空间与图形试题精选
四年级数学空间与图形试题

四年级数学空间与图形试题1.用量角器画一个75°的角.【答案】【解析】画一条射线,用量角器的圆点和射线的端点重合,0刻度线和射线重合,在量角器75°的刻度上点上点,过射线的端点和刚作的点,画射线即可.解:画图如下:【点评】本题考查了学生用量角器作图的能力.2.画一个比平角大30°的角.【答案】【解析】平角是指180度的角,180+30=210度,则此题就是画一个210度的角,然后根据角的画法:(1)画一条射线,使量角器的中心与射线的端点重合,0刻度线与射线重合;(2)在量角器相应的度数的地方点上一个点;(3)以画出的射线的端点为端点,通过刚画的点,再画出另一条射线;(4)画完后在角上标上符号,写出度数;进行画出即可.解:根据题干分析,180+30=210度,则画角如下:先画出180°的角,再画30°的角.【点评】此题考查了画指定度数的角,平角是等于180°的角,明确角的画法,是解答此题的关键.3.只有一组对边平行的四边形叫做梯形..(判断对错)【答案】√【解析】根据梯形的定义:只有一组对边平行的四边形叫做梯形;进行判断即可.解:只有一组对边平行的四边形叫做梯形,说法正确;故答案为:√.【点评】此题考查的是梯形的概念,应理解并灵活运用.4.一条直线长6厘米,它的一半是3厘米..(判断对错)【答案】×【解析】根据题意知道,一条直线长6厘米是错误,因为直线是无限长的,没有具体长度,而说成有长度.据此判断.解:一条直线长6厘米,它的一半是3厘米,是错误的,因为直线是无限的.故答案为:×【点评】考查了认识直线的性质,要注意是直线,不是线段.5.图A点处是小明家,请你画出小明家到马路边的最近路线.【答案】【解析】把马路边看作一条直线,小明家看作一个点,利用点到直线的所有连接线段中,垂直线段最短的性质即可解决问题.解:根据垂直线段最短的性质,即可画出从小明家到马路边最近的路线,如图所示:【点评】此题考查了垂直线段最短的性质的在解决实际问题中的灵活应用.6.以一点为端点,可以作出()A.一条射线 B.两条射线 C.无数条射线【答案】C【解析】根据射线的特点:有一个端点,无限长;可以得出由一点可以引出无数条射线,由此解答即可.解:以一点为端点,可以作出无数条射线;故选:C.【点评】此题考查了射线的特点.7.过点O作已知直线的垂线和平行线.【答案】【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和O点重合,过O沿直角边向已知直线画直线既可.(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和O点重合,过O点沿三角板的直角边画直线即可.解:画图如下:【点评】本题考查了学生作垂线和平行线的能力.8.如图,已知∠1=56°,则∠2= ,∠3= ,∠4= .【答案】34°、34°、146°.【解析】根据直角的定义:用90°减去∠1的度数,即可求出∠2的度数,再根据平角的定义:用180°减去∠2的度数,即可求出∠4的度数,同理即可求出∠3的度数,列式解答即可.解:∠2=90°﹣56°=34°∠4=180°﹣34°=146°∠3=180°﹣146°=34°答:∠2等于34°,∠3等于34°,∠4等于146°.故答案为:34°、34°、146°.【点评】本题关键是熟悉直角等于90°,平角等于180°的知识点.9.只有一组对边平行的四边形叫做梯形..(判断对错)【答案】√【解析】根据梯形的定义:只有一组对边平行的四边形叫做梯形;进行判断即可.解:只有一组对边平行的四边形叫做梯形,说法正确;故答案为:√.【点评】此题考查的是梯形的概念,应理解并灵活运用.10.两个高相等的平行四边形一定能拼成一个大的平行四边形(判断对错)【答案】×【解析】当它们的角不相等时无法拼成平四边形,画图举反例即可.解:如图:虽然高相等,但是它们对应角的度数不相等,无法拼成一个新的平行四边形.所以原题说法错误.故答案为:×.【点评】只有高相等,而且每一个对应角的度数相等的一对平行四边形才能拼成一个新的平行四边形.11.用一个3倍的放大镜看一个30度的角,看到的角的度数是()A.30度 B.15度 C.90度【答案】A【解析】角的度数的大小,只与两边叉开的大小有关,所以用一个放大3倍的放大镜看一个30度的角,仍然是30度.解:用一个放大3倍的放大镜看一个30度的角,看到的是仍是30度的角;故选:A.【点评】解答本题的关键是:正确掌握放大镜的特性,只改变边的长度,而不能改变角的两边叉开的大小.12.小丽用同样大小的正方体搭出了下面的立体图形,根据要求,选择适当的序号填在下面的括号里.