平稳随机过程及其数字特征

合集下载

平稳随机过程的概念

平稳随机过程的概念

所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3
考虑随机电报信号 x( t ) I
信号X ( t )由只
取 I或 I
o
I
t
的电流给出 .
这里 P{ X ( t ) I } P{ X ( t ) I } 1 / 2
而正负号在区间 ( t , t )内变化的次数N ( t , t )
2. 广义平稳过程
{ X ( t ), t T }, 如果对任意 定义1 给定二阶矩过程
t,t T :
E[ X ( t )] X
(常数)
E[ X ( t ) X ( t )] RX ( )
则称{ X ( t ), t T }为宽平稳过程, 或广义平稳过程 .
其中A是服从瑞利分布的随机 变量, 其概率密度为
a e f (a ) 2 0,
a2 2 2
, a0 a0
是在(0,2π )上服从均匀分布且与 A 相互独立的 随机变量, 是一常数,问X n ( t ) 是不是平稳过程?
解 因 E ( A)

a
2 2
即相关函数只与k l 有关,
所以它是宽平稳的随机序列.
如果 X1 , X 2 ,, X k ,是独立同分布的 , 则序列是
严平稳的.
例2 设s( t )是一周期为T的函数,是在(0, t )上服
从均匀分布的随机变量 , 称X (t ) s(t )为随机
相位周期过程. 试讨论它的平稳性 .
说明 (1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立. (2) 宽平稳的正态过程必定也是严平稳的.

3第二章平稳随机过程

3第二章平稳随机过程

例题3:
设S(t)是一周期为T的函数, θ在(0,T)上 均匀分布,称X(t)=S(t+θ)为随机相位周 期过程,讨论其平稳性。
例题4: 随机过程X(t)只取+I和 -I,且P{X(t)=+I} = P{X(t)= -I}=1/2,而正负号在( t, t+ τ) 的变化次数N(t,t+τ)是随机的,且事件 AK={N(t,t+τ)=k}的概率为
1 N
N l im P{|Nk1Xk
m|}1
随时间n的无限增长,随机过程的样本函数 按时间平均以越来越大的概率近似于该过程的 统计平均。也就是说,只要观测的时间足够长, 则随机过程的每个样本函数都能够“遍历”各 种可能的状态。
例题:
随机过程X(t)=acos(wt+θ ),a,w为常 数,θ 为(0,2π )上均匀分布的随机变量, 试分析X(t)集合平均和时间平均值、相 关函数和时间相关函数。
E| a bX(t)d|2 ta ba bR X(t1,t2)d1d t2t
结论:数学期望和积分可以交换秩序。
定理6.9
设{X(t),t∈T}为二阶矩过程在区间[a,b]上均方连 续,则
b
Y(t) X()d a
在均方意义下存在,且随机过程{Y(t), t∈T}在区 间[a,b]上均方可微,且有Y’(t)=X(t)。
具有各态历经性。
定义6.11
如果均方连续的平稳过程{X(t),t∈T} 的均值和相关函数都具有各态历经性, 则称该平稳过程为具有各态历经性或遍 历性。
定理6.10 设{X(t),-∞<t<∞}是均方连续的平稳过程,则它 的均值具有各态历经性的充要条件为
l T .i .m 2 1 T 2 2 T T ( 1 |2 T |)R [ X () |m X |2 ] d 0

