平稳随机过程
平稳随机过程的概念

所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3
考虑随机电报信号 x( t ) I
信号X ( t )由只
取 I或 I
o
I
t
的电流给出 .
这里 P{ X ( t ) I } P{ X ( t ) I } 1 / 2
而正负号在区间 ( t , t )内变化的次数N ( t , t )
2. 广义平稳过程
{ X ( t ), t T }, 如果对任意 定义1 给定二阶矩过程
t,t T :
E[ X ( t )] X
(常数)
E[ X ( t ) X ( t )] RX ( )
则称{ X ( t ), t T }为宽平稳过程, 或广义平稳过程 .
其中A是服从瑞利分布的随机 变量, 其概率密度为
a e f (a ) 2 0,
a2 2 2
, a0 a0
是在(0,2π )上服从均匀分布且与 A 相互独立的 随机变量, 是一常数,问X n ( t ) 是不是平稳过程?
解 因 E ( A)
a
2 2
即相关函数只与k l 有关,
所以它是宽平稳的随机序列.
如果 X1 , X 2 ,, X k ,是独立同分布的 , 则序列是
严平稳的.
例2 设s( t )是一周期为T的函数,是在(0, t )上服
从均匀分布的随机变量 , 称X (t ) s(t )为随机
相位周期过程. 试讨论它的平稳性 .
说明 (1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立. (2) 宽平稳的正态过程必定也是严平稳的.
Ch12-平稳随机过程

例 2 . 随机相位正弦波 X t aCos t , RV : f
1 2
, 0 2
试讨论平稳性
sol . X t 0 E X t X t E a a a
2
a R X t1 , t 2 Cos R X 2 随机相位正弦波为(宽 )平稳 sp
p p
T T
U x X t dt P X t x F1 x — — 分 布 函 数 各 态 历 经
p
(4).(1) 和 (2) — — 平 稳 过 程 各 态 历 经
例1 讨论随机相位正弦波的平稳性和各态历经性
1 随机相位正弦波 X t aCos t , RV : f , 0, 2 2 sol. 1: 平稳性
Fn x1 ,..., x n ; t1 ,..., t n Fn x1 ,..., x n ; t1 ,..., t n
2.严平稳过程的分布与数 字特征 1:一维分布 ,F1 x; t1 F1 x; t1 , f1 x; t1 f1 x;0 f1 x — —与 t 无关 则均值: EX t1 x1 f1 x1; t dx1 x1 f1 x dx1 X
( ) I e I 2 e 2 k 0关 , 故 若 τ<0 时 , 只 需 令 t ’=t+ τ,则有 E[X(t)X(t+τ)] =E[X(t`)X(t`+ τ )]= I2 e-2λ∣τ∣
图12-2
故这一过程的自相关函数为 E[X(t)X(t+τ)]= I2e-2λ∣τ∣ 它只与τ有关。因此随机电报信号X(t)是 一平稳过程。其图形如上图所示
平稳随机过程

e
2
只与 有关.
{X (t ), t 0}是平稳过程.
例4 设{Y(t),t≥0}是正态过程.且 a mY (t ) t, CY (t, t ) e , 其中,,a 0,
令 X (t ) Y (t b) Y (t ), t 0, 其中b 0, 试证明 {X (t ), t 0}是一严平稳过程.
试讨论{X(t),t≥0}的平稳性.
mX (t ) 0 常数.
RX (t, t ) E[ X (t ) X (t )]
P( X (t ) X (t ) 1) P( X (t ) X (t ) 1)
P( X (t ) X (t ) 1) P( X (t ) X (t ) 1)
n
由于 mX (tk ) mX mX (tk )
RX (tk , tl ) RX (tl tk ) RX (tk , tl ) k , l 1, 2,, n
(t1 , t2 ,, tn ; u1, u2 ,, un )
例1 设S(t)是周期为T的可积函数.令X(t)=S(t+Θ) t∈(-∞,+ ∞), Θ~U[0,T].称{X(t), -∞<t<+ ∞} 为随机相位周期过程,试讨论它的平稳性.