(1)从正面看到的形状是的立体图形有.(2)从侧面看到的形状是的立体图形有.(3)从正面看到的形状是的立体图形有.(4)从侧面看到的形状是的立体图形有.【答案】(1)①⑤⑥;(2)②③④⑤;(3)②③④;(4)①⑥【解析】从不同的方向观察物体时,因观察的方向不同,观察到物体的形状也就可能不相同.解:(1)从正面看到的形状是的立体图形有①⑤⑥;(2)从侧面看到的形状是的立体图形有②③④⑤;(3)从正面看到的形状是的立体图形有②③④;(4)从侧面看到的形状是的立体图形有①⑥,故答案为:(1)①⑤⑥;(2)②③④⑤;(3)②③④;(4)①⑥.【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.13.动手做,动脑想。
四年级数学空间与图形试题答案及解析

四年级数学空间与图形试题答案及解析1.边长是4米的正方形,它的周长和面积相等。
( )【答案】×【解析】解:周长和面积的单位不同,不能比较大小。
2.画一条线段,将下面的梯形分割成一个平行四边形和一个三角形.【答案】【解析】经过梯形的上底的顶点,画出梯形的一条腰的平行线,即可把梯形分成一个三角形和一个平行四边形;据此即可画图;据此解答.解:如图:【点评】此题考查了梯形、三角形、平行四边形的特征及性质,应灵活运用.3.直线端点,射线有个端点,线段有个端点.【答案】无,一,两【解析】根据直线、线段、射线的定义解答即可.解:直线无端点,射线有一个端点,线段有两个端点;故答案为:无,一,两.【点评】本题考查直线、线段、射线的知识,属于基础题,注意基本概念的掌握.4. 1周角= 平角= 直角.【答案】2,4.【解析】根据周角、平角、直角的定义可知,1周角=360°,1平角=180°,1直角=90°.根据度数关系,找倍数关系.解:因为1周角=360°,1平角=180°,1直角=90°,所以1周角=2平角=4直角.故答案为:2,4.【点评】本题主要考查周角和平角.直角的定义,是需要熟记的内容.5.每天下午的时候,钟面上时针和分针基本上在一条直线上.①3时整②3时30分③3时50分.【答案】③【解析】首先判断出钟表上一共有12个大格,每个大格是30°,然后判断出每个时刻时针和分针之间相差的大格数,求出时针与分针所成的角各是多少度,即可推得每天下午几时几分的时候,钟面上时针和分针基本上在一条直线上.解:每天下午3时整的时候,时针指向数字3,分针指向数字12,钟面上时针和分针所成的角是90°;每天下午3时30分的时候,时针和分针之间相差2.5个大格,钟面上时针和分针所成的角是:30°×2.5=75°每天下午3时50分的时候,时针和分针之间相差6个大格,钟面上时针和分针所成的角是:30°×6=185°所以每天下午3时50分的时候,钟面上时针和分针基本上在一条直线上.故选:③.【点评】解答此题的关键是分别求出每个时刻下时针与分针所成的角各是多少度.6.如果直线a与直线b平行,那么a是平行线.(判断对错)【答案】×【解析】根据平行的含义:在同一个平面内的不相交的两条直线,叫做平行线;由此可知:只能说一条直线是另一条直线的平行线;据此解答即可.解:由平行的含义可知:如果直线a与直线b平行,那么a是平行线,说法错误;因为a是b的平行线;故答案为:×.【点评】明确平行的含义是解答此题的关键.7.先判断下列图形哪些是轴对称图形,再画出下面轴对称图形的对称轴,能画几条就画几条【答案】【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.8.小猴要给一块地围上篱笆,你认为()的围法更牢固些.A. B. C.【答案】B【解析】紧扣三角形具有稳定性的性质,即可选择正确答案.解:A和C中,围成的图形为四边形,而四边形有容易变形的特点,B中,围成的图形为三角形,三角形具有稳定性,所以B的围法更牢固些.故选:B.【点评】此题考查了三角形的稳定性.9.在同一平面内,( ) 的两条直线叫做平行线.两条直线相交,如果其中一个角是90°,那么这两条直线叫做( )【答案】不相交,相互垂直。
三年级数学空间与图形试题答案及解析

三年级数学空间与图形试题答案及解析1.在轴对称图形的括号里打“√“。
()()()( )【答案】(√ )()(√)( √ )【解析】判断一个图形是不是轴对称图形,关键在于能不能找到一条直线,使图形沿着这条直线对折,图形两侧的部分可以重合。
详解:通过观察可得:图形1、3、4是轴对称图形,我们可以找出它的对称轴。
【考点】轴对称。
