人教版七年级上册第九章不等式与不等式组教材分析
初一数学第九章《不等式》说课稿范文

初一数学第九章《不等式》说课稿范文
为大家带来了初一数学第九章《不等式》说课稿范文,希望可以帮助大家理清思路。
一、教学目标
本节课在学习了用一元一次方程解决实际问题、不等式的性质、一元一次不等式的初步解法等知识的基础上,继续结合一些实际问题,重点讨论了两方面内容:1、进一步掌握如何解不等式,归纳解一元一次不等式的一般步骤。
从而使学生体会到不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础;2、如何用一元一次不等式解决实际问题,归纳其基本过程。
在课程标准中,有关本节课的要求是:会解简单的一元一次不等式,并能在数轴上表示出解集;能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
根据主题教研以及学生的认知水平,制定的教学目标如下:
1阅读理解实际问题找出不等关系列出一元一次不等式来解决
2进一步掌握一元一次不等式的解法。
第九章不等式与不等式组教材分析

第九章不等式与不等式组教材分析一、教材分析1.本章地位和作用客观世界中存在着相等和不相等的数量关系,反映在教学中,可归纳为等式和不等式问题。
不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后进一步探索现实世界数量关系的重要内容。
应用不等式的基本性质解一元一次不等式,是一项基本技能。
而不等式(组)在解决许多实际问题中也有广泛的应用:对中学数学而言,在比较两个量的大小以及数、式、方程和函数的研究中,都要用到不等式的知识。
因此,不等式是进一步学习数学知识必不可少的工具。
而一元一次不等式(组)是最简单的含未知数的不等式(组),也是进一步学习更复杂不等式(如一元二次不等式、无理不等式、对数不等式、指数不等式、三角不等式)和函数的基础。
2.本章学习目标(1)了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式是刻画现实世界中不等关系的一种有效的数学模型.(2)通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法. (3)了解解一元一次不等式的基本目标(使不等式逐步转化为或的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集, 体会解法中蕴涵的化归思想.(4)了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.3.本章教学时间约需11课时,具体分配如下(仅供参考):9.1不等式3课时9. 2 一元一次不等式4课时9. 3 一元一次不等式组2课时数学活动小结2课时二、本章总的教学建议(一)运用类比,做好从方程到不等式的知识迁移从课程标准看,方程与不等式是同属“数与代数”领域内同一标题下的两部分内容, 它们之间有密切的联系,存在许多可以进行类比的内容.在前而已经学习过有关方程(组)内容的基础上,学生已经对方程有一定的认识,会用方程表示问题情境中的等量关系,会解一元一次方程和二元一次方程组,即对于方程的认识已经具备一定的积累.充分发挥学习心理学中正向迁移的积极作用,借助已有的对方程的认识,可以为进一步学习不等式(组)提供一条合理的学习之路.本章的类比要从整个知识结构和具体知识两方面进行类比。
不等式与不等式组教材分析

学习必备欢迎下载《不等式与不等式组》教材分析——教师:彭万军第一本章主要内容包括:不等式的有关概念,不等式的性质,一元一次不等式(组)的相关概念及其解法,利用一元一次不等式(组)分析与解决实际问题。
其中,以一元一次不等式(组)为工具分析解决实际问题是全章的重点,同时也是难点。
第二本章的编写思路第8章“二元一次方程组有大致相同。
类似于方程是解决具有相等关系的实际问题的数学模型一样,不等式(组)是解决具有不等关系的实际问题的数学模型。
本章也都是从丰富的实际问题出发,在分析解决实际问题的过程中,认识不等式(组)(主要是一元一次不等式(组)),学习解一元一次不等式(组)的方法。
这样的一种编排,就将利用一元一次不等式(组)分析解决实际问题贯穿于全章始终,突出重点,强调不等式(组)是解决实际问题的一种有效的数学模型。
第三本章首先从一个行程问题出发,通过分析问题中的不等关系列出不等式,由此引出不等式的概念,然后通过讨论满足不等式成立的x 的取值,给出不等式的解集以及一元一次不等式的概念;接下去采用与等式的性质相类比的方式讨论了不等式的3条性质,这就为求出一元一次不等式的解集提供了依据;为了更好地体现不等式是解决实际问题的有效工具。
