第十二章 平稳随机过程2012

合集下载

随机过程及其平稳性

随机过程及其平稳性
称为1 和 2 的“协方差”(Covariance)。
24
• 相关系数
设随机变量 1和 2 的均值和方差都存在,则
1 2
E[(1 E(1))(2 E(2 ))] Var(1) Var(2 )
4
2
0
-2
-4
200
400
600
800
1000
Z2
12
非平稳时间序列图形
4. 0 3. 5 3. 0 2. 5 2. 0 1. 5 1. 0
1000
2000
3000 GER
4000
5000
6000
13
趋势平稳时间序列图形
1000 800 600 400 200 0 36 38 40 42 44 46 48 50 52 54 CAPAR 14
15
在Workfile中,Object/New object/,并给序列命名(比如
x,y),ok.
• 点击序列x或y的图标,输入数据。 • Quick/Graph/Line Graph
16
序列y的图形
12000 10000
8000 6000 4000 2000
0 82 84 86 88 90 92 94 96 98 00 02 Y
一、随机过程及其概率分布
(一)随机过程定义
设T为某个时间集,对t T,取xt为随机变量,
对于该随机变量的全体xt ,t T
• 当取T为连续集,如T (,)或T [0,)
等,则称xt 为随机过程 • 当取T为离散集,如T , 2,1,0,1,2, 或 T 1,2, 等,则称xt 为随机序列。T代表时间
例1 用图形判断某地区人均收入
和人均消费数据的平稳性(数据 见教材例3-1)

平稳随机过程的概念

平稳随机过程的概念

所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3
考虑随机电报信号 x( t ) I
信号X ( t )由只
取 I或 I
o
I
t
的电流给出 .
这里 P{ X ( t ) I } P{ X ( t ) I } 1 / 2
而正负号在区间 ( t , t )内变化的次数N ( t , t )
2. 广义平稳过程
{ X ( t ), t T }, 如果对任意 定义1 给定二阶矩过程
t,t T :
E[ X ( t )] X
(常数)
E[ X ( t ) X ( t )] RX ( )
则称{ X ( t ), t T }为宽平稳过程, 或广义平稳过程 .
其中A是服从瑞利分布的随机 变量, 其概率密度为
a e f (a ) 2 0,
a2 2 2
, a0 a0
是在(0,2π )上服从均匀分布且与 A 相互独立的 随机变量, 是一常数,问X n ( t ) 是不是平稳过程?
解 因 E ( A)

a
2 2
即相关函数只与k l 有关,
所以它是宽平稳的随机序列.
如果 X1 , X 2 ,, X k ,是独立同分布的 , 则序列是
严平稳的.
例2 设s( t )是一周期为T的函数,是在(0, t )上服
从均匀分布的随机变量 , 称X (t ) s(t )为随机
相位周期过程. 试讨论它的平稳性 .
说明 (1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立. (2) 宽平稳的正态过程必定也是严平稳的.

平稳随机过程

平稳随机过程

所以,X(t), Y(t)为联合平稳的。 同样的方法可算得
RYX ( ) AB cos( ) 2
随机分析
引言
一、均方收敛及均方连续 二.随机过程的均方导数 三.随机过程的均方积分
一、均方收敛及均方连续
1.均方收敛的定义:设有二阶矩随机序列
{Xn,n=1,2,…}和随机变量X,E(X2)<+,若有
例2: 设X(t)=Asin(t+Θ),Y(t)=Bsin(t+Θ-),A,B,
, 为常数,Θ在(0,2)上服从均匀分布,求RXY()。
解: X(t),Y(t)均为平稳过程.
RXY ( ) E[ X (t )Y (t )]
E[ A sin( t )B sin( t )]
0
1
1 1 1 [cos2 m x cos2 ( 2n m ) x ]d x 2 2 0 0
m0 m0
只与m有关,所以 {Xn}为平稳序列。
例4:考虑随机电报信号,信号X t 由只取 I 或 I的电流给出。 P X t I 1 , 2 而正负号在区间 t , t 内变化的次数N t , t 是随机的, 且假设N t , t 服从泊松分布,即: e P N t, t k k 0,1, 2, k! 其中 0是单位时间内变号次数的数学期望,
上述结果与t 无关,故若τ<0时,只需令t=t+τ,则有
E[ X ( t ) X ( t )] E[ X ( t ' ) X ( t ' )] E[ X ( t ' ) X ( t ' | |)] I 2e 2| | 故这一过程的自相关函数为