2.一个长方形的周长是30厘米,如果长增加3厘米,宽增加2厘米,则这个长方形的周长增加()A.5厘米B.40厘米C.35厘米D.10厘米【答案】D【解析】根据长方形的周长公式:c=(a+b)×2,如果长增加3厘米,宽增加2厘米,那么它的周长增加(3+2)×2厘米,据此解答.解答:解:(3+2)×2=5×2=10(厘米),答:这个长方形的周长增加10厘米.故选:D.点评:此题主要考查长方形的周长公式的灵活运用.3.比较图形的周长,()A.甲长 B.乙长 C.同样长【答案】C【解析】由图意可知:甲的周长=长方形的长+宽+公共曲线边长,乙的周长=长方形的长+宽+公共曲线边长,所以甲的周长=乙的周长.解答:解:因为甲的周长=长方形的长+宽+公共曲线边长,乙的周长=长方形的长+宽+公共曲线边长,所以甲的周长=乙的周长.故选:C.点评:解决此题的关键是明白,曲线部分是二者的公共边长,从而轻松求解.4.一个长方形花圃,长12米,宽3米,它的一条长边靠墙,其它三边围上竹篱笆,竹篱笆长米.【答案】18【解析】要求篱笆的长度,需要看篱笆包括几个部分,在图中,篱笆是三面,是由长方形的一条长和两条宽组成的,即篱笆的长度=长+宽×2,代入数据计算即可.解:12+3×2=12+6=18(米)答:篱笆至少要18米.故答案为:18.点评:解决本题的关键是知道篱笆包括哪几部分,然后加起来就可以.5.看下图,从西村到东村有几条路,走哪条路最近,近多少米?【答案】从西村到东村有2条,西村经北村到东村870米,西村经南村到到东村635米,870>635,所以走西村经南村到到东村近235米。
一年级数学空间与图形试题

一年级数学空间与图形试题1.至少用()个相同的木棒拼成一个三角形。
【答案】3【解析】本题考查有关三角形的特点。
三角形有特殊的三角形,如:等边三角形和等腰三角形。
等边三角形的三条边相等,等腰三角形其中的两条边相等。
任意三角形边长就不相等。
用至少用3个相同的木棒拼成一个三角形,是等边三角形。
2.长方形的4条边一定相等。
()【答案】×【解析】本题考查有关长方形的知识点。
长方形有4条边,对边长度相等。
正方形是特殊的长方形。
正方形的4条边长度相等。
3.我能很快数出来。
【答案】(1)6(2)6 2(3)(4)5 2【解析】考察了学生对前后,上下,左右位置的认识。
4.大货车应向()边拐,小汽车应该向()边拐。
【答案】右左【解析】考察了学生对前后,上下,左右位置的认识。
5.(1)小花是左边数起的第()个,右边数起的第()个。
(2)左边数起的第6个,就是右边数起的第()个,这个小朋友是()。
(3)丁一的左边是(),右边是()。
【答案】(1)3 7(2)4 小洁(3)小花小月【解析】考察了学生对前后,上下,左右位置的认识。
6.两个一样大的正方形可以拼成一个长方形。
()【答案】√【解析】略7.根据下面前3组图形的拼组规律,想一想接着怎么拼。
【答案】【解析】考察对图形的认识和排列规律,本题是顺时针旋转的规律所得。
8.选一选以上图形中(1)()号是球体.(2)()号是长方体.(3)()号是正方体.(4)()号是圆柱体.【答案】(1)2、8(2)1、10(3)4、12(4)3、5、11【解析】略9.判断下图中哪些是正方体,哪些不是(是画“√”,不是画“×”)。
()()()()【答案】√ × ×√【解析】略10.硬币是();红领巾是()形;课桌面是()形。
【答案】圆三角长方【解析】略11.上楼的小朋友是靠()边走。
A.左B.右C.前D.后【答案】B【解析】根据左右关系的相对性,上楼的小朋友向上走,相对于下楼的小朋友,他们上告右边走的。
最新-六年级下册数学空间与图形测试题人教版(含答案)

六年级下册数学空间与图形测试题人教版一、单选题(共5道,每道20分)1.如图,方格纸上每个小正方形的面积为1平方厘米,求方格纸上多边形的面积是平方厘米。
A.25.5B.19.25C.20D.25答案:A解题思路:如图所示,将多边形分成五部分:第一部分面积:5×1÷2=2.5第二部分面积:4×1÷2=2第三部分面积:4×4=16第四部分面积:4×1÷2=2第五部分面积:6×1÷2=32.5+2+16+2+3=25.5试题难度:三颗星知识点:平面图形的面积2.如图,ABCD是直角梯形,BC=12厘米,CD=7厘米,则阴影部分的面积的和为平方厘米。
A.42B.31C.21D.11答案:A解题思路:极端化考虑:E点与C点重合,则图中阴影部分面积与下图阴影部分面积相等因此阴影部分的面积为:12×7÷2=42(平方厘米)试题难度:三颗星知识点:平面图形的面积3.ABCD是长为8,宽为6的长方形,E,F分别是AD,BC的中点,P为长方形内任意一点,则阴影部分的面积是。