第四教课书安排了一节“实际问题与一元一次不等式”,探讨了商场购物、空气质量、知识竞赛等情景中的一些具有不等关系的问题,利用一元一次不等式解决这些实际问题,这里列出的不等式比以前见过的复杂,有需要去括号的,有需要去分母的等,这样就结合实际问题,在分析解决实际问题的过程中进一步学习一元一次不等式(组)的解法,最后类比一元一次方程的解法,归纳出求一元一次不等式解集的基本过程。
这样就将有关一元一次不等式的概念和解法融入到分析解决实际问题的过程中。
二元一次不等式组也是采用了这种方式进行编排。
第五本章内容主要是不等式的概念和一元一次不等式的解法,教学重点是不等式(组)的解法和用一元一次不等式解决实际问题。
《不等式与不等式组》 教材分析

《不等式与不等式组》教材分析一.《初中数学课程标准解读与分解》有关不等式的要求。
课程标准内容分析单元目标具体表现水平标准(1)结合具体问题,了解不等式的意义,探索不等式基本性质(2)能解数字系数的一元一次不等式,并能在数轴上表示解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单问题(1)结合具体问题的了解是归纳“总结”概念,探索不是认知水平,探索的过程中需要类比等式的基本性质,从而得到不等式的基本性质,其实质仍是归纳。
(2)解数字系数的一元一次不等式是“执行”在数轴上表示也是执行,会用数轴确定不等式组的解集是一种方法,会就是能执行这种方法。
(3)简单的问题也有不同的情景,所以列一元一次不等式解简单的问题应该是“实施”。
(1)能总结不等式的意义,能从具体问题中归纳总结不等式的基本性质。
(2)执行解数字系数的一元一次不等式,能对不等式的解集转换成数轴表示,能执行用数轴确定不等式组的解集的方法。
(3)能在具体的问题中实施一元一次不等式解决简单的问题。
水平A能举出恰当的例子说明不等式的意义,能从具体问题中准确总结不等式的基本性质,能准确熟练执行数字系数的一元一次不等式的解法,能准确执行用数轴表示不等式的解集,能准确执行用数轴确定由两个一元一次不等式组成的不等式组的解集,能准确执行用一元一次不等式解决简单问题。
二.本章重要的数学思想1、类比的数学思想解一元一次不等式和解一元一次方程类比学习。
教学建议:可以通过活动引导学生自主生成表格。
(1)等式与不等式概念和性质的类比:等式不等式定义含有等号(=)的式子,叫等式.含有不等号(>,<,≥,≤,≠)的式子叫不等式.性质性质1文字表述等式两边加(或减)同一个数(或式子),结果仍然相等.不等式两边加(或减)同一个数(或式子),不等号的方向不变.符号表示如果ba=,那么cbca±=±.如果ba>,那么cbca±>±.性质2文字表述等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.文字表述不等式两边乘(或除以)同一个正数,不等号的方向不变.符号表示如果ba>,0>c,那么bcac>;cbca>.符号表示如果ba=,那么bcac=;)0(≠=ccbca文字表述不等式两边乘(或除以)同一个负数,不等号的方向改变.符号表示如果ba>,0<c,那么bcac<;cbca<.反身性若a=b,则b=a若a>b,则b<a传递性若a=b,b=c,则a=c若a>b,b>c,则a>c(2)一元一次方程与一元一次不等式概念与求解过程的类比:一元一次方程一元一次不等式定义含有一个未知数,未知数的次数是1的方程,叫一元一次方程.含有一个未知数,未知数的次数是1的不等式,叫一元一次不等式.解使方程中等号左右两边相等的未知数的值,叫一元一次方程的解.使不等式成立的未知数的值,叫一元一次不等式的解.解集由不等式的所有解组成的集合,叫一元一次不等式的解集.求解利用等式的两个基本性质化简变形方程直到得出:x=a的过程叫解方程.找出所有满足方程的x的值利用不等式的基本性质化简变形不等式直到得出:x>a(或x<a)的过程叫解不等式.找出所有满足不等式的x的值.成组方程组方程组的解是两个方程的公共解可以拓展到多元不等式组不等式组的解集应是几个不等式的解集的公共部分现阶段我们只关注于一元2数形结合的思想:本章中的数形结合运用可分为三个层次:(1)利用数轴表示一元一次不等式的解集设计例题可以从两个角度出发,一是解出一元一次不等式后,在数轴上表示解集;二是给出数轴上表示的解集,选择符合条件的一元一次不等式。
第九章《不等式及不等式组》教材分析课件人教版

能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组解决简单的实际问题.