平稳随机过程的概念

平稳随机过程的概念

严平稳的.
例2 设s(t)是一周期为T的函数,是在(0,t)上服 从均匀分布的随机变量,称X (t) s(t )为随机
相位周期过程. 试讨论它的平稳性.
解 的概率密度为
f
(
)
1/T , 0
0, 其他.
T,
X(t) 的均值函数为
E[X (t)] E[s(t )]
T
s( t
) 1 d
定义1 给定二阶矩过程{ X (t), t T },如果对任意
t,t T : E[ X (t)] X (常数)
E[ X (t)X (t )] RX ( )
则称{ X (t), t T }为宽平稳过程,或广义平稳过程. 说明
(1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立.ຫໍສະໝຸດ 2aea2 2 2
da
2
2
0
故 E[Acos(t )] EA E[cos(t )]
所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3 考虑随机电报信号 x(t) I
o
信号X (t )由只 取 I或 I
t 的电流给出.
I 这里 P{ X (t) I } P{ X (t) I } 1/ 2 而正负号在区间(t,t )内变化的次数N (t,t ) 是随机的, 假设N (t,t )服从泊松分布.
结果与t 无关
k0
I 2e
( )k
k0
I 2e2
.
k0 k!
而 0时,令t t , 则自相关函数: E[ X (t )X (t )] I 2e2 只与有关
所以随机电报信号 X (t) 是一平稳过程.
其图形为:
RX ( )

平稳随机过程

平稳随机过程

平稳随机过程1.平稳随机过程(1)严平稳随机过程的定义若ξ(t)的任意有限维概率密度函数与时间起点无关,即对于任意的正整数n和所有实数Δ,有则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。

①一维概率密度与时间t无关,即②二维分布函数只与时间间隔τ=t2-t1有关,即(2)严平稳随机过程ξ(t)的数字特性①均值均值与t无关,为常数a,即(3-1-1)②自相关函数自相关函数只与时间间隔τ=t2-t1有关,即R(t1,t1+τ)=R(τ)。

即(3-1-2)(3)广义平稳随机过程把同时满足式(3-1-1)和式(3-1-2)的过程定义为广义平稳随机过程。

(4)严平稳随机过程与广义随机过程的关系严平稳随机过程必定是广义平稳的,反之不一定成立。

2.各态历经性(1)各态历经性的定义随机过程中的任一次实现都经历了随机过程的所有可能状态称为各态历经性。

(2)各态历经性的意义具有各态历经性的平稳随机过程的统计均值等于其任一次实现的时间均值。

(3)各态历经性与平稳随机过程的关系具有各态历经的随机过程一定是平稳过程,反之不一定成立。

(4)各态历经性的实现如果平稳过程使成立,则称该平稳过程具有各态历经性。

3.平稳过程的自相关函数(1)自相关函数的定义设ξ(t)为实平稳随机过程,则它的自相关函数为(2)自相关函数的性质①R(0)=E[ξ2(t)],表示ξ(t)的平均功率;②R(τ)=R(-τ),表示τ的偶函数;③|R(τ)|≤R(0),表示R(τ)的上界;④,表示ξ(t)的直流功率;这是因为当时,与没有任何依赖关系,即统计独立。

所以⑤R(0)-R(∞)=σ2,σ2是方差,表示平稳过程ξ(t)的交流功率。

当均值为0时,有R(0)=σ2。

4.平稳过程的功率谱密度(1)功率谱密度的定义平稳过程ξ(t)的功率谱密度Pξ(f)定义为(2)功率谱密度的特性①平稳过程的平均功率为②各态历经过程的任一样本函数的功率谱密度等于过程的功率谱密度。

第11章 - 平稳过程

第11章 - 平稳过程

下面来考虑平稳过程的一、二维概
率密度及数字特征。 利用定义式,令 h t1 有
f1 x1 ; t1 f1 x1 ;t 1 h f1 x1 ;0 f1 x1 f 2 x1 , x 2 ; t1 ,t 2 f 2 x1 , x2 ;t 1 h,t 2 h
E{[ N ( t h) N ( t )][ N ( t h) N ( t )]}
为简单起见,不失一般性,可设 0
当 h 时;见图(a)
t
th
t t h
(a)
由于区间 ( t , t h) 与区间 ( t , t h)
但正态过程例外,因为它的概率密度 函数可由均值和协方差矩阵完全确定。所 以,如果均值,自相关函数不随时间的推 移而变化,则概率密度函数也不随时间的 推移而变化。
例:设 { X n , n 0, 1, 2,} 是实的互不相 关随机变量序列, 且 E[ X n ] 0,D[ X n ] 2 , 试讨论随机序列的平稳性。 解: 因为 E[ X n ] 0, 而
RX ( n, n ) E[ X n X n ]
2 E ( X n ), E ( X n ) E ( X n ),
0 0
D( X n ) [ E ( X n )] , 0 , 0 0
2
, 0 0 , 0
第十一章