A.48B.24C.12D.6答案:C解题思路:如图所示,过P点做AD的平行线MN则△PAE的面积为长方形AMND的,△PFC的面积为长方形BMNC的,则阴影部分的面积是长方形ABCD的。
6×8×=12试题难度:三颗星知识点:平面图形的面积4.如图,OC=3厘米,则阴影部分面积为平方厘米(π取3.14)。
A.2.565B.3.276C.1.76D.4.76答案:A解题思路:×π×3²-×3×3=2.565试题难度:三颗星知识点:平面图形的面积5.有一块长方形土地,宽为10米,长是宽的2倍,中间有一块花坛,花坛是一个边长1米的正方形,周围是草坪,草坪的面积是平方米.A.199.5B.132C.199D.201答案:C解题思路:用长方形的面积减去正方形的面积即可:10×10×2-1×1=199试题难度:三颗星知识点:平面图形的面积。
六年级数学空间与图形试题答案及解析

六年级数学空间与图形试题答案及解析1.你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【答案】(1)(2)(3)【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:⑵如下图,答案不唯一,以下仅供参考:⑶如下图,答案不唯一,以下仅供参考:2.如图,三角形的面积为1,其中,,三角形的面积是多少?【答案】4【解析】连接,∵,∴,又∵,∴.3.如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形的面积;⑵?【答案】6;1:3【解析】⑴根据蝴蝶定理,,那么;⑵根据蝴蝶定理,.4.如图,平行四边形的对角线交于点,、、、的面积依次是2、4、4和6.求:⑴求的面积;⑵求的面积.【答案】2/3【解析】⑴根据题意可知,的面积为,那么和的面积都是,所以的面积为;⑵由于的面积为8,的面积为6,所以的面积为,根据蝴蝶定理,,所以,那么.5.(仙游县)如图中平行四边形ABCD的面积是32平方厘米,AE=5厘米,CE=4厘米,求阴影部分的面积.【答案】阴影部分的面积是6平方厘米.【解析】分析:观察图与题意,知道平行四边形ABCD的面积是AD×CE=32平方厘米,由此用32÷CE求出AD的长度,再减去AE的长度就是ED的长度;再根据三角形的面积公式S=ah,即可求出阴影部分的面积.解答:解:AD的长度:32÷4=8(厘米),ED的长度:8﹣5=3(厘米),阴影部分的面积是:×ED×CE=×3×4=6(平方厘米),答:阴影部分的面积是6平方厘米.点评:此题主要考查了平行四边形的面积公式与三角形的面积公式的灵活应用.6.(2013•东莞市)如图是一个直角三角形.(单位:厘米)①用两个这样的三角形拼成一个平行四边形,要使拼成的平行四边形周长最长,怎样拼?请在方格中画图(每格表示1厘米)表示你的拼法.②拼成的平行四边形的周长是厘米,面积是平方厘米.【答案】18,12【解析】(1)要使拼成的平行四边形周长最长就把最短的边3厘米的对在一起就可以;(2)根据拼成的图形可知:平行四边形边的长度分别是2个4厘米,2个5厘米,由此求出周长;原来的是三角形是一个直角三角形,它的两个直角边相互垂直,所以它的底是4厘米,高是3厘米,由此求出面积.解答:解:(1)拼法如下:(2)周长:(4+5)×2,=9×2,=18(厘米);面积:4×3=12(平方厘米);故答案为:18,12.点评:本题关键是拼出图形,理解把最短的边拼在一起周长最大.7.(西乡县)求出下面三角形中各角的度数.∠1=°;∠2=°.【答案】60,30【解析】(1)因为三角形的内角和是180°,所以∠1=180°﹣90°﹣30°;(2)因为65度角和三角形里面的一个角组成直角,所以这个角=180°﹣65°,又因为三角形的内角和是180°,所以∠2=180°﹣(180﹣65°)﹣35°,计算即可.解答:解:(1)∠1=180°﹣90°﹣30°=60°;(2)∠2=180°﹣35°﹣(180°﹣65°)=30°.故答案为:60;30.点评:解决本题的关键是根据三角形的内角和是180°.8.(南山区)量出需要的数据,计算梯形的周长和面积.【答案】梯形的周长是10厘米,面积是5.1平方厘米【解析】测量出梯形的各个腰和底以及高的长度,使用梯形的周长和面积公式可直接进行计算.解答:解:由测量得知,梯形的上底是2厘米,腰是2厘米,下底是4厘米,高是1.7厘米.周长:2+2+2+4=10(厘米);面积:(2+4)×1.7÷2,=6×1.7÷2,=5.1(平方厘米);答:梯形的周长是10厘米,面积是5.1平方厘米.点评:准确测量梯形的上下底、腰、高的长度,正确使用梯形的周长和面积公式.9.(旅顺口区)在如图中按要求操作.