一起学奥数--鸡兔同笼PPT课件

合集下载

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件
学生可以通过参加数学竞赛或 数学俱乐部等活动,与其他学 生交流学习心得和解题经验, 提高自己的数学水平。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
该问题描述了一个笼子中鸡和兔共存的情况,需要通过给定的条件求解未知数。
鸡兔同笼问题具有很高的数学价值和教育意义,是锻炼逻辑思维和代数思维的良好 素材。
问题引入
通过展示一个实际的鸡兔同笼场 景,引起学生的兴趣和好奇心。
提出“如何确定笼子中鸡和兔的 数量”的问题,引导学生思考并
进入主题。
简要介绍解题方法,让学生对后 续内容产生期待。
2023-2026
ONE
KEEP VIEW
《鸡兔同笼》ppt课件
汇报人:可编辑
REPORTING
2023-12-26
CATALOGUE
目 录
• 引言 • 问题描述与建模 • 鸡兔同笼问题的解法 • 鸡兔同笼问题的变种 • 实际应用与启示 • 结论
PART 01
引言
背景介绍
鸡兔同笼问题是中国古代数学中的经典问题,最早出现在《孙子算经》中。
对生活的启示
学会转换思维
在面对复杂问题时,可以尝试从不同 的角度去思考,将问题简化。
重视基础知识的积累
基础知识是解决复杂问题的关键,只 有掌握了扎实的基础知识,才能更好 地解决实际问题。
对数学学习的启示
培养数学思维
通过解决“鸡兔同笼”这类问题 ,可以培养数学思维,提高逻辑 推理能力。
学会举一反三
举例说明
解法:首先列出方程组来表示问题,然后解方程组求解 。
逻辑推理法:根据动物的特性(如只有鸡有两只脚,兔 子有四只脚)和给定的条件,通过逻辑推理来求解。

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件
题的准确性和效率。
06 问题拓展与延伸
鸡兔同ห้องสมุดไป่ตู้问题变形
变形一
已知头数和腿数,求鸡兔各多少只。
变形二
已知鸡兔总数和腿数差,求鸡兔各多少只。
变形三
已知鸡兔互换后总腿数的变化,求鸡兔各多少只 。
其他类似数学问题介绍
百僧分馍问题
一百个和尚分一百个馒头,大和尚一人分三个,小和尚三 人分一个,正好分完。问大和尚和小和尚各有多少人?
01
02
03
04
城市规划
运用数学建模思想,可以合理 规划城市布局,优化交通网络
,提高城市运行效率。
经济学
数学建模在经济学中广泛应用 ,如预测市场趋势、分析消费 者行为、制定经济政策等。
工程学
在工程学中,数学建模可以帮 助工程师设计更稳定、更高效 的建筑结构、机械系统等。
医学
数学建模在医学领域也有应用 ,如预测疾病传播、分析药物
验证答案正确性
验证方法
将求得的鸡和兔的数量代入原方程组,检验是否满足题目条件。
注意事项
在验证答案时,要确保代入后的等式左右两边相等,否则需要重新检查求解过程。
05 图形法解题步骤与技巧
绘制图形表示鸡兔数量关系
绘制基本图形
用圆形表示动物头部,用 竖线表示动物身体,用两 条斜线表示鸡的脚,用四 条斜线表示兔的脚。
《鸡兔同笼》ppt课 件
目录
• 问题引入 • 解题思路与方法 • 假设法解题步骤与技巧 • 方程法解题步骤与技巧 • 图形法解题步骤与技巧 • 问题拓展与延伸
问题引入
01
古代数学问题
01
算术问题
古代数学问题多以算术为主,涉及整数、分数、比例等 计算。