mX (t ) E[X(t)]
T 0
1 t T s( )d 为常数 T t
1 T R(t , t ) s(t )s(t )d X T 0 1 t T s( )s( )d 只与 有关系. T t 它是平稳过程
由于mX (t ) E[ X (t )] E[W (t a) W (t )] 0, t 0
第十二章+平稳随机过程

第十二章平稳随机过程平稳随机过程是一类应用相当广泛的随机过程.本章在介绍平稳过程概念之后,着重在二阶矩过程的范围内讨论平稳过程的各态历经性、相关函数的性质以及功率谱密度函数和它的性质.§1平稳随机过程的概念在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响.有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化.严格地说,如果对于任意的和任意实数A,当时,n维随机变量具有相同的分布函数,则称随机过程具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程.平稳过程的参数集T,一般为.当定义在离散参数集上时,也称过程为平稳随机序列或平稳时间序列.以下若无特殊声明,均认为参数集.在实际问题中,确定过程的分布函敷,并用它来判定其平稳性,一般是很难办到的.但是,对于一个被研究的随机过程,如果前后的环境和主要条件都不随时间的推移而变化,则一般就可以认为是平稳的..376.恒温条件下的热噪声电压过程以及第十章§1例2、例3都是平稳过程的例子.强震阶段的地震波幅、船舶的颠簸过程、照明电网中电压的波动过程以及各种噪声和干扰等等在工程上都被认为是平稳的.与平稳过程相反的是非平稳过程.一般,随机过程处于过渡阶段时总是非平稳的.例如,飞机控制在高度为丸的水平面上飞行,由于受到大气湍流的影响,实际飞行高度H(他)应在A水平面上下随机波动,H(他)可看作是平稳过程,但论及的时间范围必须排除飞机的升降阶段(过渡阶段),因为在升降阶段内由于飞行的主要条件随时间而发生变化,因而H(t)的主要特征也随时间而变化着,也就是说在升降阶段内过程II(t)是非平稳的.不过在实际问题中,当仅仅考虑过程的平稳阶段时,为了数学处理的方便,我们通常把平稳阶段的时间范围取为一oo<他<+oo.接着,考察平稳过程数字特征的特点.设平稳过程X(他)的均值函数E[X(t)]存在.对n=1,在(1.1)式中,令h=-t1,由平稳性定义,一维随机变量X(t1)和X(0)同分布.于是E[X(t)]=E[X(0)],即均值函数必为常数,记为比.同样,X(t)的均方值函数和方差函数亦为常数,分别记为甲l和畦.据此,依照图10—4的意义,可以知道,平稳过程的所有样本曲线都在水平直线J(r)‘/J。
平稳随机过程的概念

平稳过程旳参数集T, 一般为: (,), [0,), {0,1,2,} 或 {0,1,2,}.
当T为离散情况 , 称平稳过程X n 为平稳随
第一节 平稳随机过程旳概念
一、平稳随机过程旳概念 二、应用举例 三、小结
一、平稳随机过程旳概念
在实际中, 有相当多旳随机过程, 不但它现 在旳状态, 而且它过去旳状态, 都对将来状态旳 发生有着很强旳影响.
假如过程旳统计特征不随时间旳推移而变 化, 则称之为平稳随机过程.
1. 定义
如果对于任意的 n( 1,2,),t1, t2 ,, tn T和 任意实数h,当t1 h, t2 h,, tn h T时, n维随机 变量 ( X (t1 ), X (t2 ),, X (tn )) 和 ( X (t1 h), X (t2 h),, X (tn h))
T s(t )s(t ) 1 d
0
具有周T 期性
1
T
iT i
s( )s( )d RX ( )
所以随机相位周期过程是平稳旳. 尤其, 随机相位 正弦波是平稳旳.
例3 考虑随机电报信号 x(t) I
o
信号X (t)由只 取 I或 I t 的电流给出.
I 这里 P{ X (t) I } P{ X (t) I } 1/ 2
可见Y (t) X (t) X (0)不是平稳过程 .
三、小结
平稳随机过程、宽(广义)平稳随机过程旳概念 平稳过程数字特征旳特点
(1) 平稳过程的所有样本曲 线都在水平直线
x(t ) X 上下波动,平均偏离度为 X . (2) 平稳过程的自相关函数 仅是t2 t1 的单
第十二章-平稳随机过程

若T为离散集, 称平稳过程{X(t), t T }为 平稳序列.