Ch12-平稳随机过程

Ch12-平稳随机过程

例 2 . 随机相位正弦波 X t aCos t , RV : f
1 2
, 0 2
试讨论平稳性
sol . X t 0 E X t X t E a a a
2
a R X t1 , t 2 Cos R X 2 随机相位正弦波为(宽 )平稳 sp
p p

T T
U x X t dt P X t x F1 x — — 分 布 函 数 各 态 历 经
p
(4).(1) 和 (2) — — 平 稳 过 程 各 态 历 经
例1 讨论随机相位正弦波的平稳性和各态历经性
1 随机相位正弦波 X t aCos t , RV : f , 0, 2 2 sol. 1: 平稳性

Fn x1 ,..., x n ; t1 ,..., t n Fn x1 ,..., x n ; t1 ,..., t n
2.严平稳过程的分布与数 字特征 1:一维分布 ,F1 x; t1 F1 x; t1 , f1 x; t1 f1 x;0 f1 x — —与 t 无关 则均值: EX t1 x1 f1 x1; t dx1 x1 f1 x dx1 X
( ) I e I 2 e 2 k 0关 , 故 若 τ<0 时 , 只 需 令 t ’=t+ τ,则有 E[X(t)X(t+τ)] =E[X(t`)X(t`+ τ )]= I2 e-2λ∣τ∣
图12-2
故这一过程的自相关函数为 E[X(t)X(t+τ)]= I2e-2λ∣τ∣ 它只与τ有关。因此随机电报信号X(t)是 一平稳过程。其图形如上图所示

平稳随机过程和各态历经过程ppt课件

平稳随机过程和各态历经过程ppt课件

当两个随机过程 X (t)和Y (t)分别是广义 平稳过程时 , 若它们的互相关函数满 足 :
RXY (t1, t1 ) E[ X (t1)Y (t1 )] RXY ( )
则称X (t)和Y (t)是联合广义平稳过程 , 或 称为联合宽平稳过程 .
各态历经性
• 平稳随机过程在满足一定条件下有一个 有趣而又非常有用的特性, 称为“各态 历经性”。
X (t)Y (t ) lim 1 T 2T
T
T X (t)Y (t )dt RXY ( )
则称它们是联合各态历经过程.
• 平稳随机过程的定义说明:当取样点在时 间轴上作任意平移时,随机过程的所有有 限维分布函数是不变的。
• 推论:一维分布与时间t无关, 二维分布 只与时间间隔τ有关。从而有
E[ (t)] x1 f1( x1, )dx1 a
• R(t1, t2)=E[ξ(t1)ξ(t1+τ)]
=R(t1, t1+τ)=R(τ)
随机过程的各个样 本函数都同样地经 历了随机过程的各 种可能状态,因此 从随机过程的任何 一个样本函数就能
得到随机过程的全部统计信息,任何一个样本函 数的特性都能充分地代表整个随机过程的特性。
1. 对于二阶平稳过程X (t), 若X (t) E[ X (t)] mX以概 率1成立,则称随机过程X (t)的均值具有各态历经性.
X (t) X (t ) lim 1
T
X (t) X (t )dt
T 2T T
3、 若X (t)的均值和自相关函数都具有各态历经性,
且X (t)是广义平稳过程,则称X (t)是广义各态历经 过程, 简称为各态历经过程.
4、 如果两个随机过程X (t)和Y (t)都是各态历经过程,

2.2 平稳随机过程

2.2 平稳随机过程
(2.2 - 1) 则称ξ(t) 是平稳随机过程。该定义说明,当取样点在时间轴 上作任意平移时,随机过程的所有有限维分布函数是不变的, 具体到它的一维分布, 则与时间t无关, 而二维分布只与时间间 隔τ有关,即有
2016/9/6 1
第2章
随机过程 f1(x1, t1)=f1(x1) (2.2 - 2)
2016/9/6
16
第2章
随机过程
根据上述关系式及自相关函数R(τ)的性质,不难推演功 率谱密度Pξ(ω)有如下性质: (1) Pξ(ω)≥0,非负性; (2.2 - 20) (2)Pξ (-ω)= Pξ(ω),偶函数。 (2.2 - 21)
因此, 可定义单边谱密度Pξ(ω)为
2 P ( ) P 1 ( ) 0
(2.2-15)
(2.2-16)
虽然式(2.2 - 15)给出了平稳随机过程ξ(t)的功率谱密度
Pξ(ω),但我们很难直接用它来计算功率谱。那么,如何方便
地求功率谱Pξ(ω)呢? 我们知道,确知的非周期功率信号的自 相关函数与其谱密度是一对傅氏变换关系。对于平稳随机过
程,也有类似的关系,即
j P ( ) R ( )e d
当均值为0时,有R(0)=σ2。
2016/9/6
10
第2章
随机过程
2.2.4平稳随机过程的功率谱密度
随机过程的频谱特性是用它的功率谱密度来表述的。我们
知道,随机过程中的任一实现是一个确定的功率型信号。而对 于任意的确定功率信号f(t),它的功率谱密度为
Pf ( ) lim
T
FT ( ) T
平稳随机过程在满足一定条件下有一个有趣而又非常有 用的特性, 称为“各态历经性”。这种平稳随机过程,它的 数字特征(均为统计平均)完全可由随机过程中的任一实现 的数字特征(均为时间平均)来替代。也就是说,假设x(t)是 平稳随机过程ξ(t)的任意一个实现,它的时间均值和时间相关 函数分别为

