清华大学微电子所 数字集成系统 第四讲

合集下载

《数字集成电路》课件

《数字集成电路》课件

1 滤波
去除噪声、增强信号的关键技术。
2 变换
将信号在时域与频域之间转换的方法。
3 压缩
减少数据量,方便存储和传输。
数字信号处理中的滤波器设计
FIR滤波器
时域响应仅有有限个点,稳定性好。
IIR滤波器
时域响应呈指数衰减,延时较小。
模拟/数字混合信号集成电路
1
基础理论
混合信号电路设计所需的模拟电路与数字电路基础知识。
时序逻辑电路
触发器与锁存器
用于存储时钟信号冲突消除和数 据暂存。
计数器
移位寄存器
用于计算和记录触发事件的数量。
用于数据移位操作,实现数据的 串行传输。
数字信号处理技术
数字信号处理(DSP)是用数字计算机或数字信号处理器对原始信号进行处理、分析和存储的一 种技术。它在通信、音频处理和图像处理等领域具有广泛应用。
《数字集成电路》PPT课 件
数字集成电路PPT课件大纲: 1. 什么是数字集成电路 2. 数字集成电路的分类和结构
数字电路设计的流程
1
需求分析
确定数字电路的功能与性能要求,并定义输入输出及约束条件。
2
电路设计
利用逻辑门、触发器等基本组件进行数字电路设计。
3
电路仿真
使用仿真软件验证数字电路中的电气特性和功能。
2 低功耗设计
3 增强型通信
减少功耗,延长电池寿命。
提升通信性能和速度。
2
模拟数字转换
模拟和数字信号之间的转换方法和技术。
3
功耗与噪声
如何平衡功耗Βιβλιοθήκη 噪声性能。电路模拟与仿真SPICE仿真
使用电路仿真软件模拟电路 的工作状态。
参数提取与建模

清华大学数字集成电路作业四

清华大学数字集成电路作业四

2011-2012《数字VLSI 》第四次课程作业
(一) 请计算P 型树动态逻辑反相器的上拉逻辑努力(g )和本征延时(p),并与
NMOS 管驱动能力减半的HI-skew 反相器的上拉逻辑努力与本征延时进行比较。

假设标准反相器的PMOS 和NMOS 尺寸之比为2,自载系数等于1。

(二) 写出下面电路对应的F 关于A ,B 的布尔表达式:
(三) 下图的动态电路中,若预充电节点处的电容为15 f F , 其余所有内部节点
处的电容均为 10 f F 。

在这个动态电路后面接
一个栅电容为20 f F 的理想反相器,它在V M =
V dd /2 时发生翻转。

问在什么情况下,由于电
荷分享将使动态电路后面连接的反相器错误
翻转?求出此时反相器输入端的电平 Vo (用
V dd 来表示),忽略NMOS 管的阈值损失。


出如何才能避免这一问题的发生。

(注意:
动态电路预充电节点处的电容15 f F 不包括后
面所接反相器的栅电容在内。

)。

《微电子与集成电路设计导论》第四章 半导体集成电路制造工艺

《微电子与集成电路设计导论》第四章 半导体集成电路制造工艺

4.4.2 离子注入
图4.4.6 离子注入系统的原理示意图
图4.4.7 离子注入的高斯分布示意图
4.5 制技术 4.5.1 氧化
1. 二氧化硅的结构、性质和用途
图4.5.1 二氧化硅原子结构示意图
氧化物的主要作用: ➢ 器件介质层 ➢ 电学隔离层 ➢ 器件和栅氧的保护层 ➢ 表面钝化层 ➢ 掺杂阻挡层
F D C x
C为单位体积掺杂浓度,
C x
为x方向上的浓度梯度。
比例常数D为扩散系数,它是描述杂质在半导体中运动快慢的物理量, 它与扩散温度、杂质类型、衬底材料等有关;x为深度。
左下图所示如果硅片表面的杂质浓 度CS在整个扩散过程中始终不变, 这种方式称为恒定表面源扩散。
图4.4.1 扩散的方式
自然界中硅的含量 极为丰富,但不能 直接拿来用。因为 硅在自然界中都是 以化合物的形式存 在的。
图4.1.2 拉晶仪结构示意图
左图为在一个可抽真空的腔室内 置放一个由熔融石英制成的坩埚 ,调节好坩埚的位置,腔室回充 保护性气氛,将坩埚加热至 1500°C左右。化学方法蚀刻的籽 晶置于熔硅上方,然后降下来与 多晶熔料相接触。籽晶必须是严 格定向生长形成硅锭。
涂胶工艺的目的就是在晶圆表面建立薄的、均匀的、并且没有缺陷的光刻胶膜。
图4.2.4 动态旋转喷洒光刻胶示意图
3. 前烘
前烘是将光刻胶中的一部分溶剂蒸发掉。使光刻胶中溶剂缓慢、充分地挥发掉, 保持光刻胶干燥。
4. 对准和曝光
对准和曝光是把掩膜版上的图形转移到光刻胶上的关键步骤。
图4.2.5 光刻技术的示意图
图4.2.7 制版工艺流程
4.3 刻蚀
(1)湿法腐蚀
(2)干法腐蚀 ➢ 等离子体腐蚀 ➢ 溅射刻蚀 ➢ 反应离子刻蚀