3会、解情由感两、个材态一度元采和一价次用值不观等与:式组原成的浙不等江式组义,并务会用教数轴材确定同解集样。 的处理方法.实践证明这 样的处理还是符合学生的实际情况,学生容易理解,也 从课程标准看,方程与不等式是同属“数与代数”领域内同一标题下的两部分内容,它们之间有密切的联系,存在许多可以进行类比
但是同乘(或同除)必须是不为零的“数”,因为式子不能判定是“正”还是“负”,就可能产生两种不同的结果,对于同乘(或同 除以)一个负数的情况,应该再三强调,往往学生在具体的情境中忽视,成为一个难点。 作为性质1,以前采用黙认为正确的办法。 【本章重点】能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质.
五、基础知识和基本技能
1、知识与技能:本章教学和学习中应注意打好基础,注 重对基础知识和基本技能等进行及时的归纳整理,使学生 对基础知识留下深刻印象、对基本技能达到一定的掌握程 度。 2、过程与方法:教学中注重对数学思想方法的渗透 (1)有实际问题抽象为不等式(组)这个过程中蕴含的 符号化、模型化的思想; (2)解不等式(组)的过程蕴涵的化规思想。 3、情感、态度和价值观: (1)认识通过观察、试验、类比可以获得数学结论,体 验教学活动充满着探索性和创造性。 (2)通过探索增进学生之间的配合,使学生敢于面对数 学活动中的困难,并有克服困难和运用知识解决问题的成 功体验,数理学好数学的自信心。
式 3 x +1 > 2,但不能说是这不等式的解呢?因为不等 键是“同一个” .不等式左右两端同时加上x + 2,不管x是何值,x + 2总可以看成一个数,因此不等式仍然成立;
初中数学_9.1.1不等式及其解集教学设计学情分析教材分析课后反思

教学反思著名教育家苏霍姆林斯基说过:“一个人到学校里来上学,不仅是为了取得一份知识的行囊,主要的还是为了变得更聪明,因此,他的主要智慧的努力就不应当用到记忆上,而应当用到思考上去。
”数学是思维的体操,促进学生的思维发展是我们数学课堂教学的灵魂。
本人在教学人教版七年级数学《9.1.1不等式及其解集》的过程中,以学生思维发展为主线展开教学,教学效果良好。
现把教学时的所见所想反思如下:一.教学前反思[来源:学_科_网]对于每一节教材内容教学之前进行反思,能使教学成为一种自觉的实践。
因此课前在领会《新课程标准》的精神之下,认真钻研教材,理解教材的编排意图,根据以往已获得的经验,学生的具体情况,对自己的教案及设计思路进行反思,这样所写的教案能更符合学生的心理特征,更贴近学生的实际情况,使学生感受到学习数学的乐趣,把“以学生为本”这一新的教学理念渗透于教学的过程中。
在教学前注意生活题材,创设的问题情境贴近学生的实际,让学生人人参与。
从班内同学身高的比较,到比较小女孩与姚明身高,到汽车限速,空气质量状况的表示,无不选取学生生活中的典型的,学生感兴趣的实例进行教学,之后选取两个数学问题,进一步丰富了素材来源.问题从开放到归纳,从易到难,从生活到教材,由教师引领到学生自己探索思考,充分感受到生活中数学的趣味和意义,体现出学生学习的自主性和积极性,问题情景的设置符合学生的生活实际,学生思维不经意中展开,让学生感受到了数学学习的趣味。
二.教学过程的反思在教学中进行反思,即及时、自动地在行动过程中反思,这种反思能使教学高质高效地进行。
在教学中我力求让自己成为学生学习的组织者、引导者、合作者,引导学生自己去探索、发现。
所以我主要通过创设情境、信息交流、再探新知,变式练习,小结升华五个环节来进行。
从而顺利完成教学认为。
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。
因此,本课采用启发诱导、实例探究、训练结合的教学方法,揭示知识的发生和形成过程。
“不等式与不等式组”教材分析[1]解读
![“不等式与不等式组”教材分析[1]解读](https://img.taocdn.com/s3/m/2464e13c55270722192ef788.png)
关系的数学工具,不等式(组)是讨论不
等关系的数学工具.两者既有联系又有差 异.在认识一次方程(组)的基础上,通 过比较的方式接受新知识一元一次不等式 (组),充分发挥心理学所说的正向迁移
⑵ 注重知识的前后联系,强
调通过比较来认识新事物。
的作用,可以起到很好的温故而知新的效
二、教 材 分 析
(二)编写特点