平稳随机过程及其遍历性

平稳随机过程及其遍历性
1.3 平稳随机过程及其遍历性
, z,t) x x x 平稳性:若一个函数 f (x, y,当 , x f (x, y , z,t) f( x, y, z,t) 的特性不变,就称 关于 函数是平稳的。
对确定函数来说:特性不变指函数值不变。 对随机过程来说:特性不变指统计特性不变, 且仅仅对时间变量t而言。 分类 严格平稳 宽平稳(广义平稳)
1
随机过程可分为平稳和非平稳两大类, 严格地说, 所 有信号都是非平稳的, 但是, 平稳信号的分析要容易得 多, 而且在电子系统中, 如果产生一个随机过程的主要 物理条件在时间的进程中不改变, 或变化极小, 可以忽 略, 则此信号可以认为是平稳的. 如接收机的噪声电压
信号, 刚开机时由于元器件上温度的变化, 使得噪声电
f ( x , t t ) f ( x , t ) f ( x , 0 ) f ( x ) X 1 1 X 1 1 X 1 X 1
4
随机过程X(t)的均值,均方值和方差都是平稳的
都与时间t无关
E[ X (t)] xf X (x)dx mX
2 E[ X (t)] x2 f X (x)dx X 2 2 D[ X (t)] (x mX )2 f X (x)dx X

5
f ( x , , x , t t , , t t ) f ( x , , x , t , , t ) X 1 n 1 n X 1 n 1 n
二阶平稳(n=2)
严平稳随机过程的二维概率密度只与 t1, t2的 时间间隔有关,而与时间起点无关。
时,二维概率密度: n 2 , t t , t t 1 2 1

则称X(t)为宽平稳或广义平稳随机过程。 严平稳与宽平稳的关系: 一定 严格平稳 广义平稳 不一定 当随机过程满足高斯分布时,严平稳和宽平稳是等价的。

平稳随机过程

平稳随机过程

相关时间:
0 rX ( )d
0

rX ( )
1
rX ( 0 ) 0.05
0
0

相关时间示意图
2.3 平稳随机过程
4 2 0 -2 -4
10 5 0 -5 -10
0
50
100
0
50数
0 100
相关时间越长,反映随机过程前后取值之间的依 赖性越强,变化越缓慢,相关时间越小,反映随 机过程前后取值之间的依赖性越弱,变化越缓慢
2 mX RX 2 () 100 2
2 2 X RX (0) mX 200
E[ X 2 (t )] RX (0) 300
2.3 平稳随机过程
3 相关系数及相关时间 也称为归一化协 方差函数或标准 协方差函数。
相关系数:
rX ( )
K X ( )

2 X

2 RX ( ) mX 2 X
for Nk k=2 称为二阶严平稳,如果对N=k成立,那么对N<k也成立. (2) 渐近严平稳 当c时,X(t+c)的任意n维分布与c无关,即
lim f X ( x1 , x2 , , xN , t1 c, t2 c, , t N c)
c
存在,且与c无关.
(3) 循环平稳 如果X(t)的分布函数满足如下关系
2.3 平稳随机过程
1 平稳随机过程的定义 严格 平稳 随机 过程 如果随机过程的任意n维分布不随时间起 点变化,即当时间平移时,其任意的n维 概率密度不变,则称是严格平稳的随机过 程或称为狭义平稳随机过程。
f X ( x1 ,, xn , t1 t ,, t n t ) f X ( x1 ,, xn , t1 ,, t n )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18

解: E[ X ( t )] E[sin( 2t )]
sin( 2 t ) f ( )d
1
sin( 2 t )d 0
0
RX (t , t ) E[ X (t ) X (t )] sin(2t ) sin[2 (t )]d
1 RX ( t , t ) T
记成

t T
t
s( ) s( )d RX ( ).