清华大学《数字集成电路设计》周润德 第7章 数据通路 乘法器

清华大学《数字集成电路设计》周润德 第7章 数据通路 乘法器

第二节乘法器(一)乘法器的应用与实现:(1)应用:1. 硬件乘法器可大大提高运算速度,超过软件实现2. 数字信号处理(DSP)相关(Correlation)、滤波(Filtering)卷积(Convolution)、频率(Frequency)3. 与其它运算电路集成,组成功能很强的协处理器(2)实现:1. 求部分积2. 移位3. 相加(3)分类:1. 并行:a)组合阵列b)脉动阵列c )波茨编码d )Wallace Tree e )流水线式2. 串行3. 串并行(4)选择乘法器的原则:1. 速度2. 数据处理量(Throughput )3. 精度4. 面积(二)组合阵列乘法器(Array Multiplier )(1)基本原理:称为“部分积”位(点积),共有个,由与门产生。

2)(1010ji j m i n j i y x P +−=−=∑∑=y x j i mn(2)RCA 阵列乘法器结构:RCA 阵列乘法器结构:对位乘法器,共需个半加器(HA )个全加器(FA )个与门(AND )对位乘法器,共需个半加器(HA )个全加器(FA )个与门(AND )n n ×n)2(−n n n 2n m ×nnm mn −−mn(3)设计原则:乘法器存在许多延时几乎相同的关键路径,因此重点放在Adder上,使加法器的Sum和Carry的传输时间相同!传输门实现全加器:“求和”与“进位”时间相同CSA阵列乘法器的实现五种类型单元电路,其中Cell 2、Cell 4、Cell 5 含全加器(FA)Cell 1Cell 2Cell 3Cell 4Cell 5最后求和有可用CPA 故总共有即=n2.结构实现(n=4)(四)改进的波茨编码乘法器(1)原理(基4 波茨编码乘法器):1. 阵列乘法器的缺点:加法阵列大,运算次数多, 运行速度慢2. 解决关键:减少加法阵列减少部分积的数目每次乘数中取k 位(例如k =2)与被乘数相“与”产生部分积(即波茨编码乘数)。

清华大学《数字集成电路设计》周润德 第4章 互连线

清华大学《数字集成电路设计》周润德 第4章 互连线
=R− Z0 R+ Z0
V = V inc (1 + ρ )
I = I inc (1 − ρ )
2004-9-22
清华大学微电子所《 数字大规模集成电路》 周润德
第 4 章 第 27 页
源电阻 > 特征阻抗 源电阻 < 特征阻抗
无损传输线的瞬态响应
源电阻 = 特征阻抗
2004-9-22
源电阻 < 特征阻抗 有限的上升斜率
清华大学微电子所《 数字大规模集成电路》 周润德
第 4 章 第 23 页
考虑连线RC延时的准则
• 当连线的 RC 延时与驱动门的延时相比较大,即:
(tpRC >> tpgate )时需要考虑连线的 RC 延时。
需要考虑RC延时的连线临界长度为:
Lcrit >> √ tpgate/0.38 rc
• 当连线输入端信号的上升或下降时间小于连线的上升或下
一般制造商会提供每层的面电容和周边电容。 实际设计时,可以查表或查图。
考虑性能时,电容的计算:
1。要用制造后的实际尺寸, 2。考虑延迟或动态功耗时, 一般用 最坏情况
(最大宽度W ,最薄介质) 3。考虑竞争情况时用最小宽度W 及最厚介质。
2004-9-22
清华大学微电子所《 数字大规模集成电路》 周润德
1.75
导线层
Poly
Al1
Al2
Al3
Al4
Al5
电容
40
95
85
85
85
115
2004-9-22
清华大学微电子所《 数字大规模集成电路》 周润德
第 4 章 第 11 页
导线电容 (0.25 µm CMOS)

