平面向量的加法

合集下载

平面向量的加法

平面向量的加法

平面向量的加法
平面向量的加法是指将两个向量首尾相接,从而得到一个新的向量。

具体方法如下:
假设有两个向量A和B,则它们可以用下列形式表示:
A = (Ax, Ay)
B = (Bx, By)
其中Ax、Ay分别为向量A在x轴和y轴上的投影长度,Bx、By 同理。

则向量A+B可以表示为:
A +
B = (Ax+Bx, Ay+By)
这意味着在平面直角坐标系中,我们可以先将向量A画成一个箭头,再将向量B按照同样的比例和方向放置在A的末端,最终从原点出发连接A与B的末端所得到的向量C就是A+B。

例如,如果向量A的坐标为(3, 2),向量B的坐标为(1, -4),则向量A+B的坐标为(4, -2)。

我们可以在平面坐标系中先画出向量A,然后根据向量B的坐标,在A的末端处画出一个与A长度为1:2且方向相同的线段,将其延长至与x轴、y轴相交。

最后,从原点连线连接A的起点和B的末点,即可得到向量A+B。

需要注意的是,向量加法满足交换律和结合律,即A+B = B+A,(A+B)+C = A+(B+C)。

平面向量的运算

平面向量的运算

平面向量的运算平面向量在数学中是一种重要的概念,它们被广泛应用于几何学、物理学等领域。

平面向量的运算是平面向量的基本操作,包括加法、减法、数量乘法(或标量乘法)和向量乘法(或点乘、叉乘)等。

下面将分别对这些运算进行详细介绍。

一、平面向量的加法平面向量的加法定义简单,即对应元素相加。

假设有两个平面向量A和A,它们的加法表示为:A + A = (A₁ + A₁, A₂ + A₂)其中,A₁和A₂分别为向量A的两个分量,A₁和A₂分别为向量A的两个分量。

通过按照上述规则进行相应的运算,可以得到向量的和。

二、平面向量的减法平面向量的减法类似于加法,即对应元素相减。

假设有两个平面向量A和A,它们的减法表示为:A - A = (A₁ - A₁, A₂ - A₂)其中,A₁和A₂分别为向量A的两个分量,A₁和A₂分别为向量A的两个分量。

通过按照上述规则进行相应的运算,可以得到向量的差。

三、平面向量的数量乘法平面向量的数量乘法指的是一个向量与一个标量(实数)的乘法。

假设有一个平面向量A和一个标量A,它们的数量乘法表示为:AA = (AA₁, AA₂)其中,A₁和A₂分别为向量A的两个分量。

通过按照上述规则进行相应的运算,可以得到向量与标量的乘积。

四、平面向量的向量乘法平面向量的向量乘法分为点乘和叉乘两种情况。

点乘,也称为数量积或内积,是两个向量相乘后再求和得到一个标量的运算。

假设有两个平面向量A和A,它们的点乘表示为:A·A = A₁A₁ + A₂A₂其中,A₁和A₂分别为向量A的两个分量,A₁和A₂分别为向量A的两个分量。

点乘的结果是一个标量。

叉乘,也称为向量积或外积,是两个向量相乘后得到一个新向量的运算。

假设有两个平面向量A和A,它们的叉乘表示为:A×A = (A₂A₃ - A₃A₂, A₃A₁ - A₁A₃, A₁A₂ - A₂A₁)其中,A₁、A₂和A₃分别为向量A的三个分量,A₁、A₂和A₃分别为向量A的三个分量。

平面向量的运算规则

平面向量的运算规则

平面向量的运算规则平面向量是研究平面上有大小和方向的量,常用于解决几何问题和物理问题。

为了对平面向量进行运算,我们需要了解平面向量的运算规则。

本文将介绍平面向量的加法、减法、数乘和数量积的运算规则,以及向量的共线性和平行性。

一、平面向量的加法规则对于平面上的两个向量A和A,它们的加法规则如下:A + A = A + A即向量的加法满足交换律。

二、平面向量的减法规则对于平面上的两个向量A和A,它们的减法规则如下:A - A≠ A - A向量的减法不满足交换律。

减法运算可以通过将减法转化为加法进行计算:A - A = A + (-A)其中,-A表示向量A的反向向量,即大小相等,方向相反。

三、平面向量的数乘规则对于平面上的向量A和一个实数A,它们的数乘规则如下:AA = AA即数乘满足交换律。

数乘后的向量与原向量大小相等,方向与原向量平行或反向。

四、平面向量的数量积规则平面向量的数量积又称为点积或内积。

对于平面上的两个向量A和A,它们的数量积规则如下:A·A = AA cosθ其中,A·A表示向量A和A的数量积,AA为A和A的模的乘积,θ为A和A之间的夹角。

根据数量积的定义,我们可以得到以下结论:1. 若A·A = 0,则A与A垂直,即A和A互相垂直。

2. 若A·A > 0,则A与A夹角为锐角。

3. 若A·A < 0,则A与A夹角为钝角。

五、平面向量的共线性和平行性对于平面上的两个向量A和A,它们的共线性和平行性判断规则如下:1. 共线性判断:若存在一个实数A,使得A = AA,则A与A共线,且方向相同或相反。