广义平稳过程
严平稳过程
严平稳过程 二阶矩存在 广义平稳过程
严平稳过程 正态过程 广义平稳过程
8
例1 设{Xk , k = 1,2,…}是互不相关的随机变量 序列, E[Xk ] = 0, E[Xk ²] = σ², 则有
解 由假设, Θ的概率密度为
f
(
)
1
/
T, 0,
0 T,
其 它.
于是, X(t)的均值函数为
T
E[ X (t)] E[s(t )]
0
s(
t
)
1 T
d
1
t T
s( )d
Tt
10
利用s(φ)的周期性, 可知
E[X (t)] 1 T s( )d 常数. T0
而自相关函数
RX (t, t ) E[s(t )s(t )]
• 当X(t)和Y(t)是联合平稳随机过程时, W(t) = X(t) +Y(t)是平稳随机过程.
18
事实上, E[W(t)]= E[X(t)] + E[Y(t)] = 常数.
E[W (t)W (t )] E{[X (t) Y (t)][X (t ) Y (t )]} E[ X (t)X (t ) X (t)Y (t ) Y (t)X (t ) Y (t)Y (t )] E[ X (t)X (t )] E[ X (t)Y (t )] E[Y (t)X (t )] E[Y (t)Y (t )] RX ( ) RXY ( ) RYX ( ) RY ( ) RW ( )
t1, t2,, tnT, t1+h, t2 +h,,tn+h T, 若(X(t1), X(t2),, X(tn))与
平稳随机过程的概念

严平稳的.
例2 设s(t)是一周期为T的函数,是在(0,t)上服 从均匀分布的随机变量,称X (t) s(t )为随机
相位周期过程. 试讨论它的平稳性.
解 的概率密度为
f
(
)
1/T , 0
0, 其他.
T,
X(t) 的均值函数为
E[X (t)] E[s(t )]
T
s( t
) 1 d
定义1 给定二阶矩过程{ X (t), t T },如果对任意
t,t T : E[ X (t)] X (常数)
E[ X (t)X (t )] RX ( )
则称{ X (t), t T }为宽平稳过程,或广义平稳过程. 说明
(1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立.ຫໍສະໝຸດ 2aea2 2 2
da
2
2
0
故 E[Acos(t )] EA E[cos(t )]
所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3 考虑随机电报信号 x(t) I
o
信号X (t )由只 取 I或 I
t 的电流给出.
I 这里 P{ X (t) I } P{ X (t) I } 1/ 2 而正负号在区间(t,t )内变化的次数N (t,t ) 是随机的, 假设N (t,t )服从泊松分布.
结果与t 无关
k0
I 2e
( )k
k0
I 2e2
.
k0 k!
而 0时,令t t , 则自相关函数: E[ X (t )X (t )] I 2e2 只与有关
所以随机电报信号 X (t) 是一平稳过程.
其图形为:
RX ( )
平稳随机过程

平稳随机过程⏹严格平稳随机过程⏹广义平稳随机过程⏹平稳随机过程自相关函数性质⏹各态历经过程1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。
1111(,,,,,)(,,,,,)X N N X N N p x x t t t t p x x t t +∆+∆=如果X (t ) 是严格平稳的,则与t 无关。
(,)()X X p x t p x =即X(t)与X(t+∆t)具有相同的统计特性。
二维概率密度只依赖于τ,与t 1和t 2的具体取值无关。
12121212121221212(,,,)(,,,)(,,,0)(,,)X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+∆+∆=-∆=-=ττ=-如果X (t )是严格平稳随机过程, 则121212121212(,)(,,,)()X X X R t t x x p x x t t dx dx R t t ∞-∞==ττ=-⎰()()X X Xm t xp x dx m ∞-∞==⎰222()()()XX X Xt x m p x dx ∞-∞σ=-=σ⎰100200300400500-4-3-2-101234Stationay Gaussian Noise0100200300400500-4-3-2-101234Non-stationay Gaussian Noise可以证明:独立同分布(IID)的随机序列是严格平稳的。