清华大学MEMS课程讲义

清华大学MEMS课程讲义

z.wang@3/65微电子学研究所5/65微电子学研究所Institute o f Microelectronics目前尚未完全清楚: 氧和硅原子间的分子间作用力Where dose H 2O go?Escapes from the interface or remains there?其他微加工技术三维MEMS 结构工艺集成封装键合(Anodic Bonding)硅和含钠玻璃接触后,施加电压和一定温度微电子学研究所11/65微电子学研究所Institute o f Microelectronics1 2 3 1) How to etch?2) Double-side litho?15/65微电子学研究所Institute o f Microelectronicsbformung (molding)模铸2. 显影4. 金属模6. 脱模Mould cavityResist structurePlastic structure5. 模铸3. 电铸1. 光刻Plastic (moulding compound)Metal Resist structure Electrical conductive base plateBase plateAbsorber structure Maskmembrane Resist 其他微加工技术三维MEMS 工艺集成封装LIGA17/65微电子学研究所Institute o f Microelectronics其他微加工技术三维MEMS结构工艺集成封装软光刻技术软光刻soft lithography定义:掩膜版为软性材料对比于mask分类微接触印刷PDMSSU -8硅PE 薄膜玻璃玻璃(a)(b)(c)(d)(e)(f)制造并硅烷化母版二氧化硅或光刻胶等在母板上灌注PDMS固化并释放PDMSPDMS 变形下垂粘附衬底压印与热压ResonatorTweezer 镊子体微加工工艺集成P1增加时敏感元件的形状低压腔玻璃基底双膜片结构支承梁压力入口固定梁顶角上方集成电极41/65微电子学研究所Institute o f Microelectronics其他微加工技术三维MEMS结构工艺集成微加工工艺集成表面微加工工艺集成微电子学研究所Institute o f MicroelectronicsCMOS表面微加工区硅衬底SiN SiO2牺牲层多晶硅结构层(a)填充SiO2,CMP平整(b) (c)刻蚀SiO2,释放结构(d)53/65微电子学研究所Institute o f Microelectronics59/65微电子学研究所Institute o f Microelectronics其他微加工技术三维MEMS结构工艺集成封装MEMS封装。

清华大学《数字集成电路设计》周润德 第8章 时序电路

清华大学《数字集成电路设计》周润德 第8章 时序电路

LOGIC对扰动不敏感(2)Register寄存器为存放二进制数据的器件,通常由Latch 构成。

一般地,寄存器为边沿触发。

(3)flip-flops(触发器)任何由交叉耦合的门形成的双稳电路Register 时序参数D Q Clk T Clk D tsu Q tc-q thold注意:数据的上升和下降时间不同时,延时将不同。

2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 11 页Latch 时序参数Latch 的时序( Timing )参数还要考虑tD 2 D Q DQtD-qQClkClktC 2QtC 2Q寄存器(Register)2004-12-1锁存器(Latch)第 8 章 (1) 第 12 页清华大学微电子所 《数字大规模集成电路》 周润德Latch 时序参数D Q Clk正电平 Latch 时钟负边沿T Clk D tc-q PWm thold td-q tsuQ注意:数据的上升和下降时间不同时,延时将不同。

2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 13 页最高时钟频率φ FF’s LOGIC tp,comb最高时钟频率需要满足:tclk-Q + tplogic+ tsetup < T =但同时需要满足:其中tplogic = tp,comb (max) tcd:污染延时(contamination delay) = 最小延时(minimum delay)第 8 章 (1) 第 14 页tcdreg + tcdlogic > thold =2004-12-1其中清华大学微电子所 《数字大规模集成电路》 周润德研究不同时刻 (t1, t2)FF1φ (t1) LOGIC t p,combφ (t2)CLKt1tsu D tholdFF1 输入数据 应保持稳定t tsuF F2t2holdtFF2 输入数据 应保持稳定tclk-q QFF1 输出数据 经组合逻辑到达 t 已达稳定 寄存器输入端tclk-Qtp,comb (max)tsetup因此要求:tclk-Q + tp,comb (max) + tsetup < T =2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 15 页研究同一时刻 (t1)t1 时FF1φ (t1) LOGIC FF1 t p,combt1 时FF2输入数据(2)φ (t1)输入数据(1)tclk-q QFF1 输出数据 已达稳定经组合逻辑已 到达FF2 输入端破坏了本应保 持的数据(2)tt1tcdregtcdlogicholdsuD输入数据(2)应保持稳定至 t1F F2t因此要求 := tcd: 污染延时(contamination delay) = 最小延时(minimum delay)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 16 页tcdreg + tcdlogic > thold写入(触发)静态 Latch 的方法:以时钟作为隔离信号, 它区分了“透明” (transparent )和“不透明” (opaque)状态CLKCLKQ CLKD CLKDD弱反相器CLKMUX 实现弱反相器实现(强制写入)(控制门可仅用NMOS实现)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德第 8 章 (1) 第 17 页Latch 的具体实现基于Mux 的 Latch负(电平) latch (CLK= 0 时透明) 正(电平) latch (CLK= 1 时透明)1 D 0Q D0 1QCLKCLKQ = Clk ⋅ Q + Clk ⋅ In2004-12-1Q = Clk ⋅ Q + Clk ⋅ In第 8 章 (1) 第 18 页清华大学微电子所 《数字大规模集成电路》 周润德基于(传输门实现的) Mux 的 LatchCLKQ CLK DCLK(1)尺寸设计容易 (2)晶体管数目多(时钟负载因而功耗大)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 19 页基于(传输管实现)Mux 的 Latch(仅NMOS 实现)CLK QM QM CLK CLKCLK仅NMOS 实现不重叠时钟 (Non-overlapping clocks)(1)仅NMOS 实现,电路简单,减少了时钟负载 (2)有电压阈值损失(影响噪声容限和性能,可能引起静态功耗)2004-12-1清华大学微电子所 《数字大规模集成电路》 周润德 第 8 章 (1) 第 20 页Q单元形式的Latch采用串联电压开关逻辑(CVSL)QNon-overlap时间过长,存储在动态节点上的电荷会泄漏掉(故称伪静态)低电压静态Latch双边沿触发寄存器RS Latch?动态Latch 和Register(1)比静态Latch和Register 简单(2)基于在寄生电容上存储电荷,由于漏电需要周期刷新(或经常更新数据)(3)不破坏的读信息:因此需要输入高阻抗的器件传输门构成的动态边沿触发寄存器(只需8 个晶体管,节省功耗和提高性能,甚至可只用NMOS 实现)动态节点。