2. 平行性判断:若A与A共线且方向相同或相反,则A与A平行。

总结:平面向量的运算规则包括加法、减法、数乘和数量积。

其中,加法满足交换律,减法不满足交换律,数乘满足交换律。

数量积可以判断向量的垂直性和夹角的锐钝性。

同时,共线性和平行性的判断也是平面向量运算中的重要内容。

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则平面向量是二维的有方向和大小的量,通常用箭头表示。

在平面上,我们可以进行平面向量的加法、减法、数乘、点乘和叉乘等运算,下面将详细介绍这些运算法则。

1.平面向量的加法:设有平面向量A和B,表示为⃗A和⃗B,其加法运算为:⃗A+⃗B=⃗C,其中C是由A和B的箭头所形成的三角形的对角线的向量。

加法满足以下性质:-交换律:⃗A+⃗B=⃗B+⃗A-结合律:(⃗A+⃗B)+⃗C=⃗A+(⃗B+⃗C)2.平面向量的减法:设有平面向量A和B,表示为⃗A和⃗B,其减法运算为:⃗A-⃗⃗B=⃗C,其中C是由A的箭头指向B的箭头所形成的三角形的对角线的向量。

3.平面向量的数乘:设有平面向量A和实数k,表示为⃗A和k,其数乘运算为:k⃗A=⃗B,其中B的大小等于A的大小乘以k,方向与A相同(若k>0),或相反(若k<0)。

数乘满足以下性质:- 结合律:k(l⃗A) = (kl)⃗A-分配律:(k+l)⃗A=k⃗A+l⃗A4.平面向量的点乘(数量积):设有平面向量A和B,表示为⃗A和⃗B,其点乘运算为:⃗A · ⃗B = ABcosθ,其中A和B的夹角θ的余弦值等于点乘结果与两个向量大小的乘积的商。

点乘满足以下性质:-交换律:⃗A·⃗B=⃗B·⃗A-结合律:(⃗A+⃗B)·⃗C=⃗A·⃗C+⃗B·⃗C-数乘结合律:(k⃗A)·⃗B=k(⃗A·⃗B)特殊情况下:-若⃗A与⃗B垂直,即⃗A·⃗B=0,则称⃗A与⃗B是正交的或垂直的。

-若⃗A和⃗B非零,且⃗A·⃗B>0,则夹角θ为锐角。

-若⃗A和⃗B非零,且⃗A·⃗B=0,则夹角θ为直角。

-若⃗A和⃗B非零,且⃗A·⃗B<0,则夹角θ为钝角。

5.平面向量的叉乘(向量积):设有平面向量A和B,表示为⃗A和⃗B,其叉乘运算为⃗A × ⃗B = nABsinθ⃗n,其中n为垂直于A和B所在平面的单位向量,θ为A和B 的夹角。

平面向量的加法与减法

平面向量的加法与减法

平面向量的加法与减法在数学中,平面向量是用来描述平面上的位移和力的工具。

平面向量具有大小和方向两个特征,可以通过数学运算来完成加法和减法操作。

本文将详细介绍平面向量的加法和减法运算,并探讨其应用。

一、平面向量的表示方法平面向量通常用字母加箭头来表示,如AB→表示从点A到点B的位移向量。

平面向量还可以用坐标表示,如向量→AB的坐标表示为(ABx , ABy)。

其中,ABx表示向量在x轴上的分量,ABy表示向量在y轴上的分量。

二、平面向量的加法两个平面向量的加法是指将两个向量的对应分量相加的操作。

设有两个向量→AB和→CD,其坐标分别为(ABx , ABy)和(CDx , CDy)。

那么,向量→AB与→CD的和为→AB + →CD,其坐标为(ABx + CDx , ABy + CDy),即两个向量的横坐标分量相加得到新向量的横坐标,纵坐标分量相加得到新向量的纵坐标。