• • • • •
平稳过程
序言
第一节 第二节 第三节 第四节 第五节 平稳过程的概念 平稳过程相关函数性质 各态历经性 随机过程的功率谱密度 随机过程通过线性系统分析


平稳过程是很重要、应用很广的一类过 程,工程领域中所遇到的过程很多可以认为 是平稳的。例如:实际场合中的各种噪声和 干扰,都可以认为是平稳的。平稳过程是随 机过程重点内容之一。 本章在相关理论范围内主要讨论平稳过 程的数字特征;各态历经性;相关函数的性 质和功率谱密度。

[理学]2平稳随机过程

[理学]2平稳随机过程

例2: 设X(t)=Asin(t+Θ),Y(t)=Bsin(t+Θ-),A,B, ,
为常数,Θ在(0,2)上服从均匀分布,
证明: {X(t)},{Y(t)}是平稳相关的,并求RXY()。
解: 1.首先验证 X(t),Y(t)均为平稳过程.
2.考虑相关函数
RXY ( ) E[ X (t )Y (t )]
E[W(t)W(t+)]=E{[X(t)+Y(t)][X(t+)+Y(t+)]}
=E[X(t)X(t+)]+E[X(t)Y(t+)]+E[Y(t)X(t+)]+E[Y(t)Y(t+)] =Rx()+RxY()+RxY(-)+RY() 可见W(t)的自相关函数Rw(t,t+)只依赖于,所以 w(t)为平稳过程.
性质1. Rx(0)0; 证: Rx(0)=E[X2(t)]0 性质2. Rx()为偶函数,即Rx(-)=Rx()
证: Rx(-)=E[X(t)X(t-)]= E[X(t-)X(t)]= Rx()
性质3.|Rx()| Rx(0) 证:由柯西-施瓦兹不等式
| R X ( ) || E[ X ( t ) X ( t )] | E[ X 2 ( t )] E[ X 2 ( t )]
n
2
( 3) lim E ( X nYm ) E ( XY )
n m
证明:(1)由柯西-施瓦兹不等式
| E( X n ) E( X ) |2 | E( X n X ) |2 E[( X n X ) 2 ] 0 (n )
( 2) limE ( X n ) E ( X 2 )

第3章平稳随机过程总

第3章平稳随机过程总

在通信中,常常把稳定状态下的随机过 程,当作平稳随机过程来处理,这样,对 这个随机过程任何时候来测量,都会得到 同样的结果,从而大大简化了数学模型。 对一些非平稳的随机过程,在较短的时间 内,常常把它作为平稳随机过程来处理。
第3章 平稳随机过程
1 平稳随机过程的定义
严格 平稳 随机 过程
如果随机过程的任意n维分布不随时间起点变 化,即当时间平移时,其任意的n维概率密度 不变,则称是严格平稳的随机过程或称为狭 义平稳随机过程。
2cos t1 cos t2 2sin t1 sin t2
2cos(t1 t2 )
2cos
t1 t2
Z(t)是广义平稳的
E[Z 3 (t)] E{[ X cos t Y sin t]3} E[ X 3 cos3 t Y 3 sin3 t 3X 2Y cos2 t sin t 3Y 2 X cos t sin t]
所以X(t)是非平稳的。
2 宽平稳随机过程(广义平稳过程,平稳过程) • 由于求n维概率密度比较困难,有时只用到一、二
阶矩,如功率(均方值和方差)和功率谱密度(自 相关函数),因此,平稳性的定义不需要那么严格, 若随机过程 X(t)满足
则称X(t)为宽平稳或广义平稳随机过程。
• 严平稳与宽平稳的关系: 宽平稳只涉及与一、二维概率密度有关的数字 特征; 严平稳过程只要均方值有界,则它必定是宽平 稳的,反之不一定成立; 正态随机过程的宽平稳与严平稳是等价的。