清华大学《数字集成电路设计》周润德 第5章 CMOS反相器

清华大学《数字集成电路设计》周润德 第5章  CMOS反相器

第五章 CMOS 反相器 第一节 对逻辑门的基本要求(1)鲁棒性(用静态或稳态行为来表示)静态特性常常用电压传输特性(VTC)来表示(即输出与输入的关系), 传输特性上具有一些重要的特征点。

逻辑门的功能会因制造过程的差异而偏离设计的期望值。

V(y) 电压传输特性(直流工作特性)VOH fV(y)=V(x)VM开关阈值VOL VOL VOHVOH = f(VOL) VOL = f(VOH) VM = f(VM)V(x)额定电平2004-9-29 清华大学微电子所《数字大规模集成电路》 周润德 第5章第1页(2)噪声容限:芯片内外的噪声会使电路的响应偏离设计的期望值 (电感、电容耦合,电源与地线的噪声)。

一个门对于噪声的敏感程度由噪声容限表示。

可靠性―数字集成电路中的噪声v(t) i(t)V DD电感耦合电容耦合电源线与地线噪声噪声来源: (1)串扰 (2)电源与地线噪声 (3)干扰 (4)失调 应当区分: (1)固定噪声源 (2)比例噪声源 浮空节点比由低阻抗电压源驱动的节点更易受干扰 设计时总的噪声容限分配给所预见的噪声源2004-9-29 清华大学微电子所《数字大规模集成电路》 周润德 第5章第2页噪声容限(Noise Margin)V“1” V OH V IHout OH 斜率 = -1V不确定区 斜率 = -1ILV “0” VVOLOL V IL V IH V in2004-9-29清华大学微电子所《数字大规模集成电路》 周润德第5章第3页噪声容限定义"1"噪声容限(Noise Margin) 容许噪声的限度V IH高电平 噪声容限VOHNM H未定义区 低电平 噪声容限V OL "0" NM L V IL抗噪声能力(Noise Immunity) 抑止噪声的能力门输出门输入2004-9-29清华大学微电子所《数字大规模集成电路》 周润德第5章第4页理想逻辑门V outg=∞Ri = ∞ Ro = 0 Fanout = ∞ NMH = NML = VDD/2V in2004-9-29清华大学微电子所《数字大规模集成电路》 周润德第5章第5页早期的逻辑门5.0 4.0 3.0 2.0 VM 1.0 NM H NM L0.01.02.03.0 V in (V)4.05.02004-9-29清华大学微电子所《数字大规模集成电路》 周润德第5章第6页(3) “再生”特性:逻辑门的“再生”特性使被干扰的信号能恢复到名义 的逻辑电平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混合使用硬件描述语言、卡诺图、状态电路设计覆盖了系统级的算法描述直至综合使用各种方法设计微代码式控制电
在使用本节讨论的电路设计方法之前,电路设计者必须对设计指标要求仔细分
电路的输出完全由电路当前的输入信号可以用组合逻辑实现电路,并不意味着有可能对同一个电路既可以用组合逻辑
对于对于对于对于
硬件设计过程的一步变量个数较少时,设计变量个数较多时
实例:二进制比较器
根据真值表就可以直接得到组合逻辑电把真值表中所有乘积项相加,就可以完电路可能非常不经济。

在变量个数不大

实例:串
状态转换图直观地给出了状态之间的转状态转换表则采用表格的方式列出了状
状态
状态
状态
状态
状态
状态转换图中离开一个节点的所有支路例:状态。

相关文档
最新文档