三、平面向量的减法平面向量的减法是指将一个向量减去另一个向量的操作。

设有两个向量→AB和→CD,其坐标分别为(ABx , ABy)和(CDx , CDy)。

那么,向量→AB减去向量→CD的差为→AB - →CD,其坐标为(ABx - CDx , ABy - CDy),即两个向量的横坐标分量相减得到新向量的横坐标,纵坐标分量相减得到新向量的纵坐标。

四、平面向量的应用平面向量的加法与减法在数学中有广泛的应用。

以下列举几个常见的应用场景:1. 位移问题:平面向量的加法可用于求解物体在空间中的位移问题。

通过将各个位移向量进行加法运算,可以得到物体的总位移向量。

2. 力的合成:力的合成是指多个力的作用下,合成后产生的力。

通过将各个力向量进行加法运算,可以得到合成力的大小和方向。

3. 航空航天:在航空航天领域中,平面向量的加法与减法被广泛运用于导航和控制系统中,用以计算飞行器的位置和速度。

4. 平面几何:平面向量的加法与减法在平面几何中也有重要应用。

平面向量的加法与减法性质

平面向量的加法与减法性质

平面向量的加法与减法性质平面向量是在平面内具有大小和方向的量,可以进行加法和减法运算。

平面向量的加法与减法性质是研究向量运算规律的重要内容。

一、平面向量的表示与加法1. 平面向量的表示平面向量通常用一个有向线段来表示,线段的长度代表向量的大小,箭头方向表示向量的方向。

用大写字母表示向量,例如 A、B、C。

2. 平面向量的加法平面向量的加法遵循平行四边形法则。

设有两个平面向量 A 和 B,A 的起点为 O,终点为 P,B 的起点为 P,终点为 Q,则向量 A+B 的起点为 O,终点为 Q,即 A+B 的表示是由 A 和 B 的起点连线和连接 A 的终点和 B 的起点的线段组成。

3. 平面向量的加法性质(1)交换律:A+B = B+A(2)结合律:(A+B)+C = A+(B+C)(3)零向量:对于任意向量 A,有 A+0 = 0+A = A,其中 0 为零向量,零向量的大小为 0,方向可以是任意方向。

二、平面向量的减法平面向量的减法运算可以转化为加法运算。

设有两个平面向量 A 和B,A 的起点为 O,终点为 P,B 的起点为 O,终点为 Q,则向量 A-B可以表示为向量 A 的起点为 O,终点为 Q,再将向量 B 倒转180°,起点为 Q,终点为 P,即 A-B = A+(-B)。

三、平面向量的性质1. 平面向量的加法性质(1)交换律:A+B = B+A(2)结合律:(A+B)+C = A+(B+C)(3)零向量:对于任意向量 A,有 A+0 = 0+A = A2. 平面向量的减法性质(1)减去一个向量等于加上该向量的相反向量:A-B = A+(-B)(2)零向量:对于任意向量 A,有 A-0 = A3. 平面向量的数乘性质平面向量的数乘运算是指将向量的大小和方向同时进行数倍的运算。

设有一个平面向量 A 和一个实数 k,则 kA 的大小为 |k|*|A|,方向与 A的方向相同(当 k>0)或相反(当 k<0)。

平面向量加减法口诀

向量的加法口诀: 首尾相连,首连尾,方向指向末向量。

以第一个向量的起点为起点,以第二个向量的终点为终点的向量是两向量的和向量。

二、向量的减法两向量做减法运算,图像如下图所示:向量的减法口诀: 首首相连,尾连尾,方向指向被减向量。

以第一个向量的终点为起点,以第二个向量的终点为终点的向量是两向量的差向量。

向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。

要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。

向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。

学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。

附一;三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。

注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。

平行四边形定则解决向量加法的方法实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ 3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.。

平面向量的加法和减法

平面向量的加法和减法平面向量是数学中一个重要的概念,它可以表示平面上的位置和方向。

在进行平面向量的运算时,加法和减法是两个最基本的操作。

本文将详细介绍平面向量的加法和减法的定义、性质和运算规则。

一、平面向量的定义平面向量是具有大小和方向的箭头,它可以表示平面上的位移或者方向。

平面向量通常用有向线段来表示,箭头的起点表示向量的起点,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