(1)画出梯形的高,测量高cm(精确到0.1cm);(2)画一条线段,把梯形变成一个平行四边形和一个三角形;(3)测量∠A=.【答案】(1)2.1;(2)(3)115°【解析】(1)过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;用刻度尺即可度量出这条高的长度.(2)过三角形上底的一个顶点,作另一腰的平行线,交梯形下底于一点,即可把梯形变成一个平行四边形和一个三角形.(3)把量角器的0°刻度线与∠A的一边重合,顶点与量角器的中心重合,另一边与量角器的刻度线重合,量角器的读数就是这个角的度数.解答:解:(1)画梯形的高如下图,经测量,高是2.1cm;(2)画线如下图,线段BE把梯形ABCD分成平行四边ADEB和三角形BEC;(3)经测量,∠A=115°;故答案为: 2.1,115°.点评:本题是考查作梯形的高、线段的度量、角的度量等.注意,画图形的高时要有虚线;度量角时,注意“三重合”.10.(葫芦岛)在图中画三个与涂色三角形面积相等、形状不同的图形,其中一条边必须在BC上.【答案】【解析】根据等底同高的三角形的面积相等,所以过A点做BC的平行线,在平行线上任找一点,与B、C两点连接即可.解答:解:由分析作图如下:点评:本题主要是根据等底同高的三角形的面积相等,确定作图的方法.11.(2013•广州)如图所示,求甲比乙的面积少多少平方厘米?【答案】甲比乙的面积少3平方厘米【解析】根据图形可知,甲加上空白梯形的面积是长6厘米,宽4厘米的长方形的面积,乙加上空白梯形的面积是一个底6厘米,高(4+5)厘米的三角形,而甲与乙的面积差即是大三角形与长方形的面积差.据此解答.解答:解:6×(4+5)÷2﹣6×4=6×9÷2﹣24=27﹣24=3(平方厘米);答:甲比乙的面积少3平方厘米.点评:本题考查了几何问题中的等量代换,即根据两个面积同时加上或减去相同的面积,差不变.12.(2012•成都)如图,E是平行四边形ABCD边CD的中点,AC和BE相交于F,如果△EFC的面积是1平方厘米,则平行四边形ABCD的面积是平方厘米.【答案】12【解析】试题分许:要求平行四边形的面积,如图,根据三角形和平行四边形的面积公式可得:只要求出△ABC的面积即可(△ABC=△BFA+△BFC);利用△EFC的面积是1平方厘米,根据相似三角形的性质可以求得△BFA和△BFC的面积,分析如下:根据相似三角形的定义可知,在平行四边形内,△EFC和△BFA相似:(1)因为E是CD的中点,所以相似比是1:2,根据相似三角形的性质可得:面积的比是:1:4,由此即可求得△BFA的面积为:4×1=4平方厘米;(2)因为EF:BF=1:2,(相似三角形的对应边成比例),根据高相等时,三角形的面积与底成正比的关系可得:△EFC与△BFC的面积比是1:2,由此即可得出△BFC的面积:2×1=2平方厘米;综上所述,即可求得△ABC的面积,从而求出平行四边形的面积.解答:解:根据题干分析可得:△EFC和△BFA相似,相似比是1:2,(1)相似三角形的面积比等于相似比的平方,所以它们的面积比是1:4,所以△BFA的面积为:4×1=4(平方厘米),(2)又因为EF:BF=1:2,所以△BFC的面积为:2×1=2(平方厘米),(3)故△ABC的面积为:4+2=6(平方厘米),6×2=12(平方厘米),答:平行四边形ABCD的面积是12平方厘米.故答案为:12.点评:此题考查了利用相似三角形的面积比等于相似比的平方以及高一定时,三角形的面积与底成正比的关系这两条性质,进行图形的面积计算的方法.13.如图,长方形内有两个三角形①和②,那么①的面积()②的面积.A.< B.> C. =【答案】C【解析】如图所示,三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,据此即可判断.解答:解:三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,故选:C.点评:解答此题的主要依据是:等底等高的三角形面积相等.14.如图,三角形ABC的面积是56平方米,BD=DC,DE垂直于AC,AC=14米.求图中阴影部分的面积.【答案】阴影部分的面积是28平方米【解析】三角形的面积=底×高÷2,根据等底等高的三角形的面积相等进行计算即可.解答:解:因为BD=DC,所以三角形ABD和三角形ADC的面积相等,因为三角形ABC的面积是56平方米,所以图中阴影部分的面积为:56÷2=28(平方米)答:阴影部分的面积是28平方米.点评:明确等底等高的三角形的面积相等,是解答此题的关键.15.