及其相关概念体会不等 式组是刻画现实世界中 不等关系的一种有效地 数学模型 2.了解解一元一次不等 式的基本目标。 3.了解不等式组及其相 关概念,会解不等式组 并利用数轴确定解集。 4.能够根据具体问题中 的数量关系,列出一元 一次不等式(组),解 决简单的问题。
2、能在数轴上表 示出解集,体会解 法中的蕴涵的化归 思想。
3、学生的形象直观思维已比较成熟,但抽象思维 能力还比较薄弱。 4、学习缺乏主动性,独立思维能力较差,教师要 耐心引导,低起点、小步距地进行学习。
四、教学策略
1 2
注重类比,做好从方程到不等 式的迁移。
突出数学建模思想,反映不等 式(组)与实际问题的联系。
四、教学策略
3 4
加强探究性学习提供给学生更 多自主学习的空间让学生自己 观察、思考、分析,从而构建 知识体系。
二、教材分析
(一)编写意图
编
重视 数学 与实 际的 联系
写
体现知 识的形 成和应 用
意
图
注重 思想 方法 的渗 透
二、教 材 分 析
(二)编写特点
⑴ 突出数形结合的思想,实
际问题作为大背景贯穿全章
二、教 材 分 析
(二)编写特点
本章在全套教科书中,位居一元一次方 程和方程组之后.方程(组)是讨论等量
七年级数学第9章不等式与不等式组(整章知识详解)

X>-3
2、不等式组
X<2 X<5
的非负整数解是__0_,1____
方法:先求不等式(组)的解集,再确定整数解问题
七年级数学第9章不等式与不等式组
考点三:不等式(组)的特殊解
3.(烟台)不等式4-3x≥2x-6的非负整数
解是___0_,1__,2.
x 3≥0,
4.
(苏州)不等式组
x
2
考点四:求字母的取值范围
1. 如- -果- -不- - 等- - -式- -xxm5 有解,那么m的取值范围是
_m__<_5___.若 无解 , 则m的 取值 范 围是_m__≥_5___.
2.如
果
不
等
式
组xx
m m
1的 2
解
集
是x
-
1,
则m的 取 值 范 围 是______.
.
不等式组的解集是x>m+2,有因解集是x>-1
所以 m+2= -1,即 m = -3
(较小)
(1)若不等式组
xm1 (较大无) 解,则
x 2 m 1
m的取值范围为___m_____3_______
2m 2 m 1
(2)若不等式组
xБайду номын сангаас(1 较小的)解集为x>3,
x3 (较大)
3
的所有整数
解有( B )个
A、2
.
B、3
C、4
D、5
方法:先求不等式(组)的解集,再确定整数解的问题
(2 x-6)<3-x
①
求不等式组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册第九章《不等式与不等式组》教材分析广州市第十六中学林晓君一、教材基本情况1、本章教材的地位不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容.数量之间除了有相等关系外,还有大小不等的关系.正如方程与方程组是讨论等量关系的有力数学工具一样,不等式与不等式组是讨论不等关系的有力数学工具.应用不等式的基本性质解一元一次不等式,是一项基本技能,也是学生以后学习一元二次方程、函数以及进一步学习不等式知识的基础。
2、教材的主要内容⑴一元一次不等式(组)及其相关概念⑵不等式的性质⑶一元一次不等式(组)的解法及其解集的几何表示⑷利用一元一次不等式(组)分析与解决实际问题本章知识结构①.利用不等式(组)解决实际问题的基本过程教材注重了一元一次不等式(组)的解法与一元一次不等式(组)在实际问题中的应用的有机结合,让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。
②.本章知识安排的前后顺序3、教学目标:①.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.②.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.③.了解解一元一次不等式的基本目标(使不等式逐步转化为的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴涵的化归思想.④.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.4、教学的重点和难点:以不等式(组)为工具分析问题、解决问题。
