =ABCS ∆最大值例题20. 已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是__________.答案:,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦解析:若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即s i n 0ϕ<,所以2,6k k Z πϕπ=+∈,代入()sin(2)f x x ϕ=+,得()sin(2)6f x x π=+,由222262k x k πππππ-++剟,得36k x k ππππ-+剟.二、解答题例题21.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B. (Ⅰ)求tan(αβ+)的值; (Ⅱ)求2αβ+的值.解析:由条件的cos αβ==,因为α,β为锐角,所以sin αβ=因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π例题22.已知函数)()2cos sin 222xx x f x =-.(1)设ππ22θ⎡⎤∈-⎢⎥⎣⎦,,且()1f θ,求θ的值; (2)在△ABC 中,AB =1,()1f C =,且△ABCsin A +sin B 的值.解析:(1)2()2sin cos 222x x xf x =-cos )sin x x +-=()π2cos 6x +由()π2cos 16x +,得()π1cos 62x +=,于是ππ2π()63x k k +=±∈Z ,因为ππ22x ⎡⎤∈-⎢⎥⎣⎦,,所以ππ26x =-或. (2)因为(0π)C ∈,,由(1)知π6C =.因为△ABC1πsin 26ab =,于是ab = ①在△ABC 中,设内角A 、B 的对边分别是a ,b . 由余弦定理得2222π12cos66a b ab a b =+-=+-,所以227a b +=. ②由①②可得2a b =⎧⎪⎨=⎪⎩,2.a b ⎧=⎪⎨=⎪⎩于是2a b +=+由正弦定理得sin sin sin 112A B C a b ===,所以()1sin sin 12A B a b +=+=.例题23.在ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知222b c a bc +=+。
高三三角函数专题复习习题(附高考真题及答案)

一、角的概念及任意角的三角函数1.已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π42.(2015福建卷).若,且为第四象限角,则的值等于( )A . B . C . D .二、同角三角函数的基本关系式、二倍角公式、两角和与差公式、诱导公式3.化简sin 235°-12cos10°cos80°=( )A .-2B .-12 C .-1 D .14.已知15cos tan(),34πθ=- 则sin()2πθ-等于A .23 B .一13 C .13D .223± 5.[2014·江苏卷] 已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值.6、若,且( )A. B. C. D.7、[2014·全国卷] 直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于________.三、三角函数图像及性质8、[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增9、已知ϕ是实数,f(x)=cosx ·cos(x+3π),则“3πϕ=”是“函数f(x)向左平移ϕ个单位后关于y 轴对称”的( ) A.充分不必要条件 B .必要不充分条件 C .充要条件 D.既不充分也不必要条件10、如图所示为函数f(x)=2sin(ωx +φ)的部分图象,其中A ,B 两点之间的距离为5,那么f (-1)=( ) ⎝⎛⎭⎪⎫ω>0,0≤φ≤π2 A .-1 B .- 3 C. 3 D .15sin 13α=-αtan α125125-512512-图3CDBA11、[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 12、(2015浙江卷)、函数的最小正周期是 ,最小值是 .四、解三角形11、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B= . 12、在中,,为边上的点,且,,则的面积的最大值为 .13.[2014·重庆卷13] 将函数f(x)=sin (ωx +φ)⎝ ⎛⎭⎪⎪⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝ ⎛⎭⎪⎪⎫π6=________.14.在△ABC 中,已知tan A +B2=sin C ,给出以下四个结论:①tan Atan B =1;②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C .其中正确的是________.四、解答题15、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE=1,EC =7, EA =2,∠ADC =2π3,∠BEC =π3. (1)求sin ∠CED 的值; (2)求BE 的长.