鸡兔同笼课件ppt

鸡兔同笼课件ppt
鸡兔同笼课件
鸡兔同笼问题简介鸡兔同笼问题的数学模型鸡兔同笼问题的解法鸡兔同笼问题的变种和扩展鸡兔同笼问题的实际应用总结与展望
目录
CONTENTS
鸡兔同笼问题简介
这个问题反映了古代人们对日常生活中的数学现象的好奇和探索,是数学与实际生活相结合的典型例子。
随着时间的推移,鸡兔同笼问题逐渐演变成一个经典的代数问题,被广泛用于教学和数学竞赛中。
增强问题解决能力
在计算机科学中,算法设计和数据结构等方面的问题常常涉及到类似鸡兔同笼问题的求解,例如在算法优化和数据挖掘等领域。
计算机科学
在物理学中,类似鸡兔同笼问题的物理现象和问题也时有出现,例如在力学、光学等领域的研究中,需要运用数学和物理知识来解决类似的问题。
物理学
总结与展望
鸡兔同笼问题是一个经典的数学问题,它涉及到了一元一次方程的求解,是代数方程的初步知识。通过解决这个问题,学生可以加深对一元一次方程的理解,掌握代数方程的基本解法。
结果解释
03
所以,笼子里有鸡70只,兔子30只。
鸡兔同笼问题的解法
方程组法概述
方程组的建立
解方程组
示例
01
02
03
04
通过建立多个方程来表示鸡兔同笼问题中的多个未知数,然后解方程组求解未知数。
根据题目条件,建立多个关于鸡和兔的方程,通常涉及三个或更多未知数。
通过消元法或代入法等手段,解出方程组中的未知数,得出鸡和兔的数量。
鸡兔同笼问题起源于中国古代的数学趣题,最早记载于《孙子算经》中。
鸡兔同笼问题具有很高的教学价值,是培养学生逻辑思维和代数思维的重要工具。
通过解决鸡兔同笼问题,学生可以学习到如何运用代数方程来解决实际问题,提高数学应用能力。

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件

现实意义
该问题不仅具有历史价值 ,而且在现实生活中也有 广泛应用,如物流、经济 等领域。
思维训练
通过解决《鸡兔同笼》问 题,可以培养学生的逻辑 思维能力和数学建模能力 。
教学目标与要求
知识与技能
掌握《鸡兔同笼》问题的 解决方法,理解其背后的 数学原理。
过程与方法
通过引导学生自主探索、 合作交流,培养学生的问 题解决能力和团队协作精 神。
给予足够的时间让学生充分讨论 ,教师可在教室巡视,提供必要
的指导和帮助。
分享交流各组解题思路和答案
分享方式
每组选派一名代表,向全班展示本组的解题思路 和答案。
交流内容
各组代表依次上台,使用PPT或口头表述的方式, 详细阐述本组的解题过程、方法和答案。
互动环节
其他同学可以提问或发表自己的看法,与分享者 进行互动交流。
题目描述
一个笼子里有若干只鸡和兔。从上面数,有8个头,从下 面数,有26只脚。鸡和兔各有几只?
解题思路
假设都是鸡,则有8×2=16只脚,比实际少26-16=10只 脚。因为每只兔比每只鸡多2只脚,所以兔有10÷2=5只 ,鸡有8-5=3只。
总结
通过假设法,将问题转化为简单的算术问题,从而求解。
经典题目二:变形题型解析
元一次方程组。
求解方程
通过代入法或消元法求解方程组, 得出鸡和兔的数量。
方程法的优点
适用于更复杂的问题,可以处理多 个未知数的情况,更具普适性。
03
进阶技巧探讨
图形化解题技巧
画图法
通过绘制简单的图形,如圆形或方形代表鸡和兔的头,线段代表脚,帮助学生 直观理解问题。
表格法
建立表格,列出鸡和兔的可能数量组合,通过填写表格找到满足条件的解。

