PKPM 软件计算结果分析详细说明

合集下载

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析分析与设计参数定义一.总信息1.墙元细分最大控制长度:墙元细分时需要的一个参数,对于尺寸较大的剪力墙,小墙元的边长不得大于给定的限制Dmax,程序限定1.0≤Dmax≤5.0,隐含值Dmax=2.0,Dmax=2.0.对一般工程,Dmax=2.0对于框支剪力墙结构,Dmax=1.5或者1.02.对搜有楼层强制采用刚性楼板假定当计算结构位移比时,需要选择此项。

除了位移比计算,其他的结构分析,设计不应选择此项。

3.墙元侧向节点信息这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”墙元的变形协调性好,分析结果符合剪力墙的实际,但计算量较大。

若选“内部”,这时带洞口的墙元两侧边中部的节点为变形不协调点,是对剪力墙的一种简化模拟,精度略逊于前者,但效率高,实用性好,计算量比前者少。

多层结构—(剪力墙较少,工程规模相对较小)选---出口高层结构—内部4.模拟施工加载3计算竖向力,采用分层刚度分层加载模型,与模拟施工加载1类似,只是在分层加载时去掉了没有用的刚度,使其更接近于施工过程。

计算恒载。

5.考虑偶然偏心如果考虑偶然偏心,程序将自动增加计算4个地震工况,分别是质心沿Y正、负向偏移5%的X地震和质心沿X正、负向偏移5%的Y 地震。

6.考虑双向地震作用若考虑,程序自动对X,Y的地震作用效应Sx,Sy进行修改。

Sx←sign(Sx)√Sx2+(0.85Sy)2Sy←sign(Sy)√Sy2+(0.85Sx)27.计算振型个数一般计算振型数应大于9 ,多塔结构多一些。

但是一个规则的两层结构,采用刚性楼板假定,每块刚性楼板只有三个有效动力自由度,整个结构共有6个有效动力自由度,系统自身只有6个特征值,最多取6个8.活荷质量折减系数计算重力荷载代表值时的活荷载组合值系数,缺省取值与荷载组合中的活荷载组合值系数相同(一般为0.5),如果用户需要,也可以自己修改。