(湖南卷)16. (本小题满分12分)如图3, D 是直角ABC ∆斜边BC 上一点, βα=∠=∠=ABC CAD AD AB ,,记. (Ⅰ)证明: 02cos sin =+βα; (Ⅱ)若DC AC 3=,求β的值.()2sin sin cos 1f x x x x =++17、[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知 a -c =66b ,sin B =6sin C. (1)求cos A 的值;(2)求cos ⎝⎛⎭⎪⎫2A -π6的值.18、(2014•南昌模拟)已知向量=(sin ,1),=(cos ,cos2).记f (x )=•.(Ⅰ)若f (x )=,求cos (﹣x )的值;(Ⅱ)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a ﹣c )cosB=bcosC ,若f (A )=,试判断△ABC 的形状19、(10分)已知0<α<π2<β<π,tan α2=12,cos(β-α)=210. (1)求sin α的值; (2)求β的值.20、【2015高考重庆,理18】 已知函数()2sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭(1)求()f x 的最小正周期和最大值; (2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.15、(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即 sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝ ⎛⎭⎪⎫2π3-α=cos 2π3cos α+sin 2π3sin α =-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故BE =2cos ∠AEB =2714=47.16、(1).如图3,(2)2,sin sin(2)cos 2222πππαπββαββ=--=-∴=-=-,即sin cos 20αβ+=. (2).在ABC ∆中,由正弦定理得,sin sin sin()sin DC AC DCβααπβα=⇒=∴=-由(1)得sin cos 2αβ=-,2sin 22sin ),βββ∴==-即2sin 0.sin sin ββββ--===解得.0,sin .23ππβββ<<∴=⇒=17、解:(1)在△ABC 中,由b sin B =csin C ,及sin B =6sin C ,可得b =6c.又由a -c =66b ,有a =2c.所以cos A =b2+c2-a22bc =6c2+c2-4c226c2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos2A -1=-14,sin 2A =2sin A ·cos A =154.所以cos ⎝⎛⎭⎪⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.18、解 :(Ⅰ)∵向量. ∴f (x )=== ∵,∴,∴∴∴(Ⅱ)∵(2a ﹣c )cosB=bcosC ,∴2sinAcosB=sinCcosB+sinBcosC=sin (B+C )=sinA∵sinA >0,∴cosB= ∵B ∈(0,π),∴B=∵,∴∴或∴A=或A=π(舍去)∴C=∴△ABC 为正三角形.19、解:(1)∵tan α2=12, ∴tan α=2tan α21-tan 2α2=2×121-⎝ ⎛⎭⎪⎫122=43, 由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45⎝ ⎛⎭⎪⎫sin α=-45舍去. (2)由(1)知cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35, 又0<α<π2<β<π,∴β-α∈(0,π), 而cos(β-α)=210,∴sin(β-α)=1-cos 2(β-α)=1-⎝ ⎛⎭⎪⎫2102=7210, 于是sin β=sin[α+(β-α)] =sin αcos(β-α)+cos αsin(β-α) =45×210+35×7210=22.又β∈⎝ ⎛⎭⎪⎫π2,π,∴β=3π4.20、(I )由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=- sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦。
2015高考数学总复习三角函数专题测试(含答案)