鸡兔同笼课件ppt.ppt

鸡兔同笼课件ppt.ppt
民谣:
一队猎人一队狗,
两队并成一队走。
数头一共是十二,
数脚一共四十二。
停车场里一共有100辆普通摩托车和三轮 摩托车,一共回收废旧轮胎215条。停车场 里普通摩托车和三轮摩托车各多少辆?
祝各位同学: 学习进步!
只能添给兔子了 。
2与条件26条相比还剩下几条 2,26-16=10条 腿?
3,下面开始添腿给兔子,每只 3,4-2=2条 还需要添几条腿就是兔子了?
4,剩下的10条腿,能添出几4,10÷2=5只
条兔子?
5,鸡有几只?
5,8-5=3只
笼子里有若干只鸡和兔。从上面数,有35个 头,从下面数,有94只脚。鸡和兔各有几只?
5、鸡兔各有几只呢?完成课本的图表?
6、你会用小辉的方法解 决这个问题吗?
笼子里有若干只鸡和兔。从上 列表法: 面数,有8个头,从下面数,有26只
脚。鸡和兔各有几只?
鸡/只 8 7 6 5
兔/只 0 1
脚/只 16 18
笼子里有若干只鸡和兔。从上面 列表法:数鸡,和有兔各8个有头几,只从?下面数,有26只脚。
用画图的方 法试一试。
… 先画8个圆圈表示8个头。
再为每条动物画两条腿,8只
…动物只用完16条腿,还多出10
条腿。
…把剩下的10条腿用完,要给其中
的5只动物各添2条腿,这5只就 是兔子,另外的3只就是鸡。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
你能解决这个有趣的鸡兔同笼的问题吗?
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目

鸡兔同笼完整ppt课件

鸡兔同笼完整ppt课件

鸡兔同笼问题的介绍和 背景。
02
鸡兔同笼问题介绍
问题来源
中国古代数学问题
鸡兔同笼问题是中国古代著名的数学问题之一,最早见于《孙子 算经》。
现实生活中的应用
除了在数学领域,鸡兔同笼问题在现实生活中也有广泛应用,如 物流、经济等领域。
问题描述
笼子里的鸡和兔
一个笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚。问 笼中鸡和兔各有多少只?
鸡兔同笼完整ppt课件

CONTENCT

• 引言 • 鸡兔同笼问题介绍 • 假设法解题 • 方程法解题 • 图形法解题 • 多种方法比较与总结
01
引言
课件背景
鸡兔同笼问题是中国古代著名的数学问题之一,具 有悠久的历史和广泛的应用。
该问题涉及到方程式的建立和求解,是锻炼学生逻 辑思维和数学能力的好素材。
本课件旨在通过讲解鸡兔同笼问题的解法,帮助学 生掌握相关数学知识和方法。
课件目的
02
01
03
让学生了解鸡兔同笼问题的历史背景和现实意义。
帮助学生掌握方程式的建立和求解方法。
培养学生的逻辑思维和数学能力,提高学生的数学素 养。
课件内容概述
方程式的建立和求解方 法。
多种解法的比较和分析 。
相关数学知识和方法的 拓展和应用。
列表法
适用于数量较少,易于列出所有可能组合的 情况。
假设法
适用于可以通过合理假设简化问题的情况。
画图法
适用于形象直观,需要直观理解问题的情况 。
方程法
适用于需要精确计算,且具备一定数学基础 的情况。
总结与启示
不同方法各有优缺点,应根据 实际情况选择合适的方法。

鸡兔同笼优秀-完整版PPT课件.ppt

鸡兔同笼优秀-完整版PPT课件.ppt
2 2 222 2 22
把1只鸡换成1只兔,脚数增加2只。
把1只兔换成1只鸡,脚数减少2只。
换进什么?换几只?
鸡只数 8
?
Байду номын сангаас
兔只数 0
?
脚总数 16
26
少10
兔只数:
1.笼子里有若干只鸡和兔。从上面数,有35
个头,从下面数,有94只脚。鸡和兔各有几
只?
假设全是鸡。
2.停车场上三轮车和小轿车共7辆,总共 有25个轮子。三轮车和小轿车各有多少辆?
笼子里有若干只鸡和兔。从上面数,有 8个头, 从下面数,有26只脚。鸡和兔各有几只?
你从几只开始猜,猜几次猜到结果?请把几次猜 得的数据填在表格中!
鸡 兔 脚
列表法
鸡8 7 6 5 4 3 2 1 0 兔0 1 2 3 4 5 6 7 8 脚 16 18 20 22 24 26 28 30 32
头戴大红帽, 鸡 身披五彩衣。 好像小闹钟, 清早催人起。
(打一动物)
一个动物长得美, 兔 两只耳朵三瓣嘴。 前腿短来后腿长, 赛起跑来最擅长。
(打一动物)
今有雉兔同笼, 化繁为简
上有三十五头,
下有九十四足,
问雉兔各几何?
雉:鸡
笼子里有若干只鸡和兔。从上面数,有385个头, 从下面数,有2964只脚。。鸡鸡和和兔兔各各有有几几只只??
3.六年1班一共有38人,共租8条船,每条 船都坐满了。大、小船各租了几条?
大船乘6人,小船乘4人