5、本章的中心任务:使学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
6、课时安排:本章教学时间约为11课时,大体分配如下(仅供参考):9.1 不等式…………………………………………3课时9.1.1不等式及其解集 1课时9.1.2不等式的性质 2课时不等式的性质 1课时解不等式 1课时9.2 实际问题与一元一次不等式………………… 3课时9.3一元一次不等式组…………………………… 2课时解一元一次不等式组 1课时一元一次不等式组的运用 1课时数学活动………………………………………… 1课时小结………………………………………………2课时7、教材特点⑴突出建摸思想,实际问题作为大背景贯穿全章同前面的第三章“一元一次方程”、第八章“二元一次方程组”一样,在本章中,安排了一些有代表性的实际问题作为知识的发生、发展的背景材料,实际问题始终贯穿于全章,对不等式(组)等概念的引入和对它们的解法的讨论,都是在建立和运用不等式(组)这种数学模型的过程之中进行的.例:9.1节中,通过一个具体行程问题引入不等式及不等式的解。
9.2节从生活中常见的购物问题说起.由于市场上存在不同的促销方式,所以购物时可以货比三家,进行选择购物.这个问题与学生距离较近。
9.3节从制作三角形木框谈起,引入不等式组的概念,并进一步结合实际问题讨论如何列、解一元一次不等式组。
总之,实际问题在本章教材中既是线索、素材,又是检验教学效果的尺度。
⑵注重知识的前后联系,强调通过比较来认识新事物本章在全套教科书中,位居一次方程(组)之后.方程(组)是讨论等量关系的数学工具,不等式(组)是讨论不等关系的数学工具.两者既有联系又有差异.在认识一次方程(组)的基础上,通过比较的方式接受新知识一元一次不等式(组),充分发挥心理学所说的正向迁移的作用,可以起到很好的温故而知新的效果。
本章9.1节的结构与一元一次方程的相应部分类似,教科书在各概念的引入、展开时注意了类比方程、等式的性质等来讨论不等式、不等式的性质等,反映了知识间的横向联系,突出了不等式的特点。
方程组与不等式组在形式上类似,而且它们的解(集)都是指组成方程组或不等式组的各方程或不等式的公共解(集),教科书在引入不等式组及其解集时注意了渗透这种联系。
解方程与解不等式都是通过适当的式子变形,使未知数转化为已知,但两者的目标有所不同,前者要转化为的形式,后者则要转化为的形式。
为实现这样的目标,都需要运用化归思想,根据等式或不等式的性质,对方程或不等式进行由繁至简的变形。
教科书中注意了这样的联系,同时又强调了解不等式与解方程的不同之处,突出了应注意的问题,例如解不等式中要将未知数的系数化为1时,应根据原来系数的正负确定不等号的选择。
⑶淡化概念的程式化教学,删减运算的数量和难度;强化学生的主动探索,增加培养学生能力的练习教材在解不等式时,并没有专门的一节内容来介绍如何解含括号和分母的不等式,而是放在了实际问题中解决,删减了运算的数量和难度,强化了学生探索解决实际问题的主动性。
而每一节课后的习题都有6道以上的与学生实际生活密切相关的习题,增强了学生解决问题的能力,而非培养一个只懂不等式概念和如何解不等式的学生。
⑷教材在归纳知识点时,留有较大的空白,引导学生思考教材在提问和总结知识点时,会留较多的空白,给学生起到一个引导和归纳的作用,而教师可以利用来提高学生的自学能力和归纳能力。
这些空间留得恰到好处。
⑸课后附有大量的阅读材料,拓宽学生的视野和提高能力新教材与华东版不同之处在于,每小节后面都设有一个阅读材料,如9.1节的用求差法比较大小,9.2节的水位升高还是降低了,9.3节的利用不等关系分析比赛。
从不同的方面探究了不等式在实际生活中的用途,增强了学生学习的热情和探求新知的欲望。
二、人教版与华东师大版在教材安排上的对比与区别1、最大的不同是,人教版的这一章书里,没有单独的一节,有专门的例题来介绍如何解不等式(含括号和分母的不等式),而是把解题的过程穿插在实际问题中来。
2、不等式的性质1不是直接由天平的比较得到,而是通过计算归纳得出,天平只是作为一个辅助说明3、增加了解不等式与解方程异同的归纳,运用了类比的方法进行学习。
但安排在9.2实际问题与一元一次不等式后面,所处位置不利于教学和学生的学习。