2015福建文科高考数学总复习(6)----三角函数单元测试题一、选择题1.设a<0,角α的终边经过点P(-3a,4a),那么sin α+2cos α的值等于:A.52B.-52C.51D.-512.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于:A.-23B.23C.21D.±233. 已知sin α>sin β,那么下列命题成立的是:A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β4.若sinx +cosx =1,那么sin n x +cos nx 的值是:A .1B .0C .-1D .不能确定 5. 函数y=-x ·cos x 的部分图象是:6. 函数x x y sin cos 2-=的值域是: A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,17. 已知:函数sin()y A x ωϕ=+,在同一周期内,当12x π=时取最大值4y =;当712x π=时,取最小值4y =-,那么函数的解析式为: A .4sin(2)3y x π=+ B. 4sin(2)3y x π=-+C 4sin(4)3=+y x π. D. 4sin(4)3y x π=-+8. 在函数y =|tanx |,y =|sin(x +2π)|,y =|sin2x |,y =sin(2x -2π)四个函数中,既是以π为周期的偶函数,又是区间(0,2π)上的增函数个数是:A .1B .2C .3D .49. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为:A. 21- B .23 C. 23-D 2110. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是:A.)32sin(π-=x y B.)62sin(π-=x y C .)62sin(π+=x y D .)62sin(π+=x y 11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则: A .φ=π2 B .φ=k π+π2 C .φ=k π D .φ=2k π-π2(k ∈Z) 二.填空题:12. 函数sin 2y x =的定义域是 . 13. 若1351016()sin ()()()(n f n f f f f π=++++,)= .14,函数⎪⎭⎫⎝⎛+=43cos log 21πx y 在区间_______上是减函数15.给出下列命题:(1)存在实数x ,使sinx+cosx =3π; (2)若αβ,是锐角△ABC 的内角,则sin α>cos β; (3)函数y =sin(32x-27π)是偶函数; (4)函数y =sin2x 的图象向右平移4π个单位,得到y =sin(2x+4π)的图象.其中正确的命题的序号是 . 三、解答题16.已知函数y =3sin3x .(1)作出函数在x ∈[π6,5π6]上的图象. (2)求(1)中函数的图象与直线y =3所围成的封闭图形的面积.17 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;18. 已知y =Asin(ωx +φ),(A >0, ω>0,ϕπ<)的图象过点P(π12,0)图象上与点P 最近的一个顶点是Q(π3,5). (1)求函数的解析式;(2)求使y ≤0的x 的取值范围.19,已知函数.2sin 21log 21⎪⎭⎫⎝⎛=x y(1) 求它的定义域、值域以及在什么区间上是增函数;(2) 判断它的奇偶性; (3) 判断它的周期性。
2015届高考数学(基础过关+能力训练):三角函数、三角恒等变换及解三角形 三角函数的综合应用(含答案)

第三章 三角函数、三角恒等变换及解三角形第9课时 三角函数的综合应用1. 若函数f[x]=cos ωxcos ⎝⎛⎭⎫π2-ωx [ω>0]的最小正周期为π,则ω=________.答案:1解析:由于f[x]=cos ωxcos ⎝⎛⎭⎫π2-ωx =12sin2ωx ,所以T =2π2ω==1.2. 在△ABC 中,若∠B =π4,b =2a ,则∠C =________.答案:7π12解析:根据正弦定理可得a sinA =b sinB ,即a sinA =2a sin π4,解得sinA =12.因为b =2a>a ,所以A<B ,所以A =π6,所以C =π-A -B =7π12.3. 已知tanx -1tanx =32,则tan2x =________.答案:-43解析:由tanx -1tanx =32,可得tanx 1-tan 2x =-23,所以tan2x =2tanx 1-tan 2x=-43. 4. 已知向量a =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,1,b =[4,4cos α-3],若a ⊥b ,则sin ⎝⎛⎭⎫α+4π3=________.答案:-14解析:a·b =4sin ⎝⎛⎭⎫α+π6+4cos α-3=23sin α+6cos α-3=43sin ⎝⎛⎭⎫α+π3-3=0,所以sin ⎝⎛⎭⎫α+π3=14.所以sin ⎝⎛⎭⎫α+4π3=-sin ⎝⎛⎭⎫α+π3=-14.5. 设函数f[x]=cos[ωx +φ]-3sin[ωx +φ]⎝⎛⎭⎫ω>1,|φ|<π2,且其图象相邻的两条对称轴为x 1=0,x 2=π2,则φ=________.答案:-π3解析:由已知条件,得f[x]=2cos[ωx +φ+π3],由题意得T 2=π2,∴ T =π.∴ T =2πω,∴ ω=2.∵ f[0]=2cos ⎝⎛⎭⎫φ+π3,x =0为f[x]的对称轴,∴ f[0]=2或-2.∵ |φ|<π2,∴ φ=-π3.6. 已知函数f[x]=2sinx ,g[x]=2sin ⎝⎛⎭⎫π2-x ,直线x =m 与f[x],g[x]的图象分别交于M 、N 两点,则|MN|的最大值为________.答案:2 2解析:构造函数F[x]=2sinx -2cosx =22sin ⎝⎛⎭⎫x -π4,故最大值为2 2.7. 