9.周期折减系数为了充分考虑框架结构和框架-剪力墙结构的填充墙刚度对计算周期的影响。

PKPM计算分析

PKPM计算分析

PKPM计算分析PKPM是国内常用的工程结构计算软件,是一款专业的钢结构计算分析软件,主要用于对钢结构进行受力分析和设计计算。

PKPM包括了许多功能模块,如结构建模、受力分析、稳定性分析、设计计算和结果输出等。

下面将对PKPM的计算分析进行详细介绍。

首先,PKPM的计算分析的第一步是进行结构建模。

用户可以根据实际情况,选择合适的构件材料、截面形状和连接方式等进行构件的绘制。

PKPM提供了多种绘图工具,使得用户可以方便地进行结构的建模。

在完成结构建模后,就可以进行受力分析。

PKPM通过有限元法对结构进行受力分析,将结构分割成多个小单元,对每个小单元进行受力计算,并计算出整个结构的受力情况。

在进行受力分析时,用户需要设置相应的受力边界条件,如约束条件、外荷载等。

受力分析完成后,可以进行稳定性分析。

稳定性分析是评价结构是否可以抵抗弯曲、扭转、屈曲等稳定性失稳形式的能力。

PKPM可以根据结构的几何形状和结构的材料特性进行稳定性分析,评估结构的稳定性。

接下来,可以进行设计计算。

设计计算是根据结构要求和材料特性,计算出结构构件的尺寸和截面形状等。

PKPM根据国家规范和设计准则进行设计计算,计算出结构构件的尺寸和截面形状,满足结构的安全要求。

最后,PKPM可以输出计算结果。

结果输出包括受力分析结果、稳定性分析结果和设计计算结果等。

用户可以根据需要选择输出结果,可以以图形形式和表格形式展示计算结果,便于用户进行结果分析和评估。

总的来说,PKPM计算分析是一种专业的钢结构计算软件,主要用于对钢结构进行受力分析和设计计算。

PKPM具有结构建模、受力分析、稳定性分析、设计计算和结果输出等功能,可以方便地进行工程结构计算分析。

通过PKPM计算分析,可以帮助用户评估结构的受力情况、稳定性和设计尺寸,确保结构的安全和可靠。

PKPM2024版SATWE计算结果分析

PKPM2024版SATWE计算结果分析

PKPM2024版SATWE计算结果分析SATWE(拼装结构自由度七杆架)是PKPM软件中的一种计算模块,用于分析和设计拼装结构。

而PKPM2024版则是PKPM软件的早期版本,其计算模块相对较简单。

本文将对PKPM2024版SATWE计算结果进行分析,并对其存在的问题进行讨论。

首先,需要明确SATWE计算模块的基本原理和应用范围。

SATWE是基于静力学原理,通过对各个杆件进行应力和变形计算,判断构件的稳定性,并进行极限承载力和刚度分析。

SATWE适用于开展拼装结构的结构分析、验算和设计。

在PKPM2024版中,SATWE计算模块的算法相对较为简单,仅考虑静力学原理,并未考虑材料的非线性特性和构件的几何非线性。

这导致计算结果存在一定的偏差,可能与实际情况存在较大差异。

另外,PKPM2024版SATWE计算模块对于拼装结构的复杂性和多样性处理能力较弱。

该版本中的计算模块主要针对简单和常见的拼装结构进行分析,对于非常规的结构形式和载荷情况处理能力有限。

这可能导致计算结果在一些情况下不准确或不适用。

此外,PKPM2024版SATWE计算模块在计算结果的输出和可视化方面也存在一些不足。

该版本的计算结果输出界面较为简单,仅提供了基本的计算参数和结果,缺乏对结果的详细解释和分析。

同时,该版本的可视化功能也较为有限,无法直观展示结构的应力、变形等信息。

为了克服上述问题,建议在进行拼装结构分析时,尽量使用更新版本的PKPM软件,如PKPM2024版或更高版本。

这些更新版本的软件在算法、计算能力和结果展示方面都有较大的改进和提升。

此外,使用其他专业的结构分析软件也是一个不错的选择,如ANSYS、ABAQUS等。

pkpm软件计算结果审查分析_secret分析

pkpm软件计算结果审查分析_secret分析

PKPM软件计算结果审查分析Senegal 2011-20/11计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。

对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。

一、计算结果合理性判定1、对重力荷载作用下计算结果的分析审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。

当以上三者出现异常情况时,需要返回原始数据进行检查。

2、对风荷载作用下计算结果的分析审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。

3、对水平地震荷载作用下计算结果的分析水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。

水平地震荷载作用下,对其计算结果的分析重点如下。

3.1.结构的自振周期对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。

如结构的基本自振周期(即第一周期)大致为:框架结构T1≈ ( 0.12~0.15) n框-剪和框-筒结构T1≈ ( 0.08~0.12) n剪力墙和筒中筒结构 T1≈(0.04~0.06)n式中,n为建筑物的总层数。

PKPM电算结果分析

PKPM电算结果分析

一自振周期的评定 (1)二振型曲线的评定 (3)三地震力的评定 (3)四水平位移的特征 (5)五几个重要的比值 (6)1轴压比 (6)2位移比 (6)3周期比 (7)4刚度比 (7)5剪重比 (8)6刚重比 (8)7有效质量比 (9)一自振周期的评定结构基本自振周期的计算方法有三种:能量法,等效质量法,顶点位移法。

但是有钢筋混凝土框架的经验公式值:第一振型T1=(0.12-0.15)n,第二振型T2=(1/3-1/5) T1,第三振型T3=(1/5-1/7) T1。

详见《高层建筑混凝土结构技术规程》4.2.3,调入PKPM电算结果:考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数有计算的结果知结构的第一振型周期分别为0.7854,0.2524,0.1443,0.1022,0.0841第二振型周期分别为0.7441,0.2421,0.1408,0.1016,0.0831第三振型周期分别为0.6340,0.2065,0.1200,0.0862,0.0709 具体分析见如下结果:计算出的经验值为0.6~0.75 0.15~0.1875 0.1~0.125,由上分析知道所算的结果与理论相差并不是很远,所以结构的构件尺寸基本合理。