平面向量常用小写字母加上有向线段的箭头来表示,例如:AB →。

二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。

设有平面向量AB → 和CD →,它们的加法定义为:AB → + CD → = AD →。

即将向量AB → 的起点和向量CD → 的终点相连得到的向量AD → 就是它们的和向量。

三、平面向量的减法平面向量的减法是指将一个向量减去另一个向量得到一个新的向量。

设有平面向量AB → 和CD →,它们的减法定义为:AB → - CD → = AD →。

即将向量AB → 的起点和向量CD → 的终点相连得到的向量AD → 就是它们的差向量。

四、平面向量的运算规则1. 平面向量的加法满足交换律和结合律。

即对于任意两个向量AB→ 和CD →,有AB → + CD → = CD → + AB → 和(AB → + CD →) + EF → = AB → + (CD → + EF →)。

2. 零向量是一个特殊的向量,它表示大小为0的向量。

对于任意向量AB →,有AB → + 0 → = AB →。

3. 平面向量的减法可以转化为加法,即AB → - CD → = AB → + (-CD →),其中-CD → 表示向量CD → 的反向大小相等的向量。

4. 如果两个向量的大小相等,并且方向相反,则它们相互抵消,和向量为零向量。

即如果AB → = -CD →,则AB → + CD → = 0 →。

5. 平面向量的加法和减法可以通过图形法或坐标法进行计算。

平面向量的加减运算

平面向量的加减运算平面向量是表示平面上的有向线段的数学工具,常用于描述位移、速度、力等物理量。

在平面向量的运算中,加法和减法是最基本的操作。

1. 加法运算平面向量的加法运算是指将两个向量相加得到一个新的向量的操作。

设有向量A(A₁, A₂)和向量A(A₁, A₂),则它们的和为向量A(A₁,A₂),即:A = A + A = (A₁ + A₁, A₂ + A₂)2. 减法运算平面向量的减法运算是指将一个向量减去另一个向量得到一个新的向量的操作。

设有向量A(A₁, A₂)和向量A(A₁, A₂),则它们的差为向量A(A₁, A₂),即:A = A - A = (A₁ - A₁, A₂ - A₂)在进行平面向量的加减运算时,我们可以利用向量的坐标表示进行计算。

具体操作如下:1. 给出需要进行加减运算的向量A和向量A的坐标表示。

2. 将两个向量的对应坐标进行相加(或相减),得到新的坐标。

3. 根据得到的新坐标,构造新的向量A(加法运算)或向量A(减法运算)。

4. 最后,将新的向量A(加法运算)或向量A(减法运算)的坐标表示写出,即完成了平面向量的加减运算。

补充说明:1. 在计算过程中,要注意坐标的顺序,确保符号对应正确。

2. 加法运算和减法运算可以通过相互转化来进行,即:A + A = A - ( - A)3. 若有多个向量进行加减运算,可以采用逐步进行的方法,先进行第一对向量的运算,然后将得到的结果与下一个向量进行运算,依次类推。

4. 在实际问题中,应用到向量加减运算时,可以结合图像进行解释和计算,更直观地理解向量的运算规律。

通过以上步骤,我们可以完成平面向量的加减运算。

在实际应用中,平面向量的加减运算常常用于解决平面几何和物理学中的问题,如位移、速度、力的合成分解等。

总结:平面向量的加减运算是指将两个向量相加或相减得到一个新的向量。

通过计算向量的各个坐标,然后进行相应的加减操作,我们可以得到最终的结果。

平面向量的加法和减法运算

平面向量的加法和减法运算在数学中,平面向量是指具有大小和方向的量,常用箭头来表示。

平面向量的加法和减法是两个基本操作,它们可以帮助我们描述和解决各种与方向和位移相关的问题。

本文将详细介绍平面向量的加法和减法运算方法,以及一些实际应用。

一、平面向量的表示平面向量通常使用有序对来表示,如AB。

其中,A和B分别表示向量的起点和终点。

我们可以用箭头来表示向量的方向,箭头的长度则表示向量的大小。

例如,AB向量可以表示为→AB。

二、平面向量的加法运算平面向量的加法运算可以用三角法和平行四边形法两种方法进行。

1. 三角法三角法是一种简单直观的计算平面向量加法的方法。

首先,我们将两个向量的起点放在一起,然后从第一个向量的终点画一条箭头指向第二个向量的终点。

这样,连接起点和终点的箭头便表示了两个向量相加的结果。

2. 平行四边形法平行四边形法是另一种常用的计算平面向量加法的方法。

我们需要将两个向量的起点放在一起,然后将它们的终点连接起来,形成一个平行四边形。

此时,从共同起点到对角线上的交点的箭头便表示了两个向量相加的结果。

三、平面向量的减法运算平面向量的减法运算可以通过将减去的向量取其相反向量并进行加法运算来实现。

假设有两个向量AB和CD,我们可以将CD取其相反向量-CD,然后将AB与-CD进行加法运算。

实际上,减法运算也可以表示为向量加上其相反数。

四、平面向量运算的性质平面向量的加法和减法满足以下性质:1. 交换律:A + B = B + A2. 结合律:(A + B) + C = A + (B + C)3. 加法单位元:0 + A = A + 0 = A(其中0为零向量)4. 加法逆元:A + (-A) = (-A) + A = 05. 减法定义:A - B = A + (-B)五、平面向量运算的应用平面向量的加法和减法运算在几何、物理等领域中有广泛的应用。