已知f[x]=sin ⎝⎛⎭⎫ωx +π3[ω>0],f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f[x]在区间⎝⎛⎭⎫π6,π3有最小值,无最大值,则ω=________.答案:143解析:由题意知直线x =π6+π32=π4为函数的一条对称轴,且ω×π4+π3=2k π-π2[k ∈Z ],∴ ω=8k -103[k ∈Z ]. ①又π3-π6≤2πω[ω>0],∴ 0<ω≤12. ② 由①②得k =1,∴ ω=143.8. 已知函数f[x]=sin[2x +φ],其中φ为实数.f[x]≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f[π],则f[x]的单调递增区间是________. 答案:⎣⎡⎦⎤k π+π6,k π+2π3[k ∈Z ]解析:由x ∈R ,有f[x]≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f[x]取最值,∴ f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1,∴ π3+φ=±π2+2k π[k ∈Z ],∴ φ=π6+2k π或φ=-5π6+2k π[k ∈Z ].∵f ⎝⎛⎭⎫π2>f[π],∴ sin[π+φ]>sin[2π+φ],∴ -sin φ>sin φ,∴ sin φ<0.∴ φ取-5π6+2kπ[k ∈Z ].不妨取φ=-5π6,则f[x]=sin ⎝⎛⎭⎫2x -5π6.令-π2+2k π≤2x -5π6≤π2+2k π[k ∈Z ],∴ π3+2k π≤2x ≤4π3+2k π[k ∈Z ],∴ π6+k π≤x ≤2π3+k π[k ∈Z ].∴ f[x]的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π[k ∈Z ].9. 在△ABC 中,内角A 、B 、C 所对的边长分别是a 、b 、c.[1] 若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;[2] 若sinC +sin[B -A]=sin2A ,试判断△ABC 的形状.解:[1] ∵ c =2,C =π3,∴ 由余弦定理c 2=a 2+b 2-2abcosC ,得a 2+b 2-ab =4. ∵ △ABC 的面积为3, ∴ 12absinC =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.[2] 由sinC +sin[B -A]=sin2A ,得sin[A +B]+sin[B -A]=2sinAcosA , 即2sinBcosA =2sinAcosA ,∴ cosA ·[sinA -sinB]=0,∴ cosA =0或sinA -sinB =0, 当cosA =0时,∵ 0<A <π,∴ A =π2,△ABC 为直角三角形;当sinA -sinB =0时,得sinB =sinA ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴ △ABC 为等腰三角形或直角三角形.10. 已知函数f[x]=3sin ωx ·cos ωx -cos 2ωx +32[ω∈R ,x ∈R ]的最小正周期为π,且图象关于直线x =π6对称.[1] 求f[x]的解析式;[2] 若函数y =1-f[x]的图象与直线y =a 在⎣⎡⎦⎤0,π2上只有一个交点,求实数a 的取值范围.解:[1] f[x]=3sin ωx ·cos ωx -cos 2ωx +32=32sin2ωx -12[1+cos2ωx]+32=sin ⎝⎛⎭⎫2ωx -π6+1.∵ 函数f[x]的最小正周期为π,∴ 2π|2ω|=π,即ω=±1,∴ f[x]=sin ⎝⎛⎭⎫±2x -π6+1.① 当ω=1时,f[x]=sin ⎝⎛⎭⎫2x -π6+1,∴ f ⎝⎛⎭⎫π6=sin π6+1不是函数的最大值或最小值,∴ 其图象不关于x =π6对称,舍去.② 当ω=-1时,f[x]=-sin ⎝⎛⎭⎫2x +π6+1,∴ f ⎝⎛⎭⎫π6=-sin π2+1=0是最小值,∴ 其图象关于x =π6对称.故f[x]的解析式为f[x]=1-sin ⎝⎛⎫2x +π6.[2] y =1-f[x]=sin ⎝⎛⎭⎫2x +π6,在同一坐标系中作出y =sin ⎝⎛⎭⎫2x +π6和y =a 的图象:由图可知,直线y =a 在a ∈⎣⎡⎭⎫-12,12或a =1时,两曲线只有一个交点,∴ a ∈⎣⎡⎭⎫-12,12或a =1.11. [2013·江苏]如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C.假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cosA =1213,cosC =35.[1] 求索道AB 的长;[2] 问乙出发多少分钟后,乙在缆车上与甲的距离最短?[3] 为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在什么范围内?解:[1] 在△ABC 中,因为cosA =1213,cosC =35,所以sinA =513,sinC =45.从而sinB =sin[π-[A +C]]=sin[A +C]=sinAcosC +cosAsinC =513×35+1213×45=6365.