二振型曲线的评定有经验知识知在正常的计算下,对于比较均匀的结构,振型曲线应是比较连续光滑的曲线,不应有大的凹凸曲折。

第一振型无零点;第二振型在(0.7-0.8)H处有一个零点;第三振型分别在(0.4-0.5)H及(0.8-0.9)H处有两个零点。

调入PKPM电算结果:第一振型曲线第二振型曲线第三振型曲线上面的图片是一层楼中X方向第一、第二、第三振型投影仅为电算结果中的一个代表由该图知各振型曲线基本光滑,与经验基本一致,说明结构的布局,构件的选取以及荷载的输入基本正确。

三地震力的评定根据目前许多工程的计算结果,截面尺寸、结构布置都比较正常的结构,其底部剪力约在下述范围内:7度,II类场地土:F EK≈(0.03-0.06)G调入PKPM的电算结果:********************************************************** 各层的质量、质心坐标信息 **********************************************************层号塔号质心 X 质心 Y 质心 Z 恒载质量活载质量(m) (m) (t) (t)5 1 21.792 12.079 16.800 414.2 12.34 1 21.672 12.015 13.500 685.1 54.93 1 21.672 12.015 10.200 685.1 54.92 1 21.672 12.015 6.900 685.1 54.91 1 21.680 12.016 3.600 689.8 54.9活载产生的总质量 (t): 231.930恒载产生的总质量 (t): 3159.396结构的总质量 (t): 3391.326恒载产生的总质量包括结构自重和外加恒载结构的总质量包括恒载产生的质量和活载产生的质量活载产生的总质量和结构的总质量是活载折减后的结果 (1t = 1000kg)。

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

PKPM 软件计算结果分析详细说明

PKPM 软件计算结果分析详细说明

PKPM软件计算结果分析详细说明一、位移比、层间位移比控制规范条文:《高规》JGJ3-2010中第3.4.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

《高规》JGJ3-2010的第3.7.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000《抗规》GB50011-2010中第3.4.4条第1款第一条:“扭转不规则时,应计入扭转影响,且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层间位移平均值的1.5倍,当最大层间位移远小于规范限值时,可适当放宽。

”名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

PKPM计算结果分析报告及注意的问题-讲义

PKPM计算结果分析报告及注意的问题-讲义

第一节结构整体性能控制I、轴压比一、规X要求轴压比:柱( 墙)轴压比N/(fcA) 指柱( 墙) 轴压力设计值与柱( 墙) 的全截面面积和混凝土轴心抗压强度设计值乘积之比。

它是影响墙柱抗震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规X采取的措施之一就是限制轴压比。

规X对墙肢和柱均有相应限值要求,见10 版高规6.4.2和7.2.13。

抗震设计时,钢筋混凝土柱轴压比不宜超过表6.的规定;对于Ⅳ类场地上较高的高层建筑,其轴压比限值应适当减小。

二、电算结果的判别与调整要点:混凝土构件配筋、钢构件验算输出文件〔WPJ*.OUT〕Uc --- 轴压比(N/Afc)1.抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的限制也越严格。

对于框支柱、一字形剪力墙等情况而言,如此要求更严格。

抗震等级低或非抗震时可适当放松,但任何情况下不得小于1.05。

2.限制墙柱的轴压比,通常取底截面(最大轴力处)进展验算,假如截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。

SATWE验算结果,当计算结果与规X不符时,轴压比数值会自动以红色字符显示。

3.需要说明的是,对于墙肢轴压比的计算时,规X取用重力荷载代表值作用下产生的轴压力设计值〔即恒载分项系数取1.2,活载分项系数取1.4〕来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,防止受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。

4.试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规X针对情况的不同,对柱的轴压比限值作了适当的调整〔抗规6.3.6条注〕。