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件
鸡兔同笼问题也经常出现在各种数学竞赛和考试中,是检验学生数学能力的经典题 型之一。
03
鸡兔同笼问题的解 决方法
代数法
01
02
03
04
代数法是一种通过设立代数方 程来求解鸡兔同笼问题的方法

首先,我们设鸡的数量为x, 兔的数量为y。
然后,根据题目中的条件,我 们可以建立两个方程式: = 总腿
学习心得与体会
在解决鸡兔同笼问题的过程中,我深 刻体会到了数学知识的实际应用价值 ,感受到了数学学习的乐趣和挑战。
在学习过程中,我遇到了许多困难和 挑战,但通过不断尝试和思考,我最 终克服了这些困难,取得了进步和成 长。
通过解决鸡兔同笼问题,我不仅掌握 了代数方程的基本概念和运用方法, 还学会了如何运用逻辑思维和推理能 力来解决问题。
《鸡兔同笼》ppt课 件
汇报人:可编辑
2023-12-25
目录
CONTENTS
• 引言 • 鸡兔同笼问题的描述 • 鸡兔同笼问题的解决方法 • 鸡兔同笼问题的扩展与实际应用 • 结论与总结 • 参考文献
01
引言
背景介绍
01
02
03
中国古代数学问题
鸡兔同笼问题是中国古代 著名的数学问题,最早出 现在《孙子算经》中。
问题的历史背景
反映了古代人们对日常生 活中的数学现象的关注和 思考,是数学与实际生活 相结合的典型例子。
问题的流传
鸡兔同笼问题在中国及至 世界范围内广为流传,成 为数学教育中的经典问题 。
问题引入
直接引入
通过直接展示鸡兔同笼的 场景,引导学生思考如何 解决这个问题。
趣味引入
通过讲述一个与鸡兔同笼 相关的趣味故事,引起学 生的兴趣,激发他们的好 奇心。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:可以把显眼的已知数据剔除,剩下条件不足数据。
1、各答对2、3、4题的人数量不清楚,而 得对1、5道题的人已知。则答对2、3、4 的人,答对题的数量可知
2、答对2、3、4题的人总数量
3、答对2、3题的人一样对,可以看做为 答对2.5题的人。如此可以得到标准的“鸡 兔同笼”:
兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39
打碎一个碗损失的是3角搬运费+5角赔偿费。因此,我们可以假设全部安全运到目的地,可以 得到多少钱。
由于打碎了些,所以实际得到的运费,比计划的少了些,这是由于每打破一只玻璃瓶的损失。 那么,打碎的玻璃瓶为:
(1000×0.3-260)÷(0.5+0.3)=50
2020年9月28日
9
第二讲 提高篇
2020年9月28日
10
练习
例、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿; 蜻蜓6条腿、两对翅膀;蝉6条腿、一对翅膀),求蜻蜓有多少只?
提示:“鸡兔同笼”只有两种动物,两个元素(头、腿),而这里有三种动 物,三个元素。观察蜻蜓与蝉的腿,都一样是6条腿。因此,我们可 以分两步(蜻蜓两对翅膀,蝉一对翅膀)
2020年9月28日
181-1×7-5×6=144(题)
52-7-6=39(人) 答对四道题的人数:
(144-39×2.5)÷(4-2.5) =31(人)
12