由正弦定理AB sinC =ACsinB ,得AB =AC sinB ×sinC =1 2606365×45=1 040[m].所以索道AB 的长为1 040 m.[2] 假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了[100+50t]m ,乙距离A 处130t m ,所以由余弦定理得d 2=[100+50t]2+[130t]2-2×130t ×[100+50t]×1213=200[37t 2-70t +50],因0≤t ≤1 040130,即0≤t ≤8,故当t =3537[min]时,甲、乙两游客距离最短.[3] 由正弦定理BC sinA =AC sinB ,得BC =AC sinB ×sinA =1 2606365×513=500[m].乙从B 出发时,甲已走了50×[2+8+1]=550[m],还需走710 m 才能到达C.设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514[单位:m/min]范围内.。
高三复习高中数学三角函数基础过关习题(有答案)

高三复习高中数学三角函数基础过关习题(有答案)高三复习高中数学三角函数基础过关习题一、填空题1. sin(π/4)的值是____。
2. tan(π/3)的值是____。
3. cos(2π/3)的值是____。
4. sin^2(π/6) + cos^2(π/6)的值是____。
5. sin(2π/3)的值是____。
二、选择题1. 若tanθ = 3,且θ的范围是(0, π),则sinθ的值是:A. -3/√10B. 3/√10C. -10/3D. 10/32. 若sinα = -1/2,且α的范围是(π/2, π),则cosα的值是:A. -√3/2B. -√2/2C. 1/2D. √2/23. 一个角θ的终边过点P(-2, -2),则sinθ的值是:A. -√2/2B. √2/2C. -2/√2D. 2/√24. 若sinx = -1/2,且x的范围是[π, 3π/2],则cosx的值是:A. 1/2B. -1/2C. √2/2D. -√2/25. 若sinθ = cosθ,且θ的范围是[0, π/2],则θ的值是:A. π/4B. π/6C. π/3D. π/2三、解答题1. 求下列三角函数的值:(a) sin(-π/4)(b) cos(7π/6)2. 已知三角形ABC中,∠A=60°,BC=4,AC=6,求AB 的长度。
3. 已知tanθ = 3/4,且θ的范围是(0, π/2),求cosθ的值。
4. 若sinα = -1/√10,且α的范围是(π/2, π),求cos(2α)的值。
5. 已知sinx = 2/√5,且x的范围是[π/2, π],求cos(2x)的值。
参考答案:一、填空题1. sqrt(2)/22. sqrt(3)3. -1/24. 15. sqrt(3)/2二、选择题1. B2. A3. D4. B5. A三、解答题1.(a) sin(-π/4) = -sin(π/4) = -sqrt(2)/2(b) cos(7π/6) = cos(π/6) = sqrt(3)/22. 根据余弦定理,有AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos∠A= 6^2 + 4^2 - 2 * 6 * 4 * cos60°= 36 + 16 - 48 * 1/2= 20所以AB = sqrt(20) = 2 * sqrt(5)3. 根据正切函数的定义,有tanθ = 3/4 = opposite/adjacent假设opposite = 3x,adjacent = 4x,则x > 0则根据勾股定理,有sqrt(opposite^2 + adjacent^2) = sqrt((3x)^2 +(4x)^2) = 5x所以cosθ = adjacent/hypotenuse = 4x/5x = 4/54. 根据余弦函数的定义,有cosα = sqrt(1 - sin^2α) = sqrt(1 - (-1/√10)^2) = sqrt(1 - 1/10) = sqrt(9/10) = 3/√10所以cos(2α) = cos^2α - sin^2α = (3/√10)^2 - (-1/√10)^2 = 9/10 - 1/10 = 8/10 = 4/55. sinx = 2/√5 = 2 * √5/5,且x的范围是[π/2, π],则可得到一个特解x = 2π/3cos(2x) = cos^2x - sin^2x = (cosx)^2 - (sinx)^2 = (√(1 - (sinx)^2))^2 - (sinx)^2 = 1 - (sinx)^2 - (sinx)^2 = 1 - 2 * (sinx)^2= 1 - 2 * (2 * √5/5)^2 = 1 - 2 * (4/5) = 1 - 8/5 = -3/5。
三角函数基础过关题(附答案)