用a表示梯形的上底,b表示下底,h表示高,S表示面积.梯形面积的计算公式是.【答案】S=(a+b)h÷2【解析】梯形的面积=(上底+下底)×高÷2,进而把对应的字母代入等式即可.解答:解:因为梯形的面积=(上底+下底)×高÷2,所以S=(a+b)h÷2.故答案为:S=(a+b)h÷2.点评:此题考查用字母表示计算公式,熟记梯形的面积计算公式,是解决此题的关键.16.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米.【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.17.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.18.在右图中,三角形DEF比三角形ABF面积小15平方厘米,求DE的长。
六年级数学空间与图形试题

六年级数学空间与图形试题1.在平面图上通常确定的方位是:上北下()、左()右()。
【答案】南西东【解析】本题考查的是在平面图上如何确定方向。
一般来说, 在地图或平面图上,有一个统一的确定方向的标准。
通常是按上北、下南、左西、右东的规则来确定方向的。
为了标明方向,在地图和平面图上通常用箭头(板书:北)来表示方向。
这个符号叫指向标(板书:指向标),意思是说:箭头所指的方向是北面。
2.一个长方体,如果高增加2厘米,就成了正方体,而且表面积增加56平方厘米,原来这个长方体的体积是()立方厘米。
【答案】245【解析】本题考查正方体的形状特点及对表面积和体积的认识及计算。
根据高增加2厘米成为正方体,得出原长方体的长、宽、高的关系,进一步根据表面积的增加情况,计算出长、宽、高,进一步计算出体积,解决问题。
表面积增加的部分是高增加2厘米后周围四个面的面积和,可表示为长×2×4,计算长:56÷4÷2=7(厘米),计算高:7-2=5(厘米),计算体积:7×7×5=245(立方厘米)。
3.小青坐在教室的第3排第4列,用(4,3)表示,那么小明坐在教室的第5排第2列应当表示为()。
【答案】(2,5)【解析】本题考查的是用数对表示物体的位置。
根据小青的位置可知,数对中第一个数表示小青所在的列数,第二个数表示小青所在的排数,两个数中间用逗号隔开,即(列,排)。
因为小明的位置是第5排第2列,所以小明的位置可表示为(2,5)。
4.—个长方体,如果高增加2厘米变成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是()立方厘米。
【答案】245【解析】本题考查的是有关长方体的侧面积、表面积和体积的有关知识。
把长方体的高增加2厘米变成了正方体,增加的表面积是长方体的侧面积,本题根据长方体的侧面积求出长方体的长和宽,再推导出长方体的高,就可以求出长方体的体积。
长方体的高增加2厘米变成了正方体,增加的表面积是长方体的侧面积,由于底面积是正方形,因此长方体的长和宽相等,长方体的长(宽)=56÷4÷2=7厘米,长方体的高=7-2=5厘米,所以长方体的体积=7×7×5=245平方厘米。
四年级数学空间与图形试题

四年级数学空间与图形试题1.三角形有条边,个角,个顶点.【答案】3,3,3.【解析】根据三角形的意义和特性可知:三角形有3条边,3个角,3个顶点;解答即可.解:由分析知:三角形有3条边,3个角,3个顶点;故答案为:3,3,3.【点评】此题考查的是对三角形含义和特性的理解,应注意基础知识的积累.2.三角形按角可以分为三角形、三角形、三角形.三条边相等的三角形叫做三角形,又叫做三角形.等腰三角形的两个底角.【答案】锐角、钝角、直角、等边、正、相等.【解析】根据三角形的分类:按角的大小可以分为锐角三角形、直角三角形、钝角三角形;三个角都为锐角的三角形是锐角三角形;有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;根据三角形按照边的特点进行分类:三条边都不相等的三角形叫不等边三角形;两条边相等的三角形叫等腰三角形;三条边都相等的三角形叫等边三角形;据此解答即可.解:根据三角形的分类可知:三角形按角的大小分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边可以分为等边三角形和等腰三角形,三条边相等的三角形叫做等边三角形,又叫做正三角形.等腰三角形的两个底角相等.故答案为:锐角、钝角、直角、等边、正、相等.【点评】本题主要考查了三角形的分类,理解三角形的分类方法是解答此题的关键.3.在能围成三角形的各组小棒后面画“√”.