IID: Independent and Identical Distribution即对于任意的n ,X [n ]具有相同的一维概率密度,且对任意n 1和n 2(n 1≠n 2 ), X [n 1]和X [n 2]相互独立。
121111(,,...,,,...,)(,)(,)()NX N N X i i i NX i i i NX i i p x x x n n n n p x n n p x n p x ===+∆+∆=+∆==∏∏∏利用同分布利用独立性与n 无关例1:随机幅度信号0()cos X t Y t=ω0ω是常数~(0,1)Y N 判断X (t )是否严平稳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关时间:
0 rX ( )d
0
rX ( )
1
rX ( 0 ) 0.05
0
0
相关时间示意图
2.3 平稳随机过程
4 2 0 -2 -4
10 5 0 -5 -10
0
50
100
0
50数
0 100
相关时间越长,反映随机过程前后取值之间的依 赖性越强,变化越缓慢,相关时间越小,反映随 机过程前后取值之间的依赖性越弱,变化越缓慢
2 mX RX 2 () 100 2
2 2 X RX (0) mX 200
E[ X 2 (t )] RX (0) 300
2.3 平稳随机过程
3 相关系数及相关时间 也称为归一化协 方差函数或标准 协方差函数。
相关系数:
rX ( )
K X ( )
2 X
2 RX ( ) mX 2 X
for Nk k=2 称为二阶严平稳,如果对N=k成立,那么对N<k也成立. (2) 渐近严平稳 当c时,X(t+c)的任意n维分布与c无关,即
lim f X ( x1 , x2 , , xN , t1 c, t2 c, , t N c)
c
存在,且与c无关.
(3) 循环平稳 如果X(t)的分布函数满足如下关系
2.3 平稳随机过程
1 平稳随机过程的定义 严格 平稳 随机 过程 如果随机过程的任意n维分布不随时间起 点变化,即当时间平移时,其任意的n维 概率密度不变,则称是严格平稳的随机过 程或称为狭义平稳随机过程。
f X ( x1 ,, xn , t1 t ,, t n t ) f X ( x1 ,, xn , t1 ,, t n )
E{X (t )} E{tA} tE{A} 0
RX (t1, t2 ) E{X (t1 ) X (t2 )} t1t2 E{A2} t1t2
所以X(t)是非平稳的。
2.3 平稳随机过程
2、平稳随机过程自相关函数性质 性质: (1) (2)
RX ( ) RX ( )
2.3 平稳随机过程
均值和自相关函数估计:
连续随机过程:
ˆX m
1 2T
T
T
x(t )dt
1 ˆ R X ( ) 2T
T
T
x(t ) x(t )dt
随机序列:
1 ˆX m N
x ( n)
n 0
N 1
N 1 1 2 ˆ2 ˆ x ( n ) m X X N 1 n 0
讨论随机过程Z(t)的平稳性。
解、
2 1 E ( X ) E (Y ) (1) 2 0 3 3 2 2 1 2 4 E ( X ) E (Y ) (1) 2 2 3 3 3 3
2 2 2
2 3 1 2 8 E ( X ) E (Y ) (1) 2 2 3 3 3 3
RX (t MT , t MT ) RX (t , t )
称X(t)为广义循环平稳.
定理1:
设X(t)是严格循环平稳的,而随机变量在区间(0,T)
上均匀分布,且X(t)与统计独立,定义新的过程
X (t ) X (t )
则X(t)是严格平稳随机过程. 定理2: (证明请看教材)
f X ( x, t ) f X ( x)
f X ( x1 , x2 , t1 , t 2 ) f X ( x1 , x2 , )
2.3 平稳随机过程
对于严格平稳的随机过程,它的均值和方差是与时间
无关的常数,而自相关函数只与t1和t2的差值有关, 而与本身的取值是无关的。 严平稳最基本的特征是时间起点的平移不影响它的统 计特性,即X(t)与X(t+t)具有相同的统计特性。
(5)
2 2 RX (0) X mX
(6) 相关函数具有非负定性,即对任意的n个复数
1 , 2 ,..., n
有
* i j RX (ti t j ) 0 i 1 j 1 n n
利用如下关系可证明
2 n E i X (ti ) 0 i 1