三角函数基础过关题考试时间:100分钟;满分:100分姓名:___________班级:___________考号:___________一、选择题(每小题5分,共60分) 1.如果角θ的终边经过点)21,23(-,则=θcos ( ) A. 21 B. 23- C. 3 D. 33-2.若,0tan cos >⋅θθ则角θ应为( ) A .第一或第二象限的角 B .第一或第三象限的角C .第二或第三象限的角D .第三或第四象限的角 3.若02<<-απ,则点)cos ,(tan αα位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4( ).A BC D 5y x cos2A .B .C . D6. 将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是A.cos2y x =B.22cos y x = C.)42sin(1π++=x y D.22sin y x =7.设A ={小于90°的正角},B ={第一象限的角},则A B 等于( ).A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{|k ·360°< <k ·360°+90°(k ∈Z ,k ≤0)}8.下列函数中,在区间(0,)2π上为减函数的是( ).A. cos y x =B. sin y x =C. tan y x =D. sin()3y x π=-9.已知点P(tan α,cos α)在第三象限,则角α的终边在第几象限( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.105sin 15cos 75cos 15sin +等于( )A. 0B. 1C. 23D. 111,则sin 2x 的值为A B C D12 )C.πD.2π 二、填空题(每小题5分,共20分) 若,则三、解答题(共20分)17.求函数sin cos ,y x x x R =+∈的值域及y 取得最小值时x 的取值的集合.18.(本小题满分12的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数f (x )的单调递增区间参考答案1-5.BABCA 6-10.BAABD 11-12.DC1315.13 1617.解:∵ 又∵ x R ∈, ∴ 函数y 的值域为取得最小值时,45x ︒+=360270,,k k z ∙+∈∴360225,x k k z =∙+∈ ∴x的取值的集合为{|360225,}x x k k z =∙+∈18. 解: ………4分,所以1=ω …………………………………………6分………………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高三复习高中数学三角函数基础过关习题(有答案)一.选择题(共15小题)1.(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是().2.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是().3.(2014•香洲区模拟)函数是()4.(2014•浙江模拟)函数f(x)=sin(2x+)(x∈R)的最小正周期为().5.(2014•宝鸡二模)函数y=2sin(2x+)的最小正周期为().6.(2014•宁波二模)将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵.x=7.(2014•邯郸二模)已知函数f(x)=2sin(x+φ),且f(0)=1,f'(0)<0,则函数图象的一条x=8.(2014•上海模拟)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来.C9.(2014•云南模拟)为了得到函数y=sin x的图象,只需把函数y=sinx图象上所有的点的()横坐标缩小到原来的纵坐标伸长到原来的10.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为.C D.12.(2013•天津模拟)将函数y=cos(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式是()﹣))﹣)13.(2013•安庆三模)将函数f(x)=sin(2x)的图象向左平移个单位,得到g(x)的图象,则g(x)的2x+14.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为().D15.(2012•杭州一模)已知函数,下面四个结论中正确的是())的图象关于直线对称的图象向左平移个单位得到二.解答题(共15小题)16.(2015•重庆一模)已知函数f(x)=cosx•sin(x+)﹣cos2x+.(1)求f(x)的最小正周期;(2)若f(x)<m在上恒成立,求实数m的取值范围.17.(2014•东莞二模)已知函数.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小正周期;(Ⅲ)若,α是第二象限的角,求sin2α.18.(2014•长安区三模)已知函数f(x)=sin(2x﹣)+2cos2x﹣1.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,且a=1,b+c=2,f(A)=,求△ABC的面积.19.(2014•诸暨市模拟)A、B是直线图象的两个相邻交点,且.(Ⅰ)求ω的值;(Ⅱ)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若的面积为,求a 的值.20.(2014•广安一模)已知函数f(x)=sin2x+2cos2x+1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC内角A,B,C的对边分别为a,b,c,且c=,f(C)=3,若向量=(sinA,﹣1)与向量=(2,sinB)垂直,求a,b的值.21.