5.当墙肢的轴压比虽未超过上表中限值,但又数值较大时,可在墙肢边缘应力较大的部位设置边缘构件,以提高墙肢端部混凝土极限压应变,改善剪力墙的延性。

当为一级抗震(9度)时的墙肢轴压比大于0.3,一级(8度)大于0.2,二级大于0.1时,应设置约束边缘构件,否如此可设置构造边缘构件,程序对底部加强部位与其上一层所有墙肢端部均按约束边缘构件考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对 关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致 于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要 求结构承载布局的合理性。考虑周期比限制以后,以前看来规整的结构平面,从新规范的角 度来看,可能成为“平面不规则结构”。一旦出现周期比不满足要求的情况,一般只能通过 调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周 期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强外圈结 构刚度、增设抗震墙、增加外围连梁的高度、削弱内筒的刚度。
Ratio-Dx= Max-Dx/ Ave-Dx
最好<1.2 不能超过 1.5
Y 方向相同
电算结果的判别与调整要点:
1.若位移比(层间位移比)超过 1.2,则需要在总信息参数设置中考虑双向地震作用;
2.验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心;(注: 先软件允许同时考虑“偶然偏心”和“双向地震作用”—SATWE2010 用户手册第六章第一 节十、十一)
2. 振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选 择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行 计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的 确定,应按上述[高规]5.1.13 条(高层建筑结构计算振型数不应小于 9,抗震计算时,宜考 虑平扭藕连计算结构的扭转效应,振型数不小于 15,对于多塔楼结构的振型数不应小于塔 楼数的 9 倍,且计算振型数应使振型参与质量不小于总质量的 90%)执行,振型数是否足 够,应以计算振型数使振型参与质量不小于总质量的 90%作为唯一的条件进行判别。([耦联] 取 3 的倍数,且≤3 倍层数,[非耦联]取≤层数,直到参与计算振型的[有效质量系数]≥90%)
5 0.1718 85.00 1.00 ( 0.01+0.99 ) 0.00
6 0.1355 5.03 0.05 ( 0.05+0.00 ) 0.95
7 0.0994 177.15 0.97 ( 0.97+0.00 ) 0.03
8 0.0849 87.63 1.00 ( 0.00+1.00 ) 0.00
d)当不满足周期限制时,且层位移角控制潜力不大,应检查是否存在扭转刚度特别小的 层,若存在应加强该层的抗扭刚度;
e)当不满足扭转周期限制,且层位移角控制潜力不大,各层抗扭刚度无突变,说明核心 筒平面尺度与结构总高度之比偏小,应加大核心筒平面尺寸或加大核心筒外墙厚,增大核心 筒的抗扭刚度。
f)当计算中发现扭转为第一振型,应设法在建筑物周围布置剪力墙,不应采取只通过加 大中部剪力墙的刚度措施来调整结构的抗扭刚度。
三、层刚度比控制
规范条文:
1.《抗规》附录 E2.1 规定,筒体结构转换层上下层的侧向刚度比不宜大于 2;
2.《高规》的 3.5.2 条规定,抗震设计的高层建筑结构:
a) 对于框架结构,其楼层侧向刚度本层与相邻上层的比值不宜小于 0.7,与相邻上 部三层刚度平均值的比值不宜小于 0.8;
b) 对于框架—剪力墙、板柱—剪力墙结构、剪力墙结构、框架—核心筒结构、筒 中筒结构,其楼层侧向刚度本层与相邻上层的比值不宜小于 0.9;当本层层高大于相邻上层 层高的 1.5 倍时,该比值不宜小于 1.1;对结构底部嵌固层,该比值不宜小于 1.5。
5.因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结 构单元的边角部位。
二、周期比控制
规范条文:
《高规》JGJ3-2010 中第 3.4.5 条规定,结构扭转为主的第一周期 Tt 与平动为主的第一 周期 T1 之比,A 级高度高层建筑不应大于 0.9;B 级高度高层建筑、混合结构高层建筑及 复杂高层建筑不应大于 0.85。
3.验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采 用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响。
4.最大层间位移、位移比是在刚性楼板假设下的控制参数。构件设计与位移信息不是 在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设 下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。
4. 扭转周期控制及调整难度较大,要查出问题关键所在,采取相应措施,才能有效解 决问题。
a)扭转周期大小与刚心和形心的偏心距大小无关,只与楼层抗扭刚度有关;
