(完整word版)六年级上奥数第一讲找规律
(word版)六年级奥数相遇问题

相遇问题概念:速度=路程÷时间路程=速度×时间时间=路程÷速度1、甲、乙两人分别从两地同时相向而行,8小时可以相遇,如果两人每小时都少行千米。
那么10小时后相遇,问两地相距多少千米?2、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,骑自行车每小时行11千米,两人同时出发,然后在离甲、乙两地中点9千米处相遇。
求甲乙两地间的距离是多少千米?3、A、B两地相距21千米,上午6时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后也立即返回,上午9时他们第二次相遇,此时甲行的路程比乙行的路程多9千米,甲每小时行多少千米?4、某城市的环城公路全长180千米,甲、乙两辆汽车同时从同地背向出发绕这条环城公路行驶了小时相遇。
如果甲车先行36千米,那么在乙车出发几小时后两车相遇?5、兄弟两人同时从家里出发步行去车站,16分钟哥哥到达车站,弟弟离车站还有240米,哥哥的速度是每分钟82米,弟弟每分钟走多少米?16、甲、乙两人同时以相距4800米的两地相向而行,甲骑自行车,乙步行。
6分钟两人相遇。
甲的速度是乙的速度的3倍,求甲乙两人的速度各是多少?7、小明步行45分钟从A地到B地,小华乘车15分钟可以B地到A地,当小明和小华在路上相遇时,小明已经走了30分钟,小华接小明乘车返回B地,还需要多少分钟?8、一辆客车和一辆货车同时从相距225千米的两地相向而行,客车每小时行50千米,货车每小时行40千米,行了几小时后两车相距45千米?再行几小时后两车又相距45千米?9、甲、乙两辆车从相距240千米的两地同时相向而行,因遇雾天,甲车每小时比原来少行15千米,乙车每小时比原来少行10千米,出发后,经过3小时两车相遇。
甲车原来每小时比乙车快15千米,甲、乙两车原来的速度各是多少?10、甲、乙两车相距516千米,两车同时从两地出发相向行,乙车行驶6小时后停下修车,这时两车相距72千米,甲车保持原速继续前进,经过2小时与乙车相遇,求乙车的速度?211、两辆汽车上午8点整分别从相距210千米的甲、乙两度相向而行,第一辆汽车在途中修车停了45分钟,第二辆车因加油停了半小时。
第1讲:找规律,填图形_学生版_

学员编号:年级:小三课时数:2小时
学员姓名:辅导科目:数学学科教师:陈老师
课题
(奥数)第一讲:找规律,填图形
教学目的
找规律,需要观察和推理.
填图形,可以培养观察和推理的能力.
填图形,应从图形的个数、形状、性质入手.
授课日期及时段
2015年1月9日15:00-17:00
教学内容
宇宙中,很多现象的后面都有规律.科学就是寻找、发现规律.
找规律,需要观察和推理.
填图形,可以培养观察和推理的能力.
填图形,应从图形的个数、形状、性质入手.
.观察图1-1,并按规律填出空白处的字母.
观察图1-2,并按照图形的变化规律,在(3)中填入适当的图形.
.仔细观察图1-3,并按照它的变化规律,在“?”处填上适当的图.
9.下图中每个小三角形都一样大,一共有81个.把这些小三角形都涂上红色或黄色,使有公共边的小三角形颜色不同。如果红色的小三角形比黄色的小三角形多,那么红色的小三角形比黄色的多几个?
10.一个正方体的六个面分别标上A、B、C、、D、E、F六个字母,下面是这个正方体的三种放法。问:A、E的对面各是什么字母?
11.观察下图,在(4)中填出适当的图形.
12.观察卜图,在(4)中填人适当的图形,
5.按照下图的排列规律,第27个图形是什么小动物?
6.观察卜图,按照(1)到(2)的变化规律,根据(3),在(4)中填上适当的图形
7.一个正方体,六个面上写着6个连续的整数,每两个相对个整数的总和是多少?
8.在正方体六个面上写着“红”、“黄”、“蓝”、“白”、“黑”、“绿”六种颜色,现有涂色方式完全一样的四个正方体,如下图拼成一个长方体。问:涂“红”、“黄”、“白”的三个面各与涂什么颜色的面相对?
六年级奥数上第一次课 找规律