(2014•张掖三模)已知f(x)=sinωx﹣2sin2(ω>0)的最小正周期为3π.(Ⅰ)当x∈[,]时,求函数f(x)的最小值;(Ⅱ)在△ABC,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.22.(2014•漳州三模)在△ABC中,a,b,c分别是内角A,B,C所对的边,,若向量=(1,sinA),=(2,sinB),且∥.(Ⅰ)求b,c的值;(Ⅱ)求角A的大小及△ABC的面积.23.(2013•青岛一模)已知a,b,c为△ABC的内角A,B,C的对边,满足,函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减.(Ⅰ)证明:b+c=2a;(Ⅱ)若,证明:△ABC为等边三角形.24.(2012•南昌模拟)已知函数.(1)若f(α)=5,求tanα的值;(2)设△ABC三内角A,B,C所对边分别为a,b,c,且,求f(x)在(0,B]上的值域.25.(2012•河北区一模)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值.26.(2012•韶关一模)已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1(ω>0)的最小正周期为π.(1)求f()的值;(2)求函数f(x)的单调递增区间及其图象的对称轴方程.27.(2012•杭州一模)已知函数f(x)=.(Ⅰ)求f(x)的最小正周期、对称轴方程及单调区间;(Ⅱ)现保持纵坐标不变,把f(x)图象上所有点的横坐标伸长到原来的4倍,得到新的函数h(x);(ⅰ)求h(x)的解析式;(ⅱ)△ABC中,角A、B、C的对边分别为a、b、c,且满足,h(A)=,c=2,试求△ABC的面积.28.(2011•辽宁)△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.29.(2011•合肥二模)将函数y=f(x)的图象上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位后,得到的图象与函数g(x)=sin2x的图象重合.(1)写出函数y=f(x)的图象的一条对称轴方程;(2)若A为三角形的内角,且f(A)=•,求g()的值.30.(2011•河池模拟)已知△ABC的内角A、B、C的对边分别为a、b、c,向量m=(sinB,1﹣cosB)与向量n=(2,0)的夹角为,求的最大值.2015年高三复习高中数学三角函数基础过关习题(有答案)参考答案与试题解析一.选择题(共15小题)1.(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是().,再代入复合三角函数的周期公式得,)的最小正周期是2.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是().,再代入复合三角函数的周期公式得,)的最小正周期是3.(2014•香洲区模拟)函数是()解:因为:4.(2014•浙江模拟)函数f(x)=sin(2x+)(x∈R)的最小正周期为().)的周期为)T=,属于基础题.5.(2014•宝鸡二模)函数y=2sin(2x+)的最小正周期为().T=,得出结论.)的最小正周期为=T=,属于基础题.6.(2014•宁波二模)将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵.x=))﹣)的图象向左平移x+x+﹣))=k++,,即是变化后的函数图象的一条对称轴的方程,7.(2014•邯郸二模)已知函数f(x)=2sin(x+φ),且f(0)=1,f'(0)<0,则函数图象的一条x=从而得到函数,函数)函数x+,故函数8.(2014•上海模拟)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来.C解:将函数的图象向左平移)﹣]9.(2014•云南模拟)为了得到函数y=sin x的图象,只需把函数y=sinx图象上所有的点的()横坐标缩小到原来的纵坐标伸长到原来的x 10.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为A=,由此可得A=.C D.2asinB=由正弦定理=2sinAsinB=sinA=A=.12.(2013•天津模拟)将函数y=cos(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式是()﹣))﹣)﹣x)的图象个单位,则所得函数图象对应的解析式是()﹣x13.(2013•安庆三模)将函数f(x)=sin(2x)的图象向左平移个单位,得到g(x)的图象,则g(x)的2x+)的图象向左平移个单位,)]2x+14.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为().D×××,BC=,15.(2012•杭州一模)已知函数,下面四个结论中正确的是())的图象关于直线对称的图象向左平移个单位得到)可求得周期)可得(的图象向左平移个单位得到)2x+2x+))可得:(=0的图象向左平移个单位得到)2x+2x+二.解答题(共15小题)16.