b)剪力墙全部按照同一主轴两向正交布置时,较易满足;周边墙与核心筒墙成斜交布置 时要注意检查是否满足;
c)当不满足周期限制时,若层位移角控制潜力较大,宜减小结构竖向构件刚度,增大平 动周期;
最大层间位移角:墙、柱层间位移角的最大值。
平均层间位移角:墙、柱层间位移角的最大值与最小值之和除 2。
控制目的:
高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和 层间位移加以控制,主要目的有以下几点:
1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂 缝数量,宽度。
比值或上三层平均侧移刚度 80%的比值中之较小者
……
============================================================== 即要求:
振型号 周期 转角
平动系数 (X+Y) 扭转系数
1 0.6306 110.18 0.99 ( 0.12+0.88 ) 0.01
2 0.6144 21.19 0.95 ( 0.82+0.12 ) 0.05
3 0.4248 2.39 0.06 ( 0.06+0.00 ) 0.94
4 0.1876 174.52 0.96 ( 0.95+0.01 ) 0.04
通常选择第三种算法。
刚度的正确理解应为产生一个单位位移所需要的力
建筑结构的总信息(WMASS.OUT)
=============================================================== 各层刚心、偏心率、相邻层侧移刚度比等计算信息
…… Ratx1,Raty1 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度 70%的
PKPM 软件计算结果分析详细说明
一、位移比、层间位移比控制
规பைடு நூலகம்条文:
《高规》JGJ3-2010 中第 3.4.5 条规定,楼层竖向构件的最大水平位移和层间位移角,A、 B 级高度高层建筑均不宜大于该楼层平均值的 1.2 倍;且 A 级高度高层建筑不应大于该楼层 平均值的 1.5 倍,B 级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层 平均值的 1.4 倍。
对于通常的规则单塔楼结构,如下验算周期比:
1) 根据各振型的平动系数大于 0.5,还是扭转系数大于 0.5,区分出各振型是扭转振型 还是平动振型 。
2) 通常周期最长的扭转振型对应的就是第一扭转周期 Tt,周期最长的平动振型对应 的就是第一平动周期 T1 。
3) 对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如 果仅是局部振动,不是第一扭转/平动周期。再考察下一个次长周期。
4) 考察第一平动周期的基底剪力比是否为最大。
5) 计算 Tt/T1,看是否超过 0.9 (0.85)。
多塔结构周期比:
对于多塔楼结构,不能直接按上面的方法验算,而应该将多塔结构切分成多个单塔,按 多个单塔结构分别计算。
周期、地震力与振型输出文件(WZQ.OUT)
考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数
3.《高规》的 5.3.7 条规定,高层建筑结构整体计算中,当地下室顶板作为上部结构嵌 固部位时,地下一层与首层侧向刚度比不宜小于 2;
4.《高规》的 10.2.3 条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的 侧向刚度,应符合高规附录 E 的规定:
E.0.1) 底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等 效刚度比 γ 表示转换层上、下层结构刚度的变化,非抗震设计时 γ 不应大于 3,抗震设计时 不应大于 2。
9 0.0752 12.73 0.03 ( 0.03+0.00 ) 0.97
X 方向的有效质量系数: 97.72%
Y 方向的有效质量系数: 96.71%
即要求:
0.4248/0.6306=0.67
<0.9
97.72% 96.71%
>90% 说明无需再增加振型计算
电算结果的判别与调整要点:
1. 对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主 振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得 扭转振型不应靠前,以减小震害。SATWE 程序中给出了各振型对基底剪力贡献比例的计算 功能,通过参数 Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是 X 方 向或 Y 方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。
Ave-Dx ,Ave-Dy : X,Y 方向的平均层间位移
Ratio-(X)、Ratio-(Y)---- X、Y 向最大位移与平均位移的比值。
Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值
即要求:
Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过 1.5
名词释义:
(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
相关文档
最新文档