Z(t)是广义平稳的
E[ Z 3 (t )] E{[ X cos t Y sin t ]3} E[ X 3 cos3 t Y 3 sin 3 t 3 X 2Y cos2 t sin t 3Y 2 X cos t sin t ] 2 cos3 t sin 3 t
1 ˆ (m) R X N m 1
N m 1
n 0
x(n) x(n m)
2.3 平稳随机过程
例、判断
X (t ) A cos(0t )
是否具有遍历性,其中均匀分布于(0,2)。 解、
1 x(t ) lim T 2T
T
T
a cos( t )dt 0 mX
RX (0) RX ( )
这一性质可 用于检测周 期性的信号
2 (3) 若随机过程不含周期分量, lim RX ( ) m X
(4) 若随机过程含有周期分量,则自相关函数也含有周期分量,
X (t ) A cos(0t ) N (t )
A2 RX ( ) cos 0 RN ( ) 2
E[ X (t ) X (t )] E[Y 2 ]
1 x(t ) lim T 2T
平稳随 机过程
T
T
ydt y
2.3 平稳随机过程
5 其它平稳的概念
(1)k阶严平稳
f X ( x1, x2 ,, xN , t1, t2 ,, tN ) f X ( x1, x2 ,, xN , t1 c, t2 c,, tN c)
2.3 平稳随机过程
R X (0)
R X ( )
2 X
m
0
相关函数示意图
2 X
2.3 平稳随机过程
例 已知平稳随机过程X(t)的自相关函数为
RX ( ) 36 4 1 5 2
求X(t)的均值和方差。 解、
2 mX RX () 36
mX 6
2 X RX (0) RX () 40 36 4
2.3 平稳随机过程
广义平稳:
mX (t ) mX RX (t1 , t2 ) RX ( ), t1 t2
一定
严格平稳 不一定
广义平稳
当随机过程是高斯分布时,两者等价。
例2.5 的随机相位信号是平稳随机过程
2.3 平稳随机过程
例、 设随机过程Z(t)=Xcost+Ysint,-<t< 。其中X,Y为 相互独立的随机变量,且分别以概率2/3、1/3取值-1和2。试
2.3 平稳随机过程
随机过程可分为平稳和非平稳两大类, 严格地说, 所
有信号都是非平稳的, 但是, 平稳信号的分析要容易
得多, 而且在电子系统中, 如果产生一个随机过程的 主要物理条件在时间的进程中不改变, 或变化极小,
可以忽略, 则此信号可以认为是平稳的. 如接收机的
噪声电压信号, 刚开机时由于元器件上温度的变化, 使得噪声电压在开始时有一段暂态过程, 经过一段 时间后, 温度变化趋于稳定, 这时的噪声电压信号可 以认为是平稳的。
2.3 平稳随机过程
例、 已知平稳随机过程X(t)的自相关函数为
RX ( ) 100e10| | 100cos10 100
求X(t)的均值、均方值和方差。 解、
RX ( ) 100cos10 (100e10| | 100)
RX1 ( ) RX 2 ( ) RX1 ( ) 10 2 cos10t
T
a 2 cos( t ) cos( t )dt
a 2 cos(0 ) / 2 RX ( )
2.3 平稳随机过程
X (t )
X (t )
t
t
(a)
(b)
各态历经过程与非各态历经过程示意图
2.3 平稳随机过程
遍历性判断:
1 lim T T
2T
均值遍历性:
t1 t2
Z(t)不是严格平稳的
2.3 平稳随机过程
由于在许多工程技术问题中,常常仅在相关理论(一、二阶矩) 的范围内讨论问题,因此划分出广义平稳随机过程来。而相 关理论之所以重要,是因为在实际中,一、二阶矩能给出有
关平稳随机过程平均功率的几个主要指标,比如,如果随机
过程如果代表噪声电压信号,那么在相关理论范围内就可以 给出直流分量、交流分量,平均功率及功率在频域上的分布
FX ( x1,, xn , t1 MT ,, tN MT ) FX ( x1,, xN , t1 , t N )
其中M为整数,T为常数,则称X(t)为严格循环平稳(或严格周期平稳) 注意:严格循环平稳不一定严格平稳 如果随机过程X(t)的均值和自相关函数满足下列关系
mX (t MT ) mX (t )
0
(1
2T
2 )[ RX ( ) m X ]d 0
相关函数遍历性:
1 lim T T
2T
0
(1
2T
2 )[ R ( ) RX ( )]d 0
(t ) X (t ) X (t )
零均值平稳正态随机信号:
0
R X ( ) d
T
T
X (t ) X (t )dt