所以, 随机相位周期过程是平稳的. 特别,
随机相位正弦波是平稳的.(第十章§2例
2).
12
例3 X(t) =Ycos(t)+Zsin(t), t > 0, Y, Z相 互独立, E(Y) = E(Z) = 0, D(Y) =D(Z) =2. 讨论随机过程{X(t), t > 0}的平稳性. 解 E[ X ( t )] E[Y cos( t ) Z sin( t )] cos( t ) E (Y ) sin( t ) E ( Z ) 0.

5

由第十章(2.7)式, 协方差函数: CX(t1, t2 ) = E{[X(t1) - μX(t1)][X(t2) - μX(t2)]} = RX(t1, t2 ) - μX(t1)μX(t2). 那么, 协方差函数可以表示为: CX() = E{[X(t) - μX][X(t +) - μX]} = RX() - μX ² 特别地, 令 =0,由上式,有


依照图10-4的意义, 可以知道,平稳过程的 所有样本曲线都在水平直线 x(t ) X 上下 波动, 平均偏离度为 X .
4
又若平稳过程X(t)的自相关函数 RX(t1, t2 ) = E[X(t1) X(t2)] 存在. 对n = 2, 在(1.1)式中, 令h= - t1 , 由 平稳性定义, (X(t1), X(t2))与(X(0), X(t2 - t1)) 同分布. 于是 RX(t1, t2 ) = E[X(t1)X(t2)] = E[X(0)X(t2 - t1)]. 记为 RX(t1, t2 ) = RX(t2 - t1) 或 RX(t, t + ) = E[X(t)X(t +)] = RX( ) . 这表明:平稳过程的自相关函数是时间差 t2 - t1 = 的单变量函数.
负号在区间(t , t )内变化的次数N (t , t )是随机的, 且假设N (t , t )服从泊松分布,即事件 ( ) k Ak {N (t , t ) k}的概率为P( Ak ) e , k 0,1 k! 其中 0是单位时间内变号次数的数学期望。 试讨论X (t )的平稳性。
13
cos( t ) cos( s ) E (Y 2 ) sin ( ( t s ))E (YZ ) sin ( t ) sin ( s ) E ( Z 2 ) cos( t ) cos( s ) D(Y ) sin ( t s ) E (Y ) E ( Z ) sin ( t ) sin ( s ) D( Z ) cos( t ) cos( s ) sin ( t ) sin ( s )

21

事实上, E[W(t)]= E[X(t)] + E[Y(t)] = 常数.
E[W ( t )W ( t )] E {[ X ( t ) Y ( t )][X ( t ) Y ( t )]} E[ X ( t ) X ( t ) X ( t )Y ( t ) Y ( t ) X ( t ) Y ( t )Y ( t )] E[ X ( t ) X ( t )] E[ X ( t )Y ( t )] E[Y ( t ) X ( t )] E[Y ( t )Y ( t )] RX ( ) RXY ( ) RYX ( ) RY ( ) RW ( )

RX ( t , s ) E[ X ( t ) X ( s )] E[(Y cos( t ) Z sin ( t ))(Y cos( s ) Z sin ( s ))] E[cos( t ) cos( s )Y sin ( ( t s ))YZ
2
sin ( t ) sin ( s ) Z 2 ]
2 , 0 R X ( n , n ) E [ X n X n ] 0 , 0
所以, {Xn, n = 0, 1, 2,}是平稳随机序 列.
15

例5 考虑随机电报信号,信号X(t)由只取+I和-I 的电流给出,X(t)取正负的概率各为1/2;而正
16
显然,E[ X (t )] 0, 下面计算E[ X (t ) X (t )]
设 0,电流有可能在(t , t )时间内变号偶次或奇次,即 X (t ) X (t ) I 2或-I 2 , 而事件{X (t ) X (t ) I 2 }发生概率 P( A0 ) P( A2 ) P( A4 ) 而事件{X (t ) X (t ) I 2 }发生概率 P( A1 ) P( A3 ) P( A5 ) , 于是
0 1
1 1 {cos(2 ) cos[2 (2t ) ]}d 2 0
19
1 , 0 2 0 , 0
所以X(t)是平稳过程. 如果同时把两个平稳过程X(t)、Y(t)同时 送到加法器的输入端,则加法器的输出为 Z(t)=X(t)+Y(t),问题:Z(t)是否平稳?