E(Y
2)

(1)2

2 3

22

1 3

2 3

4 3

2
E( X 3) E(Y 3) (1)3 2 23 1 2

《概率论 浙大版》 - 平稳随机过程

《概率论 浙大版》 - 平稳随机过程

E{[ N ( t h) N ( t )][ N ( t h) N ( t )]}
为简单起见,不失一般性,可设 0
当 h 时;见图(a)
t
th
t t h
(a)
由于区间 ( t , t h) 与区间 ( t , t h)
满足下列条件,则称作为随机电报信号。 ㈠ 相继取值+I或-I , 且
1 P{ X ( t ) I } P{ X ( t ) I } 2 ㈡ 在任意区间 [t, t ) 内信号变化的次数
N ( t , t ) 服从泊松分布
( )k P{ N ( t , t ) k } e , k 0,1,2, k! 也即在区间 [0, t ) ,电报信号变化次数
2
其中, 为整数,故随机序列的均值
为常数, 相关函数仅与 有关。因此,它
是平稳随机序列。
例:设随机过程 X ( t ) a cos( 0 t ) 式中, a, 0 为常数, 是在 (0,2 ) 上 服从均匀分布的随机变量, 证明 X (t )是 平稳过程。 证: 由于
~ U (0,2 )
但正态过程例外,因为它的概率密度 函数可由均值和协方差矩阵完全确定。所 以,如果均值,自相关函数不随时间的推 移而变化,则概率密度函数也不随时间的 推移而变化。
例:设 { X n , n 0, 1, 2,} 是实的互不相 关随机变量序列, 且 E[ X n ] 0,D[ X n ] 2 , 试讨论随机序列的平稳性。 解: 因为 E[ X n ] 0, 而
一、严平稳随机过程及其数字特征 定义:随机过程 { X ( t ), t T } 若对整数n 任意的 t1 , t 2 ,, t n T 以及任意的实数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平稳随机过程及其数字特征
平稳随机过程
粗略的说——随机过程的统计特征不随时间的推移而变化。

一.严平稳随机过程
1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1<t2<…<tn ,(ti ∈T )时刻的n 个状态的n 维概率密度,不随时间平移Δt 而变化。

(Δt 为任意值)
12121212(,,...,;,,...,)
(,,...,;,,...,)
X n n X n n f x x x t t t f x x x t t t t t t =+Δ+Δ+Δ则称该过程为严平稳随机过程(或狭义平稳过程)。

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数
综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。

a):一般在实用中,只要产生随机过程的主要物理条件,在时间
进程中不变化。

则此过程就可以认为是平稳的。

例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。

12121212
12
1
21212
2
2
2
(,)(,;)()
(,)()()(,;)()()(0)(0)[()]
X X X X X
X X X X X
X X X X R t t x x f x x dx dx R C t t x m
x m f x x dx dx C R m C R m D X t τττττσ=⋅==−−==−=−==∫∫∫∫
∞<)]([2
t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。

即在观测的有限时间段内,认为是平稳过程。

因此,工程中平稳过程的定义如下:
二、宽平稳过程1、定义
若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数
R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关
则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。

可见:一个均方值有限的严平稳过程,一定是宽平稳过程。

反之:一个宽平稳过程,则不一定是严平稳过程。

c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。

即:讨论与过程的一、二阶矩有关的问题。

对于随机过程X(t)=αcos(ωot+ϕ)而言,当ϕ在(0,2 π)或(-π,π) 上均匀分布时,X( t )是平稳的。

当ϕ在(0,π)上或ϕ在(0,π/2) 上均匀分布时,X(t) 是非平稳过程。

因为当ϕ在(0,π)上均匀分布时,E[X(t)]=(-2 α/ π)sin ωot≠常数
当ϕ在(0,π/2) 上均匀分布时,E[X(t)]=2 α/ π(sin ωo t-cosωo t) ≠常数τ。

相关文档
最新文档