4、加强了利用不等式解决实际问题的能力,体现在解不等式的练习中加大了应用题的题量,而且还有专门的一节书(9.2实际问题与一元一次不等式),讨论如何解决实际问题。
在实际问题中,有些问题的答案是必须取整数的,教材都有专门的例题涉及到。
5、华东版中解不等式组的课后习题,有一个表格罗列了四种情况,非常清晰直观,但人教版虽设有类似的习题,但不够直观。
6、教材中基本上每小节都设有云图,提出一些问题给学生思考,增强学生的理解力。
7、新教材每小节后面比人教版多设了一个阅读材料,如9.1节的用求差法比较大小,9.2节的水位升高还是降低了,9.3节的利用不等关系分析比赛。
从不同的方面探究了不等式在实际生活中的用途,增强了学生学习的热情和探求新知的欲望。
三、教学建议1、注重类比,做好从方程到不等式的迁移从课程标准看,方程与不等式是同属“数与代数”领域内同一标题下的两部分内容,它们之间有密切的联系,存在许多可以进行类比的内容。
比如,不等式的性质与等式性质,不等式和方程的解法,不等式组和方程组的解法,利用不等式(组)和方程(组)分析解决实际问题,都有其明显的对应关系。
通过了解它们的联系与区别(例如通过类比等式性质学习不等式性质),有助于使学生在已有基础上以效率较高的方式得到新的提高。
2、设立专门解不等式的小节,完善不等式解法不等式的解法有一部分(简单的加减乘除不等式)安排在不等式的性质后面学习,一部分(含有括号和分母的不等式)安排在解决实际问题的过程中学习的,这样的安排,不利于不等式解法的系统学习。
原本利用不等式解决实际问题对于学生就是一个难点,期间还要学习解法,不利于难点的集中攻破。
因此,建议设立专门解不等式的小节,完善不等式解法,集中攻破重难点。
3、突出数学建模思想,反映不等式(组)与实际问题的联系在本章教科书中,实际问题情境贯穿于始终,反映出不等式(组)来自实际又服务于实际,加强对不等式(组)是解决现实问题的一种重要数学模型的认识。
教学中可以适当出现“数学模型”一词,但是应注意结合具体例子来体现数学模型的意义和作用,反复强调数学模型在解决实际问题中的作用,继续突出建立数学模型(数学化)解决问题的思想.设未知数、列不等式(组)是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的不等关系是设未知数、列不等式(组)的基础。
在本章的教学和学习中,可以从多种角度启发学生思考数量之间的大小关系,借助数轴等直观图形以及表格、式子等进行分析,寻找不等关系的数学化表达方式,检验不等式本身以及它的解的合理性。
教师还可以结合实际情况,选择其他贴近学生生活且适合学生认知水平的问题,引导学生探索用不等式(组)为工具来分析解决它们。
利用不等式(组)解决实际问题的基本过程(见前面的图),在本章中的小结中出现,它与前面方程(组)在这方面的框图的基本结构一致,这有助于从整体上进一步加强对数学模型与实际问题关系的认识,在教学、学习和复习时应注意不断强化对它的认识。
4、重视数学思想方法的渗透本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为不等式(组)这个过程中蕴涵的符号化、模型化的思想;另一个是解不等式(组)的过程中蕴涵的化归思想。
前面有关方程(组)的章节中对这些思想方法已多次进行渗透,本章中讨论的对象为一元一次不等式(组),最终要使不等式(组)变形为x>a或x<a的形式,因此需要在新问题中把对上述思想方法的认识提高。
此外,充分利用数轴对于解不等式组是行之有效的方法,在本章的教学和学习中,应体现数学中数形结合的研究方法,使学生认识到借助直观思考问题的优越性,这对后续学习是有益的。
5、关注基础知识和基本技能本章内容包括一元一次不等式(组)的概念、解法和应用。
一元一次不等式是最基本的代数不等式,对它的理解和掌握对于后续学习(其他的不等式以及函数等)具有重要的基础作用。
因此,教学和学习中应注意打好基础,对本章中的基础知识和基本技能、能力等进行及时的归纳整理,安排必要的、适量的练习,使得学生对基础知识留下较深刻的印象,对基本技能达到一定的掌握程度,发展基本能力。
6、把握学生具体情况开展学习本章书很多小节都是从实际问题开始引入,但难度较大。
例如,9.1.1节,由行程问题引入不等式及不等式的解, 但难度已属《课本》第129页的拓广探索题目;9.2节从生活中常见的优惠购物问题说起,展开解决实际问题的探究,与学生生活密切相关,但也具备了相当的难度,情况又多样,学生刚接触,没法很好的理解。