例题:鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
分析:鸡兔同笼脚的数量是两数之和,而这题是两数之差,那可以让脚相等,就 可以知道两种动物的比例,即脚的比例。
兔子的数量为: (70-30×2)×(4-2)=5只 鸡的数量为: 30-5=25只
2020年9月28日
你会假设鸡的腿和兔子一样都是4条吗?试试吧。
4
例2、四(2)班学生共52人,到公园去划船共租用11条船,每条大船 坐6人,每条小船坐4人,刚好坐满,求租用的大船、小船各多少只?
【分析】这是一个类似鸡兔同笼的问题。大船是兔,有6条腿;小船是鸡,有四条腿;学生是腿, 合计有52条。这样我们就可以像刚才一样,用假设法来做了。 假设小船大船都只能装得下4人,则总共能装: 11×4=44人 而实际有52人,比假设的多8人。因为假设大船少算了2个人,而小船正好。所以这8个人都是大 船上的,并且每船少算了2个,所以大船数为: 8÷2=4条
【分析】这是一个鸡兔同笼问题。通过对题目的分析,我们应该弄清楚鸡与兔的共性和不同处。 鸡和兔子不同是鸡是两条腿,兔子有四条腿。
用假设法来解本题,我们可以对鸡或兔子腿的数量做假设,使它们一致。如:假设兔子也只有两 条腿,则通过笼子里鸡和兔子的合计数量,可以知道腿为:30×2=60条
而实际上,腿总共有70条,比假设的多了10条。显然,这10条腿是兔子的(因为兔子有4条腿, 我们假设它只有两条),并且每只兔子少算了2条。所以,就可以知道兔子的数量了。
所以,有香蕉为:6×250=1500千克 有苹果为:1500×3=4500千克
2020年9月28日
7
例5、三、四、五年级同学共植树108棵,三年级比四年级少植18棵, 五年级比三年级多植30棵,三个年级同学各植树多少棵?
18 30
【分析】先按照题目意思,画出三、四、五年级同学植树的数量关系。 显然,这是三者间的可查问题。三年级的学生植树为: (108-18-30)÷3=20棵
250×n
600×n
900
【分析】先按照题目意思,画出苹果与香蕉间的数量关系,虚线表示卖了n’天后,剩下的苹果。
假设苹果最后也是卖完的,根据苹果是香蕉的3倍,苹果每天应该也卖掉香蕉的3倍,即750千克。 但因为苹果每天没有卖掉这么多,最后剩下900千克,这写苹果应该是每天比假设的卖出去少而剩 下的。所以,卖的天数为: 900÷(3×250-600)=6天
所以,租用的大船为: (52-11×4)÷(6-4)=4条 租用的小船为: 11-4=7条
2020年9月28日
5
例3、一辆卡车运矿石,晴天每天可运20次,雨天每天只能运12次, 它一连运了112次,平均每天运14次。问:这几天当中有几个晴天?
【分析】这是一个类似鸡兔同笼的问题。大家一起来找一下,什么是兔子,什么是鸡,什么是腿? 并且它们各是多少?(在黑板上进行罗列,注意规范性)
鸡 兔子
腿 鸡和兔子
12 20 112 112÷14=8
由大家罗列的清单可以看出,这辆卡车运的天数为:112÷14=8天 晴天的填数为: (112-12×8)÷(20-12)=2天
2020年9月28日
6
例4、仓库所存的苹果是香蕉的3倍。春节前夕,平均每天批发出250千 克香蕉,600千克苹果,几天后香蕉全部批发完,苹果还剩900千克?这 个仓库原有苹果、香蕉各多少千克?
第一步:求6条腿、8条腿的动物各几只: 8条腿的蜘蛛为: (118-6×18)÷(8-6)=5只 6条腿的有:18-5=13只
第二步:就变成标准的“鸡兔同笼”。 蜻蜓为: (20-13)÷(2-1)=7只 蝉的数量为:13-7=6只
2020年9月28日
11

例题:某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少 做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数 一样多,那么做对4道的人数有多少人?
2020年9月28日
假设法解应用题
(鸡兔同笼)
风子编辑
1
教育目标
教育重点
掌握鸡兔同笼解题方法 了解鸡兔同笼的本质,并灵活运用
鸡兔同笼思维模式
教育难点
找到假设法的假设对象,并通过假设获取对比的对象
2020年9月28日
2
第一课 基础部分
2020年9月28日
3
例1、笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有几只?
四年级的学生植树为:20+18=38棵 五年级的学生植树为:20+30=50棵
2020年9月28日
8
例6、搬运1000只玻璃瓶,规定:安全运到1只可得搬运费3角;但打 碎1只,不仅搬运费不给,还要赔5角。如果运完后,共得运费260元。 那么,搬运中打碎了几只玻璃瓶?
【分析】这个题目我们要弄清楚一个问题:打碎一个碗,损失了多少钱?
相关文档
最新文档