第5列
2
4
6
8
16
14
12
10
18
20
22
24
32
30
28
26
问:数“1986”出现在第几列?
(19862)21993 9938124 1
所以1986出现在第2列。
结语
谢谢大家!
1992 2 1991 3 1990
996 997
199211991219903997996
1992 21991 31990
996997
1993 1993 1993 1993
1992 21991 31990
996997
1993( 1 1 1 1 )
1992 21991 31990
996997
2
99
1 98 2 99
49 99
例4. 已知最简分数可以表示成:
m1111 1 n 2 3 4 1992
试说明分子m是1993的倍数。
思路分析:此题所有加数的分母是个自然数列,调整一 下写,可以是
1111 1 1 1
234
1990 1991 1992
(1 1 )(1 1 )(1 1 )( 1 1 )
6
6
2
2
例6. 如下图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
……………………
虚线框中的9个数的和恰好是162,请你像这样用一个长方形框出9个数,其和 恰好是1998,其中最大的数是多少?
六年级(上)奥数知识第一章:第一节《巧用运算定律和性质》

第一章分数的简便计算第一节巧用运算定律和性质探究目标1.能够根据四则运算的定律及性质使一些计算变得简便。
2.能利用和、差、积、商的变化规律进行简便运算。
3.进一步提高分析、抽象、综合、概括等能力。
探究过程参与一下“做数学”的过程,探究过程参与一下“做数学”的过程,乐趣尽在其中哦!例1 计算:分析:通过观察发现这样就可以运用乘法的分配律达到简算目的。
通过观察,还可以发现55加上1正好等于56,所以也可以这样简算:本题关键是先要观察题目的特点,可以将第一个因数变化,也可以将第二个因数进行变化。
例2 计算:本题中关键是将再运用乘法分配率进行简便计算。
例3 计算:本题的关键是将算式中的某个整体看作一个数,再运用有关定律进行简便计算。
例4计算:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.24+0.65)×(0.23+0.34).[完全解题] 仔细观察,这组算式中的数就是1,0.23,0.34,0.65,它们按某种规律排列,像这样的题目可以将它的某一部分看作一个整体,用字母代替,这样可简化计算的过程。
设A=0.23+0.34,B=0.23+0.34+0.65。
原式=(1+A)×B-(1+B)×A=B+AB-A-AB(AB与BA一样的结果,且可相互抵消)=B-A=0.23+0.34+0.65-(0.23+0.34)=0.65[技法点睛] 本题从题目本身看是不能简便计算的,所以要善于运用拆数的方法。
例5 (2003·浙江省小学数学活动课夏令营)计算:[技法点睛] 本题在利用乘法分配律之前,要运用等差数列求和的方法求出这些数的和一共有多少个。
例6 (2002·天津市数学学科竞赛)计算:例7 (2002·四川省小学生数学夏令营)计算:[完全解题] 题目中每组两个因数中的第一个因数接近一个整十数,并且这个整十数正好是第二个因数分母的倍数。
(word完整版)六年级奥数--行程问题

六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
奥数找规律计算(试题)全国通用六年级上册数学含参考答案

找 规 律1、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________________。
2、观察下列等式:221.4135−=×;222.5237−=×;223.6339−=×224.74311−=×;…………第5个等式位 .则第n (n 是自然数)个等式为3、自己观察下列算式,寻找规律填数.2+4=2×32+4+6=3×42+4+6+8=4×52+4+6+8+10+…+50= × .4.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )………… ①1=12; ②1+3=22; ③1+3+5=32④ ; ⑤;A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+315、 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…… .猜想:第n 个等式(n ____________________________.6、观察下列各式:1×3=21+2×1,2×4=22+2×2,3×5=23+2×3,请你将猜想到的规律用自然数n (n ≥1)表示出来: 。
7、 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数是 。
10.观察下列等式:211=2132+=4=1+3 9=3+6 16=6+10…2++=1353……………根据观察可得:13521_________.(n为非0自然数)n++++−=8、观察下列等式9-1=816-4=1225-9=1636-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为 .9、观察下列等式:第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n行的等式为____________10、观察下列各式:3211=332+=1233322++=123633332123410+++=……猜想:333312310++++= .11、观察下列几个算式,找出规律:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25……利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1= ②据①你会算出1+2+3+…+100是多少吗?③据上你能推导出1+2+3+…+n 的计算公式吗?12、你能很快算出21995吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10•n +5,即求2)510(+n 的值(n 为自然数),你试分析 ,3,2,1===n n n 这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。
六年级找规律知识点