3
平稳过程数字特征的特点. 设平稳过程X(t)的均值函数E[X(t)]存在. 对n=1, 在(1.1)式中, 令h= - t1 , 由平稳性 定义, X(t1)和X(0) 同分布. 于是 E[X(t)] = E[X(0)], 记为 X 同样, X(t)的均方值函数和方差函数亦为 2 2 常数, 分别记为 X 和 X
7

若T为离散集, 称平稳过程{X(t), t T }为 平稳序列. 广义平稳过程
严平稳过程 严平稳过程
二阶矩存在

严平稳过程
广义平稳过程 广义平稳过程
8
正态过程

例1 设{Xk , k = 1,2,…}是互不相关的随机变量 序列, E[Xk ] = 0, E[Xk ² ] = σ² , 则有
t1, t2,, tnT, t1+h, t2 +h,,tn+h T,
若(X(t1), X(t2),, X(tn))与
(X(t1+h), X(t2 +h),, X(tn+h)) (1.1)
有相同的分布函数,则称{X(t),t T }为平稳 随机过程,或简称平稳过程.
2
在实际问题中, 确定过程的分布函数, 并 用它来判定其平稳性,一般是很难办到的. 但是, 对于一个被研究的随机过程, 如果 前后的环境和主要条件不随时间的推移 而变化, 则一般就可以认为是平稳的. 恒温条件下的热噪声电压过程; 强震阶段的地震波幅; 船舶的颠簸过程; 照明电网中电压的波动过程; 各种噪声和干扰等等.
2 2
cos((s t ) )
2 2
cos( )
所以{X(t), t T }为宽平稳过程.
14

例4 设 {Xn, n = 0, 1, 2,} 是实的互 不相关随机变量序列,且E(Xn)=0, D(Xn) = 2 . 讨论随机序列的平稳性. 解 因为E(Xn) = 0,
2 2 X C X (0) RX (0) X
6

• • • •
定义2 给定二阶矩过程{X(t), t T }, 如果 对任意 t, t + T E[X(t)] = μX (常数), E[X(t) X(t +)] = RX( ), 则称{X(t), t T }为宽平稳过程, 也称广义平稳 过程. 简称平稳过程. 相对地, 前述按分布函数定义的平稳过程称为 严平稳过程或狭义平稳过程. 一个严平稳过程只要二阶矩存在, 则它必定也 是宽平稳过程. 但反过来, 一般是不成立的. 特例: 一个宽平稳的正态过程必定也是严平稳. 泊松过程和维纳过程是非平稳过程.
§12.1 平稳随机过程的概念
在实际中, 有相当多的随机过程,
不仅它现在的状态, 而且它过去的状态,
都对未来状态的发生有着很强的影响.
有这样一类随机过程, 即所谓平稳过程, 它的特点是: 过程的统计特征不随时间 的推移而变化.严格地说,有下面的定义.
1
平稳随机过程的定义

定义1 设{X(t), t T }是随机过程,如果对任 意常数 h 和正整数 n,
解 由假设, Θ的概率密度为


1 / T , 0 T , f ( ) 其它. 0, 于是, X(t)的均值函数为
1 E[ X ( t )] E[ s( t )] s( t ) T d 0 T
1 T

t T
t
s( )d
10

利用s(φ)的周期性, 可知 1 T E[ X ( t )] s( )d 常 数. T 0 而自相关函数

R X ( t , t ) E[ s( t ) s( t )]
T 0
1 s ( t ) s ( t ) d T
1 T

t T
t
s( ) s( )d .
11

同样, 利用s(φ) s(φ + τ)的周期性, 可知自 相关函数 仅与τ有关, 即

20
联合平稳随机过程
定义3 设{X(t), t T }和{Y(t), t T }是两 个平稳过程,如果它们的互相关函数 E[X(t)Y(t +)] 和E[Y(t)X(t +)]仅与 有关, 而与 t 无关,则称X(t)和Y(t)是平稳相关 的, 或称这两个过程是联合(宽)平稳的. RXY(t, t +) = E[X(t)Y(t +)] = RXY(), RYX(t, t +) = E[Y(t)X(t +)] = RYX(). • 当X(t)和Y(t)是联合平稳随机过程时, W(t) = X(t) +Y(t)是平稳随机过程.
相关文档
最新文档