1. 位移和方向:平面向量的加法可以用来描述一个物体在平面上的位移和方向变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
A


AC 叫做 a

b
的和,
B
例1已知向量a , b, 求作向量 ab
b a
作法(1)在平面内任取一点A
(2)作 AB a ,BC b
(3)则AC a b
这种作法叫做向量加法

B
的三角形法则
C
当向量a, b为共线向量时, a b又如何作出来?
思考:当向量a, b为共线向量时, a b又如何作出来?
解:如图,设AD 表示船向垂直于对岸行驶的速度 AB 表示水流的速度,以AD、AB为邻边作平行四边形 ABCD,则AC就是船实际航行的速度。
在Rt△ABC中, | AB| 2, |BC| 2 3
| AB| 2, |BC | 2 3 | AC |
2 2
D
C
|AB | |AC| 4

|a+b|=|a|-|b|; |a+b|=|b|-|a|
若|a|<|b|,则a+b的方向与b相同,且
(1)研究向量是否满足交换律:
ab ba
作法: 作平行四边形ABCD ,使AB a, AD b
abc
A
bc
ab
c
C
例子
a
B
(a b) (c d ) (b d ) (a c) a b c d [d (a c)] b
b
例2:如图,一艘船从A点出发以2 3 km 的速度向垂直于对岸 h 的方向行驶,同时河水的流速为2 km ,求船实际航行速度的 h 大小和方向。(用与水流速间的夹角表示)
|BC | 3
A
B
| AB| CAB 60
又tanCAB
四、课堂练习
一、用三角形法则求向量的和 ( 2)
b
a bb
a
(4)
ab
a
b b
二、用平行四边形法则求向量的和
( 1)
b
(2)
ab b a
Hale Waihona Puke b aaba三、看图填写
ad cb
D
d
C
O
c
b
A
a
B
ab ba ( a b ) c a ( b c)
1.三角形法则
2.平行四边形法则
教学目的:
1、掌握向量加法的定义,会用向量加法的三角形法则和 平行四边形法则作两个向量的和向量; 2、掌握向量加法的交换律和结合律,并会用它们进行向 量计算; 3、通过向量加法的三角形法则和平行四边形法则的学习, 增强学生的识图和作图能力,为今后用数形结合的方法解 题奠定基础。 重点: 向量加法的三角形法则和平行四边形法则 难点:对向量加法的定义的理解。
(1)一人从A到B,再从B按原方向到C,则两次的位移之和 AB BC 是 AC A B C



(2)飞机从A到B,再改变方向从B到C,则两次的位移的和 AB BC 应 是: AC C A B (3)船的速度为 A B ,水流的速度为 BC ,则两个速度的和 AB BC B C 是: AC
课前练习:(留作后用)
请画出下列非零向量: 1、两不共线向量
a a b b a
b
2、两同向向量
3、两反向向量
新课: 一、向量的加法:
已知向量 a 、 b

,在平面内任取点A,作

AB a , BC b ,
则向量
a b
记作 : a b , 即 : a b AB BC AC
则 BC b,DC a
依作法有: AC AB BC a b AC AD DC b a D
a b
C
b a
A
b a
B
(2)研究向量是否满足 结合律:
(a b) c a (b c)
D
由此可推广到多个向量 加法运算可按照任意的 次序与任意的组合进行
(1)向同
a
(2)反向
a
b
A B C B
b
C A
AC a b
AC a b
注: a 0 0 a a
说明:①两个向量的和仍是一个向量;

②当向量a与b不共线时,a+b的方向与a,b不同向, 且|a+b|<|a|+|b|
③当a与b同向时,则a+b、a、b同向,且|a+b|=|a|+|b| 当a与b反向时,若|a|>|b|,则a+b的方向与a同向,且

由此得什么结论?
A
AB BC AC
(1)向同
a
(2)反向
a
b
A B C B
b
C A
AC a b
AC a b
相关文档
最新文档