六年级找规律知识点知识点一:图形规律在六年级的数学学习中,图形规律是一个重要的知识点。
通过观察和分析不同的图形,我们可以发现它们之间的规律。
以下是一些常见的图形规律:1. 图形的重复:有些图形会按照一定的规律进行重复。
例如,正方形阵列中的正方形图案,每一行和每一列都有相同的图形。
2. 图形的增长:有些图形会按照一定的规律进行增长或减小。
例如,数字金字塔中每一行的数字都比上一行多一个。
3. 图形的旋转:有些图形可以通过旋转一定的角度来得到下一个图形。
例如,正五边形可以通过旋转72度得到下一个正五边形。
知识点二:数字规律除了图形规律,数字规律也是六年级数学学习中的重要内容。
通过观察和分析数字序列,我们可以找到它们之间的规律。
以下是一些常见的数字规律:1. 数字的增长:有些数字序列会按照一定的规律递增或递减。
例如,2、4、6、8、10是一个递增的数字序列,每一项比前一项大2。
2. 数字的乘法规律:有些数字序列可以通过乘法规律得到下一个数字。
例如,2、4、8、16、32是一个每一项都是前一项乘以2的序列。
3. 数字的变化规律:有些数字序列中的数字会按照一定的规律变化。
例如,1、3、6、10、15是一个每一项都比前一项多1的三角形数序列。
知识点三:字母规律除了图形和数字规律,字母规律也是六年级数学学习中的一部分。
通过观察字母序列,我们可以找到它们之间的规律。
以下是一些常见的字母规律:1. 字母的增加规律:有些字母序列会按照字母表的顺序逐渐增加。
例如,A、B、C、D、E是一个按照字母表顺序逐渐增加的序列。
2. 字母的循环规律:有些字母序列会按照一定的规律进行循环。
例如,A、B、C、D、A、B、C、D是一个按照循环规律进行变化的序列。
3. 字母的间隔规律:有些字母序列中的字母之间会按照一定的间隔进行变化。
例如,A、C、E、G是一个每个字母之间间隔一个字母的序列。
通过学习和掌握图形规律、数字规律和字母规律,六年级的学生可以在解决问题、寻找规律等方面更加得心应手。
六年级找规律知识点