(1)3厘米、5厘米、9厘米;(2)6厘米、6厘米、6厘米;(3)5厘米、5厘米、9厘米;(4)12厘米、4厘米、8厘米.【答案】×,√,√,×.【解析】依据三角形的两边之和大于第三边的特点,即可进行判断.解:(1)因为3+5<9厘米,所以不能拼成三角形;(2)因为6+6>6,所以能拼成三角形;(3)因为5+5>9,所以能拼成三角形.(4)因为4+8=12所以不能拼成三角形.所以(1)3厘米、5厘米、9厘米×;(2)6厘米、6厘米、6厘米√;(3)5厘米、5厘米、9厘米√;(4)12厘米、4厘米、8厘米×故答案为:×,√,√,×.【点评】此题主要考查三角形的两边之和大于第三边的特点.4.三角形的高都在三角形的内部..(判断对错)【答案】×【解析】根据三角形的高的概念,通过具体作高,发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部;由此即可判断.解:由分析可知:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,所以三角形的高都在三角形的内部,说法错误;故答案为:×.【点评】此题主要考查学生对三角形的高的概念的理解和掌握.5.两组分别平行的四边形叫做.【答案】对边,平行四边形【解析】根据平行四边形的含义:有两组对边分别平行的四边形叫做平行四边形;由此解答即可.解:两组对边分别平行的四边形叫做平行四边形;故答案为:对边,平行四边形.【点评】本题考查了平行四边形的概念,注意基础知识的积累.6.和可以看成是特殊的平行四边形.【答案】长方形、正方形.【解析】长方形是有一个角是直角的平行四边形,正方形是有一个角是直角,并且有一组邻边相等的平行四边形;进而得出结论.解:长方形和正方形可以看成是特殊的平行四边形.故答案为:长方形、正方形.【点评】此题考查了正方形和长方形与平行四边形的关系.7.四条边都相等的四边形一定是平行四边形..(判断对错)【答案】√【解析】此题可根据平行四边形的性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;即可得出答案.解:四条边都相等的四边形一定是平行四边形.故答案为:√.【点评】此题考查了平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等.8.梯形的高一定比腰短..(判断对错)【答案】√【解析】根据题意,画出图,然后根据直角三角形中斜边最长;据此判断即可.解:如图:因为在直角三角形中,斜边最长,所以得出:梯形的高一定比腰短;故答案为:√.【点评】解答此题应明确:在直角三角形中斜边最长.9.梯形的上底是6分米,下底是14分米,高是10分米,它的面积是平方分米.【答案】100.【解析】根据梯形的面积公式:s=(a+b)×h÷2,把数据代入公式解答即可.解:(6+14)×10÷2=20×10÷2=100(平方分米),答:它的面积是100平方分米.故答案为:100.【点评】此题主要考查梯形面积公式的灵活运用,关键是熟记公式.10.如图,平行四边形的面积是20平方厘米,图中阴影部分的面积是平方厘米.如果阴影部分的面积是15平方厘米,平行四边形的底是6厘米,则它的高是厘米.【答案】10,5.【解析】两个完全一样的三角形可以拼成一个平行四边形,根据图形可知:阴影部分的面积等于平行四边形面积的一半,即20÷2=10平方厘米,如果阴影部分的面积是15平方厘米,那么平行四边形的面积就是阴影部分面积的2倍,再根据平行四边形的面积公式:s=ah,那么h=s÷a,把数据代入公式解答.解:20÷2=10(平方厘米);15×2÷6=30÷6=5(厘米);答:阴影部分的面积是10碰到了吗,平行四边形的高是5厘米.故答案为:10,5.【点评】此题主要考查平行四边形的面积的灵活运用,以及等底等高的三角形与平行四边形面积之间关系的灵活运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间与图形测评试卷
一、填空题。
1. 从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线( )的线段。
2. 下左图中,∠1=( )度,∠2=( )度。
1
30
2
3. 上右图是三个半径相等的圆组成的图形,它有( )条对称轴。
4.一个三角形中,最小的角是46°,按角分类,这个三角形是( )三角形。
5. 用百分数表示以下阴影部分是整个图形面积的百分之几。
6. 把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少( )平方分米。
7.