(2015•重庆一模)已知函数f(x)=cosx•sin(x+)﹣cos2x+.(1)求f(x)的最小正周期;(2)若f(x)<m在上恒成立,求实数m的取值范围.)﹣cos x+sinx+cosx )﹣+﹣sin))∵,∴,∴上恒成立,∴.17.(2014•东莞二模)已知函数.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小正周期;(Ⅲ)若,α是第二象限的角,求sin2α.代入已知函数关系式计算即可;2x+)即可求((=×)cos×)×﹣×=0sin2x+sin2x+sin cos2x2x+T=2x+)(﹣×(﹣.2x+)是关键,属于中档题.18.(2014•长安区三模)已知函数f(x)=sin(2x﹣)+2cos2x﹣1.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,且a=1,b+c=2,f(A)=,求△ABC的面积.=)因为==,所以所以A=A=19.(2014•诸暨市模拟)A、B是直线图象的两个相邻交点,且.(Ⅰ)求ω的值;(Ⅱ)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若的面积为,求a 的值.)的解析式为﹣﹣,求得),结合,得到函数的周期)∵,∴是锐角三角形,,∴.,20.(2014•广安一模)已知函数f(x)=sin2x+2cos2x+1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC内角A,B,C的对边分别为a,b,c,且c=,f(C)=3,若向量=(sinA,﹣1)与向量=(2,sinB)垂直,求a,b的值.化简)∵(4分))由题意可知,,∴∴(舍)或(分)∵分)∵②本题考查三角函数的二倍角公式、考查三角函数的公式21.(2014•张掖三模)已知f(x)=sinωx﹣2sin2(ω>0)的最小正周期为3π.(Ⅰ)当x∈[,]时,求函数f(x)的最小值;(Ⅱ)在△ABC,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.x+的范围求出)由可得,=,即,解得得所以,当及,得,所以,解得,解得,22.(2014•漳州三模)在△ABC中,a,b,c分别是内角A,B,C所对的边,,若向量=(1,sinA),=(2,sinB),且∥.(Ⅰ)求b,c的值;(Ⅱ)求角A的大小及△ABC的面积.)∵=b=2a=2,(cos=9,得sinA=,A=,C=A=,S==23.(2013•青岛一模)已知a,b,c为△ABC的内角A,B,C的对边,满足,函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减.(Ⅰ)证明:b+c=2a;(Ⅱ)若,证明:△ABC为等边三角形.,通过)∵)由题意知:由题意知:,解得:,所以…,所以24.(2012•南昌模拟)已知函数.(1)若f(α)=5,求tanα的值;(2)设△ABC三内角A,B,C所对边分别为a,b,c,且,求f(x)在(0,B]上的值域.代入整理可得,)由,利用余弦定理可得,,即),由,得.∴∴∴)由∴=,则25.(2012•河北区一模)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值.)﹣2x++,可得2A+)=sin2x+2x+)≤),可得﹣,﹣],可得2A+),∵<2A+<+2A+或A=,∵a=326.(2012•韶关一模)已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1(ω>0)的最小正周期为π.(1)求f()的值;(2)求函数f(x)的单调递增区间及其图象的对称轴方程.))的值.≤≤,2x+求得sin sin2),所以=))=2sin≤2x+,﹣,﹣]=k+k,k+27.(2012•杭州一模)已知函数f(x)=.(Ⅰ)求f(x)的最小正周期、对称轴方程及单调区间;(Ⅱ)现保持纵坐标不变,把f(x)图象上所有点的横坐标伸长到原来的4倍,得到新的函数h(x);(ⅰ)求h(x)的解析式;(ⅱ)△ABC中,角A、B、C的对边分别为a、b、c,且满足,h(A)=,c=2,试求△ABC的面积.2x+,(x+A=,再由==sin2xcos+cos2xsin﹣,)﹣T===+k+x=++2k2x+≤解之得﹣+k≤﹣,+k[+kx()﹣x+)﹣(A+)﹣=A+A=∵A=×.时,因为A=,所以×=×=1×1=的面积是.28.(2011•辽宁)△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.A==sinB=,=+cosB=)B=cosB=29.(2011•合肥二模)将函数y=f(x)的图象上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位后,得到的图象与函数g(x)=sin2x的图象重合.(1)写出函数y=f(x)的图象的一条对称轴方程;(2)若A为三角形的内角,且f(A)=•,求g()的值.的图象向右平移),令=﹣结合已知)的图象向右平移个单位,)∴=﹣﹣﹣=30.(2011•河池模拟)已知△ABC的内角A、B、C的对边分别为a、b、c,向量m=(sinB,1﹣cosB)与向量n=(2,0)的夹角为,求的最大值.利用正弦定理把化为(的范围,进而得到(解:∵|=2sin,|=2<=cos==cos,∴,B=A+C=,.=﹣sinA+cosA=(,∴<,<(化为(。