1.数列的规律:
数列是一组按照一定顺序排列的数的集合。
在六年级,学生需要掌握常见数列的规律,如等差数列和等比数列。
例如,等差数列是指数列中相邻两项之间的差值都相等;等比数列是指数列中相邻两项之间的比值都相等。
可以通过观察数列中的数字规律,找到数列的通项公式,进而求解问题。
2.图形的规律:
3.运算的规律:
在六年级,学生需要通过观察和分析数字运算的规律。
这包括四则运算、整数运算、分数运算等。
例如,学生需要能够找出加法和乘法中的交换律和结合律,帮助简化计算。
学生还需要能够观察分数的加法和乘法运算规律,例如两个分数相乘时,可以先约分再计算。
4.题目的规律:
在解决数学问题时,有时可以通过观察题目的规律来找到解题方法。
这包括题目中的数字规律、排列组合规律等。
例如,在解决排列组合问题时,可以通过观察问题中的条件,找到排列组合的方法。
总之,找规律是六年级数学课程中的重要知识点。
通过寻找数列、图形、运算和题目的规律,学生可以培养逻辑思维和解决问题的能力。
掌握找规律的方法,对学生进一步学习数学课程以及日后的学习和生活都具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
第一讲找规律
给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.
开篇小练习:
1。
2个数是3、案是4
A.2n
5、第n 6
7、
8
……猜想:
3333 12310________ +++⋅⋅⋅+=
典型例题:
一、数字排列规律题
1、下面数列后两位应该填上什么数字呢?23581217____
2、请填出下面横线上的数字。
112358____21
3、有一串数,它的排列规律是1、2、3、2、3、
4、3、4、
5、4、5、
6、……聪明的你猜猜第100
个数是什么?
4、有一串数字36101521___第6个是什么数?
5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(). A .1
B .2
C .3
D .4
6、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.
7、一组按规律排列的数:1,3,
7,13
,36
21,……请你推断第9个数是. 8、已知下列等式:①13=12;②13+23=32;③13+23+33=62; ④13+23+33+43=102;…………由此规律知,第⑤个等式是.
9、观察下列各式;①、12+1=1×2;②、22+2=2×3;③、32+3=3×4;………请把你猜想到的规律用自然数n 表示出来。
10、观察下面的几个算式:①、1+2+1=4;②、1+2+3+2+1=9;
③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子
11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是() A .1
B .2
C .3
D .4
12、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行1 第2行-2 3 第3行-4 5 -6 第4行7 -8 9 -10 第5行11-12 13 -14 15
13、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于. 14、观察下列各算式:
1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律
(1)试猜想:1+3+5+7+…+2005+2007的值?
(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少? 二、几何图形变化规律题
1、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●………… 从第1个球起到第2005个球止,共有实心球个.
2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有个(用含n 的代数式表示)。
3、(
2005年宁夏回族自治区)“◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植.按此规律第六个图案中应种植乙种植物_________株.
★★★★
★★★◆◆◆
★★◆◆★★★★ ◆★★★◆◆◆ ★★◆◆★★★★ 图1★★★◆◆◆
图2★★★★(第四题)
4、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示). (1)当n =5时,共向外作出了个小等边三角形
(2)当n =k 时,共向外作出了个小等边三角形(用含k 的式子表示).
5、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子枚(用含有n 的代数式表示) ………
63个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。
7、下图是某同学在沙滩上用石于摆成的小房子.
观察图形的变化规律,写出第n 个小房子用了块石子.
n =3
n =4
n =5
…
8、
1
1-1
1-21
1-331
1-46-41
1-5-105-1
1
①13
②13
③13
④13
2
3、
①13
③1+2
由此规律可知,第⑤个等式是
4、观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;……
用你发现的规律确定22007的个位数学数字是
分析:观察计算结果的末位数字,依次按2,4,8,6循环出现。
而2007÷4=501……3,故22007的个位数字与23的个位数字相同,所以2的个位数字是8
19.研究下列等式,你会发现什么规律?
1×3+1=4=22
d c b
a 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …
设n 为正整数,请用n 表示出规律性的公式来. 5、探索规律 可写成
,可写成
可写成
,
可写成
(1)把这个规律用含有n 的式子写出来; (2)计算952.
6、
四、与数阵有关的问题
1、(下图所示是一个数表,现用一个矩形在数表中任意框出4个数则: (1)、a 、c 的关系是:__________________; (2)、当a +b +c +d =32时,a =__________.
2、上面给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是() A .69
B .54
C .27
D .40
3、将连续的自然数1至36按下图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9个数的和为。
4、上图的数阵是由全体奇数排成
(1)图中平行四边形框内的九个数之和与中间的数有什么关系?
(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于2006吗?,1017呢?若能,请写出这九个数中最小的一个,若不能,请说出理由。
五、与视图、展开图有关的问题
1、如图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,
日一二三四五六
123456 78910111213
14151617181920 21222324252627 28293031
图中有规
则这个几何体的主视图为()
2
() A 、7B 、6C 、
5D 、4 3、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如上图,是一个正方体的平面展开图,若图中“锦”为前面,“似”为下面,“前”为后面,则“祝”表示正方体的面.
4、下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交(A 52P ,n P A
D
B C。