“
”和“
”的周长之比是( ),面积之比是( )。
8. 画一个周长25.12厘米的圆,圆规两脚间的距离是( )厘米,画成的圆的面积是( )。
9. 左图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是( )平方厘米。
至少还需要( )块这样的小正方体才能搭成一个大正方体。
10. 下面的小方格边长为1厘米,估一估图①中“福娃”的面积,算一算图②中阴影部分的面积。
11.在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是( )平方厘米,剩下的边料是( )平方厘米。
13. 将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是( )平方厘米。
15. 如下左图,已知大正方形的边长是a 厘米,小正方形的边长是b 厘米。
用字母表示阴影部分的面积是( )平方厘米。
16. (上右图)根据左图估计右图的面积是( )平方厘米。
二、选择题。
2. 在同一平面内,画已知直线的垂线,可以画( )。
A. 1条 B. 4条 C. 2条 D. 无数条
3. 用100倍的放大镜看40°的角,这个角的度数是( )度。
A. 4 B. 40 C. 400 D. 4000
4. 下面图形是用木条钉成的支架,最不容易变形的是( )。
D
C B
A
5. 下列图形中,对称轴条数最多的是( )。
D
C
B
A
7. 下列形体,截面形状不可能是长方形的是( )。
8.
一个用立方块搭成的立体图形,淘气从前面看到的图形是
,从上面看是,
那么搭成这样一个立体图形最少要( )个小立方块。
A. 4 B. 5 C. 6 D. 7
9. 有两个大小不同的圆,直径都增加1厘米,则它们的周长( )。
A. 大圆增加得多 B. 小圆增加得多 C. 增加得一样多
10. 一个立方体木块,6个面都涂上红色,然后把它切成大小相等的27个小立方体,其中有三个面是红色的小立方体有( )个。
A. 4
B. 12
C. 6
D. 8
11. 左图最有可能是( )的展开示意图。
12. 有两盒滋补品,用上右面三种方式包装,你认为最省包装纸的是( )。
9题图
13. 甲图和乙图所占空间的大小关系是甲( )乙。
14. 上右图中甲和乙周长相比,结果是( ),面积相比,结果是( )。
A. 甲比乙大 B. 甲比乙小 C. 甲和乙一样大 D. 无法比较 三、判断题。
1. 一条射线长12米。
( ) 2.两条直线相交,一定有两个交点。
( ) 3.小于180°的角是钝角。
( )4.角的两条边画得越短,这个角就越小。
( ) 5.用一副三角板可以拼成105°的角。
( )6.用8个小正方体拼成一个大正方体,任意拿走一个小正方体后表面积一定会减少。
( )7.任何一个长方体都有8个面,12条棱,6个顶点。
( )8.只要有一个角是直角的平行四边形,就是长方形或正方形。
( ) 9.以圆规两脚间的距离为4厘米画一个圆,这个圆的半径是2厘米。
( )10.把一个长方形拉成一个平行四边形后,保持不变的是面积。
( )11.半圆的周长就是圆的周长的一半。
( ) 12.一个正方形的边长与一个圆的直径相等,那么这个正方形的周长一定大于圆的周长,( )13.棱长6厘米的正方体,表面积和体积相等。
( )
四、操作题。
1.画出下面图形的全部对称轴。
2.在方格纸上分别画出从正面、左面和上面看到的图形。
五、周长、面积计算题。
1.下图中阴影部分的周长是多少? 2.已知阴影部分的面积是9平方厘米,求圆的面积。
3.如下图(单位:米),阴影部分的面积分别是1S 和2S ,1S 与2S 的比为1:4,求1S 、2S 。
4.下图中,正方形的边长是2厘米,四个圆的半径都是1厘米,圆心分别是正方形的四个顶点。
求出阴影部分的面积。
5.有一个圆锥形帐篷,底面直径约5米,高约3.6米(1)它的占地面积约是多少平方米?
(2)它的体积约是多少立方米?
6.求下图正方形内阴影部分的面积。
(正方形边长是4厘米)
7.长方形ABCD 被虚线分割成4个面积相等的部分(如下图,单位:厘米)。
试求线段BE 的长度。
8.图中四个等圆的周长都是50.24厘米,求阴影部分的面积。